Access to Unsaturated Ruthenium Complexes via **Phosphine Complexation with Triphenylborane:** Synthesis and Structure of a Zwitterionic Arene Complex, $(\eta^6$ -Ph-BPh₂H)Ru(PMe₃)₂(SiMe₃)

Vladimir K. Dioumaev, Karl Plössl, Patrick J. Carroll, and Donald H. Berry*

Department of Chemistry and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

Received November 8, 1999

Triphenylborane, BPh₃, serves as a phosphine "sponge", scavenging free PMe₃ from alkane solutions of the 18e⁻ complex (PMe₃)₄Ru(SiMe₃)H to form sparingly soluble Ph₃B–PMe₃ and the 16e⁻ (PMe₃)₃Ru(SiMe₃)H. Under nitrogen atmosphere the 16e⁻ (PMe₃)₃Ru(SiMe₃)H forms a dimeric N_2 adduct, [(PMe_3)_3Ru(SiMe_3)H]_2N_2. Both the 16e⁻ complex and its N_2 adduct exist in equilibrium with the 18e⁻ silene complex, (PMe₃)₃Ru(CH₂=SiMe₂)H₂. However, long reaction times in the presence of excess borane leads to removal of another phosphine ligand as Ph₃B–PMe₃ and formation of a new zwitterionic complex, $(\eta^6$ -PhBPh₂H)Ru(PMe₃)₂(SiMe₃) (5), in which a molecule of borane has abstracted a ruthenium hydride ligand and also coordinates as an η^6 -arene. The merits and limitations of BPh₃ as a phosphine removal agent are discussed. Compound 5 has been characterized by single-crystal X-ray analysis and exhibits unusually long Ru-Carene bonds.

The reactivity of 18e⁻ phosphine complexes most commonly stems from initial reversible dissociation of a phosphine ligand, which generates sterically and electronically unsaturated 16e⁻ species. The ability to remove free phosphine from solution, hence shifting the equilibrium in favor of the reactive unsaturated species, is often a very desirable goal in the quest for more active catalysts, in synthetic chemistry, and in probing details of reaction mechanisms. Several reagents for capturing dissociated phosphine ligands have been reported, including MeI,¹⁻³ B(C₆F₅)₃,⁴ (9-BBN)₂,⁵ Me₃N=O,⁶ CS₂,⁷ sulfur,² CuI,⁸ [Cu(MeCN)₄][PF₆],⁹ Pd(PhCN)₂Cl₂,^{2,10} PdCl₂(COD),¹⁰ PdCl₂,¹¹ [Pd(OCMe₂)(bipy)(C₆F₅)][ClO₄],⁷ $(acac)Rh(C_2H_4)_{2,6,12-14}Ni(COD)_{2,4,6,14}[RhCl(C_6H_{14})_2]_{2,15}$

564.

(3) Richter, F.; Vahrenkamp, H. *Chem. Ber.* **1982**, *115*, 3243–3256. (4) Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs, R. H.; Bansleben, D. A.; Day, M. W. *Organometallics* **1998**, *17*, 3149–3151.

(6) Luck, R.; Morris, R. H. Inorg. Chem. 1984, 23, 1489–1491.
(6) Klabunde, U.; Ittel, S. D. J. Mol. Catal. 1987, 41, 123–134.
(7) Uson, R.; Fornies, J.; Uson, M. A. Synth. React. Inorg. Met.-Org.

- Chem. 1984, 14, 355-367.
- (8) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 5905–5911.
 (9) Levitre, S. A.; Tso, C. C.; Cutler, A. R. J. Organomet. Chem. 1986,
- 308, 253-259.
- (10) Wengrovius, J. H.; Schrock, R. R. Organometallics 1982, 1, 148-155.
- (11) Coulson, D. R. Chem. Commun. 1968, 1530-1531.
- (12) Milstein, D. J. Am. Chem. Soc. 1982, 104, 5227–5228.
 (13) Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728– 2735.
- (14) Klabunde, U.; Mulhaupt, R.; Herskovitz, T.; Janowicz, A. H.; Calabrese, J.; Ittel, S. D. J. Polym. Sci., Part A: Polym. Chem. 1987, 25, 1989–2003.
- (15) Van der Velden, J. W. A.; Bour, J. J.; Bosman, W. P.; Noordik, J. H. J. Chem. Soc., Chem. Commun. 1981, 1218–1219.

and Au(PPh₃)(NO₃),¹⁶ Unfortunately, many of these phosphine sponges also exhibit considerable activity in redox and ligand substitution reactions or greatly complicate isolation of the desired unsaturated metal species. We recently reported in a preliminary communication that treatment of (PMe₃)₄Ru(SiMe₃)H with BPh₃ yields the 16e⁻ (PMe₃)₃Ru(SiMe₃)H, 2, and the sparingly soluble BPh₃-PMe₃.¹⁷ In the present contribution we provide more detail regarding the use of triphenylborane as a convenient phosphine scavenger in the generation of **2** and a ruthenium silene complex derived from 2 and the isolation of an unusual ruthenium-borane complex resulting from subsequent reaction of BPh₃ with the products.

Results and Discussion

Compared with many of the potent Lewis acids (e.g., $B(C_6F_5)_3)$ currently en vogue, BPh_3 is a distinctly mild reagent. Formation of 2 and PMe₃-BPh₃ is relatively fast (minutes at room temperature) and proceeds at a rate qualitatively consistent with phosphine dissociation from the starting complex. Complex **2** subsequently undergoes reversible β -hydride elimination from the silyl ligand, generating equilibrium concentrations of the silene complex 3, (PMe₃)₃Ru(CH₂=SiMe₂)H₂ (Scheme 1).¹⁷ Furthermore, in the presence of nitrogen, ${f 2}$ exists in fast equilibrium with the bridging dinitrogen complex, $[(PMe_3)_3Ru(SiMe_3)H]_2N_2$, 4, the structure of which has been previously reported.¹⁷

However, addition of a single equivalent of BPh₃ to 1 (initial concentration = 0.035 M each) in C₆D₁₂ at room

10.1021/om9908938 CCC: \$19.00 © 2000 American Chemical Society Publication on Web 07/18/2000

^{*} To whom correspondence should be addressed. Fax: (215) 573-2112. E-mail: dberry@sas.upenn.edu.
(1) Lazarowych, N. J.; Morris, R. H. Can. J. Chem. 1990, 68, 558-

⁽²⁾ Brumbaugh, J. S.; Whittle, R. R.; Parvez, M.; Sen, A. Organometallics 1990, 9, 1735-1747.

⁽¹⁶⁾ Van der Velden, J. W. A.; Bour, J. J.; Bosman, W. P.; Noordik, J. H. Inorg. Chem. **1983**, 22, 1913–1918.

⁽¹⁷⁾ Dioumaev, V. K.; Plössl, K.; Carroll, P. J.; Berry, D. H. J. Am. Chem. Soc. 1999, 121, 8391-8392.

temperature under nitrogen does not consume all of the starting material, but after 2 h rather produces an equilibrium mixture containing 1 (42%), 2/4 (16%), 3 (34%), and ca. 8% total of $(\eta^6-Ph-BPh_2H)Ru(PMe_3)_2$ -(SiMe₃) (vide infra) and (PMe₃)₃Ru(SiMe₃)H₃ (product of redistribution and dehydrocoupling of silyl ligands^{18,19}). The equilibrium is less favorable in C_6D_6 , leading to 53% 1, 18% 2/4, and 20% 3. It is noteworthy how little the equilibrium is effected by the change of solvent, given that the borane-phosphine adduct is appreciably more soluble in C_6D_6 than in C_6D_{12} . Changes in the relative amounts of 3 and 2/4 may also reflect differences in the solubility of nitrogen gas. The effectiveness of BPh₃ in this case appears to rely more on the Lewis acidity of the borane than on the insolubility of the adduct. One obvious strategy to improve the stoichiometric trapping and removal of phosphines is to employ stronger Lewis acids such as $B(C_6F_5)_3$ and $B(C_6H_3(CF_3)_2)_3$, but these attempts led to extensive decomposition and neither 2/4 nor 3 was observed. It is likely these Lewis acids indiscriminately abstract hydride and/or silyl ligands, in addition to trapping dissociated PMe₃.

Alternatively, the equilibrium in Scheme 1 can be driven by the use of excess BPh₃, but this accelerates the slow (hours) formation of $(\eta^6$ -Ph-BPh₂H)Ru(PMe₃)₂-(SiMe₃), 5, at the expense of the desired 2/4 and 3. The yield of 2/4 and 3 can be improved through the following procedure performed in aliphatic solvents such as pentane. An excess of BPh3 is used to shift the equilibrium to the right; precipitation of Ph₃B-PMe₃ occurs within minutes, and most of the unreacted borane is removed by addition of polystyrene-supported triphenylphosphine.¹⁷ Both solid Ph₃B-PMe₃ and the polymerbound phosphine borane are removed by filtration. Some borane inevitably remains in solution and slowly reacts further to form 5 and Ph₃B-PMe₃, but these contaminants can be removed by crystallization from a large quantity of cold pentane. Prompt recrystallization of the concentrated mother liquors under nitrogen yields the bridging N_2 complex 4 (64%) as analytically pure material.

When compared to other phosphine sponges, one can expect BPh_3 to be preferred in instances where the products do not tolerate strong Lewis acids. Unfortunately, the mild acidity of BPh₃ limits its use to complexes with extremely labile phosphine ligands or

to enhancing the equilibrium concentration of active unsaturated complexes during catalysis. In theory, one could devise improved phosphine sponges by employing triaryl- or trialkylboranes anchored on solid supports, e.g., analogous to polystyrene-supported PPh₃, which would allow phosphine removal without unduly complicating the separation of products from excess borane.

Synthesis and Characterization of $(\eta^6-PhBPh_2H)$ -Ru(PMe₃)₂(SiMe₃). Treatment of (PMe₃)₄Ru(SiMe₃)H with excess BPh₃ (3 equiv) initially produces a mixture of the unsaturated 2 and the silene complex 3, but both of these species disappear within 4 h at room temperature. The principal new product is $(\eta^6-PhBPh_2H)Ru$ -(PMe₃)₂(SiMe₃), 5, in which a BPh₃H anion is coordinated to ruthenium as an η^6 -arene (eq 1). Multinuclear

$$\begin{array}{c|c} Me_{3}P & & & & & & & \\ Me_{3}P, & & & & & & \\ Me_{3}P, & & & & & \\ Me_{3}P & & \\ Me_{3}P & & \\ Me_{3}P & & \\ Me_{3}P & & \\$$

NMR spectra are consistent with the structure indicated for 5. Features in the ¹H NMR spectrum that are particularly diagnostic include three new signals between δ 5.88 and 4.49 ppm for the coordinated arene and a 1:1:1:1 pattern at δ 4.06 ppm for the hydride bound to four-coordinate boron. The latter is observed at -9.73 ppm in the ¹¹B NMR (d, $J_{BH} = 82.5$ Hz). A single-crystal X-ray diffraction study confirmed the proposed zwitterionic structure (vide infra).

Many examples of η^6 -coordination of tetraphenylborate anions have been previously reported, $^{20-28}$ including several ruthenium complexes, $^{21-24,29}$ some of which were structurally characterized.³⁰⁻³² On the other hand, the BPh₃H fragment appears to be much less common, regardless of the coordination mode. A few alkali metal salts of [BPh₃H]⁻ have been reported, generally prepared by treatment of BPh₃ with the corresponding alkali metal hydride.^{33,34} It is surprising that such a weak acid as BPh₃ can abstract a hydride from a weak base, the neutral ruthenium-phosphine complex. Certainly, hydride-,³⁵⁻⁴⁸ alkyl-,^{35,45,49-52} and silyl-abstrac-

(22) Fagan, P. J.; Ward, M. D.; Calabrese, J. C. J. Am. Chem. Soc. **1989**, *111*, 1698–1719.

- (25) Aresta, M.; Quaranta, E. J. Organomet. Chem. 1993, 463, 215– 221
- (26) Aresta, M.; Quaranta, E.; Albinati, A. Organometallics 1993, 12, 2032-2043.
- (27) Scotti, M.; Valderrama, M.; Ganz, R.; Werner, H. J. Organomet. Chem. 1985, 286, 399-406.
- (28) Thaler, E. G.; Caulton, K. G. Organometallics 1990, 9, 1871-1876.
- (29) Hough, J. J.; Singleton, E. J. Chem. Soc., Chem. Commun. 1972, 371 - 2
- (30) Kruger, G. J.; Du Preez, A. L.; Haines, R. J. J. Chem. Soc., Dalton Trans. 1974, 1302-1305.
- (31) Ashworth, T. V.; Nolte, M. J.; Reimann, R. H.; Singleton, E. J. Chem. Soc., Chem. Commun. 1977, 937-939.
- (32) Winter, R. F.; Hornung, F. M. Inorg. Chem. 1997, 36, 6197-6204.
- (33) Yoon, N. M.; Kim, K. E.; Kang, J. J. Org. Chem. 1986, 51, 226-229.
- (34) Wittig, G.; Keicher, G.; Rückert, A.; Raff, P. Justus Leibigs Ann. Chem. 1949, 563, 110.
- (35) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10015–10031.

⁽¹⁸⁾ Procopio, L. J.; Berry, D. H. J. Am. Chem. Soc. 1991, 113, 4039-4040.

⁽¹⁹⁾ Procopio, L. J.; Mayer, B.; Plössl, Karl; Berry, D. H. Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem. 1992, 33, 1241-1242.

⁽²⁰⁾ Aresta, M.; Quaranta, E.; Tommasi, I.; Derien, S.; Dunach, E. *Organometallics* **1995**, *14*, 3349–3356, and references therein. (21) Wilczewski, T. *J. Organomet. Chem.* **1989**, *376*, 385–96.

 ⁽²³⁾ Wilczewski, T. J. Organomet. Chem. 1985, 297, 331–340.
 (24) Albers, M. O.; Robinson, D. J.; Shaver, A.; Singleton, E. Organometallics 1986, 5, 2199–2205.

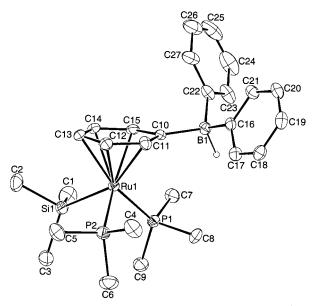


Figure 1. ORTEP drawing of $(PMe_3)_2Ru(SiMe_3)(\eta^6-Ph-$ BPh₂H), 5 (30% thermal ellipsoids). Hydrogen atoms other than the B-H are omitted for clarity.

tion⁵³ reactions by boranes are known, but these are generally associated with high Lewis acidity (e.g., fluorinated arylboranes,^{35-46,49-52}) or chelating effects (e.g., 1,8-bis(dimethylboranyl)naphthalene, "hydride sponge"^{47,48}). Compound **5** is most likely formed by reaction of the unsaturated 2 with BPh₃, although the order of the initial steps is not obvious. It is possible that η^2 -arene coordination is assisted by concurrent borane-hydride association and formation of an η^{1} borohydride. In any case, further substitution of PMe₃ by the increasing hapticity of the arene would be assisted by the presence of additional BPh₃ to scavenge free phosphine.

The solid state structure of complex 5 (Figure 1) adopts a three-legged piano-stool geometry with all bonds and angles in normal ranges, except for the Ru-

- (36) Yang, X.; Stern, C.; Marks, T. J. Angew. Chem., Int. Ed. Engl. 1992, 31, 1375–1377.
- (37) Roettger, D.; Schmuck, S.; Erker, G. J. Organomet. Chem. 1996, 508. 263-265. (38) Lambert, J. B.; Kuhlmann, B. J. Chem. Soc., Chem. Commun.
- 1992 931-932
- (39) Blaschke, U.; Erker, G.; Nissinen, M.; Wegelius, E.; Froehlich, R. Organometallics 1999, 18, 1224-1234.
- (40) Blackwell, J. M.; Foster, K. L.; Beck, V. H.; Piers, W. E. J. Org. Chem. 1999, 64, 4887-4892.
- (41) Spence, R. E. v. H.; Piers, W. E.; Sun, Y.; Parvez, M.; MacGillivray, L. R.; Zaworotko, M. J. Organometallics 1998, 17, 2459-2469
- (42) Bly, R. S.; Bly, R. K.; Hossain, M. M.; Silverman, G. S.; Wallace, E. Tetrahedron 1986, 42, 1093-108.
- (43) Dioumaev, V. K.; Harrod, J. F. Organometallics 1996, 15, 3859-3867
- (44) Dioumaev, V. K.; Harrod, J. F. Organometallics 1997, 16, 2798-2807
- (45) Blaschke, U.; Menges, F.; Erker, G.; Froehlich, R. Eur. J. Inorg. Chem. 1999, 621-632.
- (46) Van der Zeijden, A. A. H.; Shklover, V.; Berke, H. Inorg. Chem. 1991, 30, 4393-4396.
- (47) Katz, H. E. J. Am. Chem. Soc. 1985, 107, 1420-1421.
 (48) Katz, H. E. J. Org. Chem. 1985, 50, 5027-5032.
 (49) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623-3625.
- (50) Giardello, M. A.; Eisen, M. S.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1993, 115, 3326-3327.
- (51) Deck, P. A.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 6128-6129
- (52) Temme, B.; Erker, G. J. Organomet. Chem. 1995, 488, 177-182.

Table 1. Selected Bond Distances (Å) and Angles (deg) in (PMe₃)₂Ru(SiMe₃)(η⁶-Ph-BPh₂H)

	U ^r		-, .,	-	- /
Ru1-Si1	2.418(2)	Ru1-P1	2.307(2)	Ru1-P2	2.282(2)
Ru1-C10	2.467(6)	C10-C11	1.419(9)	C10-B1	1.636(9)
Ru1-C11	2.376(7)	C10-C15	1.441(9)	C16-B1	1.620(10)
Ru1-C12	2.264(6)	C11-C12	1.415(9)	C22-B1	1.614(10)
Ru1-C13	2.284(6)	C12-C13	1.412(10)	B1-H1	1.22(5)
Ru1-C14	2.255(6)	C13-C14	1.429(10)		
Ru1-C15	2.280(7)	C14-C15	1.405(9)		
P2-Ru1-P1		94.19(7)	C16-B1-C10		113.7(5)
P1-Ru1-Si1		88.66(7)	C22-B1-H1		104(3)
P2-Ru1-Si1		90.44(7)	C16-B1-H1		109(3)
C22-B1-C16		113.4(6)	C10-B1-H1		109(3)
C22-B1-C10		107.0(6)			

C_{arene} bond lengths (Table 1).⁵⁴ There appears to be no ambiguity regarding the location of PMe₃ and SiMe₃ ligands, as attempts to refine the structure with these groups interchanged or disordered were unsuccessful. The boron hydride was located and refined isotropically. The B-H distance (1.22(5) Å) is unexceptional, and there is no indication of any significant interaction with the metal center ($D(Ru \cdot HB) = 3.91(5)$ Å.) As previously found for other η^6 -borates, the phenyl is coordinated asymmetrically, with the longest distance between Ru and the *ipso*-C (2.467(6) Å), and the B(1)-C(11) vector nearly eclipsed with that of Ru-P(1). The $Ru-C_{ipso}$ distance is the longest among all η^6 -arene complexes of ruthenium reported in the Cambridge Database,55 except perhaps for one structure containing an η^6 -arene indole ligand. The longest Ru-C bond in the latter case is 2.44(4) Å⁵⁶ but the high value of the standard deviation precludes meaningful comparison to the structure of 5. Longer Ru-C_{arene} contacts have been observed in metal clusters.⁵⁵ However, arenes in these clusters are not coordinated η^6 to any single ruthenium; hence the Ru–C distances cannot be compared directly to 5. The elongation of Ru–C bonds in 5 is especially surprising in light of the formal positive charge on Ru, which is expected to result in tighter binding of electron-rich ligands.

In conclusion, BPh₃ can be utilized as a phosphine sponge in the synthesis of coordinatively and electronically unsaturated organometallic complexes. The mild reactivity of BPh₃ offers distinct advantages over many other phosphine-trapping reagents in some circumstances. However, it is also clear that BPh₃ can undergo secondary reactions with the unsaturated products, although this can be minimized by prompt removal of excess borane. Overall, this method of phosphine removal is a potentially useful addition to the methodologies available to organometallic chemists.

Experimental Section

All manipulations were performed in Schlenk-type glassware on a dual-manifold Schlenk line or in a nitrogen-filled Vacuum Atmospheres glovebox. NMR spectra were obtained at 200 and 500 MHz (for ¹H) on Bruker AF-200 and AM-500

- (55) Determined by searching the Cambridge Structural Database, April 1999 update: Allen, F. H.; Davies, J. E.; Galloy, J. J.; Johnson, O.; Kennard, O.; Macrae, C. F.; Mitchell, E. M.; Mitchell, C. F.; Smith, J. M.; Watson, D. G. *J. Chem. Inf. Comput. Sci.* **1991**, *31*, 187. (56) Feiken, N.; Pregosin, P. S.; Trabesinger, G.; Albinati, A.; Evoli,

- G. L. Organometallics 1997, 16, 5756-5762.

⁽⁵³⁾ Jiang, Q.; Carroll, P. J.; Berry, D. H. Organometallics 1993, 12, 2, 177-183.

⁽⁵⁴⁾ See the Supporting Information for the full experimental, spectroscopic, and crystallographic details.

FT NMR spectrometers, respectively. All NMR spectra were recorded at 303 K unless stated otherwise. Chemical shifts for ¹H and ¹³C spectra are reported relative to tetramethylsilane; for ¹¹B and ³¹P experiments external samples of BF₃·OEt₂ and 85% H₃PO₄ were used as references. ¹¹B, ¹³C, and ³¹P NMR spectra were recorded with broadband ¹H decoupling, unless stated otherwise. Infrared spectra were recorded on a Perkin-Elmer model 1430 spectrometer. Elemental analyses were performed by Robertson Microlit Laboratory, Inc. (Madison, NJ).

Hydrocarbon solvents were dried over Na/K alloy–benzophenone. Benzene- d_6 and cyclohexane- d_{12} were dried over Na/K alloy. Trimethylsilane was prepared by the reaction of Me₃SiCl and LiAlH₄ in ⁿBu₂O and purified by trap-to-trap vacuum fractionation. (PMe₃)₄Ru(H)SiMe₃⁵⁷ and PMe₃⁵⁸ were synthesized according to the literature procedures. Triphenylborane (Aldrich) was recrystallized from hexanes/toluene before use.

Reactions of 1 with BPh₃ in C₆D₆ and C₆D₁₂. Aliquots of 4 mL of stock solutions of BPh₃ and (PMe₃)₄Ru(H)SiMe₃ in pentane were added to two NMR tubes, and the solvent was stripped in vacuo before addition of 0.57 mL of C₆D₆ or C₆D₁₂. The calculated initial concentrations of **1** and BPh₃ were 0.035 M each. A substantial amount of white solid (PMe₃–BPPh₃) precipitated within minutes from the cyclohexane tube. ¹H NMR spectra measured after 2 h at room temperature revealed the following product distributions: C₆D₁₂: 42% **1**, 16% **2/4**, 34% **3**, 6% **5**, and 2% (PMe₃)₃Ru(H)₃SiMe₃. C₆D₆: 53% **1**, 18% **2/4**, 20% **3**, 9% **5**, and small and poorly resolved signal for (PMe₃)₃Ru(H)₃SiMe₃.

Synthesis of [(PMe₃)₃Ru(H)SiMe₃]₂N₂ (4). BPh₃ (290 mg, 1.2 mmol) and (PMe₃)₄Ru(H)SiMe₃ (479 mg, 1.0 mmol) were suspended in 3 mL of cold (ca. -20 °C) pentane. A color change from yellow to dark red and formation of a white precipitate started within seconds. The mixture was stirred for 5 min warming from -20 °C to room temperature and was kept at -40 °C for 30 min. The dark red mother liquor was filtered through a frit, and the precipitate was washed with additional 2×1 mL of pentane. The combined extracts were chilled (ca. -20 °C) and stirred with 200 mg of polymer-supported PPh₃ (cross-linked polystyrene beads, 3 mmol of PPh₃ per 1 g of polymer) for 10 min, decanted, treated again with 200 mg of PPh₃-polystyrene beads, and decanted again. The beads were washed with 2×1 mL of cold pentane. The combined extracts were left overnight at -40 °C to form a fine precipitate of 5 and Ph₃B–PMe₃. The mother liquor was decanted, reduced in volume to 2 mL, and left to crystallize under nitrogen at -40 °C. A color change from dark red to light yellow occurred upon cooling. [(PMe₃)₃Ru(H)SiMe₃]₂N₂ formed large colorless plates on the walls and in the bulk of the solution. Exposure of the crystals to solvents at room temperature leads to formation of small amounts of the dark red 3. The crystals of 4 were mechanically separated from the small amount of microcrystalline 1 on the bottom of the vial. Yield: 267 mg (64%). Anal. Calcd for C₂₄H₇₄N₂Si₂P₆Ru₂: C 34.52, H 8.93, N 3.35. Found: 34.64, H 8.76, N 3.06.

[(PMe₃)₃(H)(SiR₃)Ru]₂N₂: ¹H NMR (C₆D₁₂) δ 1.41 (br t, $J_{PH} = 2.2$ Hz, 18H, PMe₃), 1.32 (d, $J_{PH} = 5.6$ Hz, 9H, PMe₃), 0.061 (s, 9H, SiMe₃), -8.1 (dt, 1H, $J_{PH} = 72$ and 32 Hz, RuH); ¹³C NMR (C₆D₁₂) δ 27.32 (m, mer-PMe₃), 23.49 (virtual t, $J_{PC} = 12.8$ Hz, fac-PMe₃), 12.77 (s, SiMe₃); ³¹P NMR (C₆D₁₂) δ -2.82 (d, $J_{PP} = 22.6$ Hz, 2P, fac-PMe₃), -11.61 (t, $J_{PP} = 22.6$ Hz, 1P, mer-PMe₃); IR (powder) ν (N₂) 2150, 2070 cm⁻¹, ν (RuH) 1820 cm⁻¹; (solution in C₅H₁₂) ν (N₂) 2155 cm⁻¹, ν (RuH) 1835 cm⁻¹.

Synthesis of $(PMe_3)_3Ru(H)SiMe_3$ (2) and $(PMe_3)_3Ru(CH_2=SiMe_2)(H)_2$ (3). Crystalline $[(PMe_3)_3Ru(H)SiMe_3]_2N_2$

was dissolved in C_6D_{12} and thoroughly degassed by four freeze-thaw cycles to furnish a dark red equilibrium mixture of nitrogen-free (PMe₃)₃Ru(H)SiMe₃ and (PMe₃)₃Ru(CH₂= SiMe₂)(H)₂.

(**PMe₃**)₃**Ru(H)SiMe₃**: ¹H NMR (C₆D₁₂) δ 1.42 (t, *J*_{HH} = 2.2 Hz, 18H, P*Me₃*), 1.31 (d, *J*_{HH} = 6.0 Hz, 9H, P*Me₃*), 0.048 (s, 9H, Si*Me₃*), -5.94 (~dt, 1H, *J*_{PH} = 34 Hz, Ru*H*); ¹³C NMR (C₆D₁₂) δ 27.32 (m, *mer*-P*Me₃*), 22.33 (tm, *J*_{PC} = 13.4 Hz, *fac*-P*Me₃*), 12.61 (s, Si*Me₃*); ²⁹Si NMR (C₆D₁₂) δ 0.62 (br s, *SiMe₃*); ³¹P NMR (C₆D₁₂) δ 5.58 (d, *J*_{PP} = 22.7 Hz, 2P, *fac*-*P*Me₃), -3.31 (t, *J*_{PP} = 22.9 Hz, 1P, *mer*-*P*Me₃). There is no indication in the NMR spectra (between +30 and −100 °C in C₇D₁₄) that **2** contains any other NMR active ligands, but weak coordination of hydrocarbon solvent or a C−H bond of a phosphine or silyl methyl group cannot be rigorously excluded.

(PMe₃)₃Ru(H)₂(SiMe₂=CH₂): ¹H NMR (C₆D₁₂) δ 1.37 (d, $J_{\rm PH} = 6.7$ Hz, 9H, PMe₃), 1.28 (d, $J_{\rm PH} = 6.1$ Hz, 18H, PMe₃), 0.28 (s, 6H, SiMe₂), -0.84 (m, 2H, RuCH₂), -10.6 (m, $J_{\rm PH} =$ 45.6 and 20.5 Hz, 2H, RuH); ¹³C NMR (C₆D₁₂) δ 29.29 (dt, $J_{\rm PC} = 21.68$ and 2.22 Hz, 1PMe₃), 24.36 (m, 2PMe₃), 2.73 (s, SiMe₂), -20.75 (dt, $J_{\rm PC} = 21.7$ and 6.5 Hz, CH₂); ²⁹Si NMR (C₆D₁₂) δ -12.93 (~dt, $J_{\rm PSi} = 4.4$ and 2.2 Hz, SiMe₂); ³¹P NMR (C₆D₁₂) δ 0.37 (d, $J_{\rm PP} = 22.5$ Hz, 2P, PMe₃), -1.41 (t, $J_{\rm PP} =$ 22.5 Hz, 1P, PMe₃)

Synthesis of $(\eta^6$ -Ph-BPh₂H)Ru(PMe₃)₂(SiMe₃) (5). A toluene solution (5 mL) of BPh₃ (72.6 mg, 0.3 mmol) and (PMe₃)₄Ru(H)SiMe₃ (47.9 mg, 0.1 mmol) was stirred at room temperature for 4 h. The solvent was evaporated in a vacuum, and PMe₃-BPh₃ was removed by sublimation at 120 °C/4 h. The Ru-containing residue was recrystallized from THF/ toluene at -20 °C to yield 22 mg of colorless crystals (39%). Anal. Calcd for C₂₇H₄₃B₁P₂Si₁Ru₁: C 56.94, H 7.6. Found: C 57.08, H 7.83. ¹H NMR (C₆D₆): δ 7.90 (d, $J_{\text{HH}} = 7.1$ Hz, 4H, *o-Ph*), 7.45 (t, *J*_{HH} = 7.4 Hz, 4H, *m-Ph*), 7.29 (t, *J*_{HH} = 7.5 Hz, 2H, *p-Ph*), 5.88 (d, $J_{\rm HH} = 5.6$ Hz, 2H, η^{6} -*o-Ph*), 4.96 (t, $J_{\rm HH} =$ 5.9 Hz, 1H, η^{6} -*p*-*Ph*), 4.49 (t, $J_{HH} = 5.9$ Hz, 2H, η^{6} -*m*-*Ph*), 4.06 (4 lines, $J_{BH} = 82.5$ Hz, 1H, *BH*), 0.86 (m, 18H, P*Me*₃), 0.07 (s, 9H, Si Me_3). ¹³C{¹H} NMR (C₆D₆): δ 136.0 (*o-Ph*), 127.3 (*p-Ph*), 123.8 (*m*-Ph), 103.9 (η⁶-o-Ph), 94.7 (η⁶-p-Ph), 90.1 (η⁶-m-Ph), 23.1 (dd, $J_{PC} = 17.0$ and 15.1 Hz, PMe₃), 10.2 (s, SiMe₃). ¹¹B NMR (C₆D₆): δ -9.73 (d, J_{BH} = 82.5 Hz). ¹¹B{¹H} NMR: δ -9.73 (s). ³¹P{¹H} NMR (C₆D₆): δ 4.48. IR (Nujol): ν (BH) 2270 cm^{-1} .

Single-Crystal X-ray Diffraction Analysis. Compound $(PMe_3)_2Ru(SiMe_3)(\eta^6-PhBPh_2H), RuC_{27}BH_{43}SiP_2, crystallizes$ in the monoclinic space group $P2_1/c$ (No. 14) (systematic absences 0k0: k = odd and h0k l = odd with a = 12.3927(2)Å, b = 9.7566(1) Å, c = 24.2436(5) Å, $\beta = 99.541(1)^{\circ}$, V =2890.76(8) Å³, Z = 4, and $d_{calc} = 1.309$ g/cm³. X-ray intensity data were collected on an Rigaku R-AXIS IIc area detector employing graphite-monochromated Mo K α radiation (λ = 0.71069 Å) at a temperature of 210 K. Indexing was performed from a series of 1° oscillation images with exposures of 400 s per frame. A hemisphere of data was collected using 4° oscillation angles with exposures of 1500 s per frame and a crystal-to-detector distance of 82 mm. Oscillation images were processed using bioteX,59 producing a listing of unaveraged F^2 and $\sigma(F^2)$ values, which were then passed to the teXsan⁶⁰ program package for further processing and structure solution on a Silicon Graphics Indigo R4000 computer. A total of 18 351 reflections were measured over the ranges $5.14^{\circ} \le 2\theta \le 50.68^{\circ}$, $-14 \le h \le 14, -11 \le k \le 11, -29 \le l \le 28$, yielding 5123 unique, nonzero reflections ($R_{int} = 0.0674$). The intensity data were corrected for Lorentz and polarization effects but not for absorption.

⁽⁵⁷⁾ Procopio, L. J. Ph.D. Thesis, University of Pennsylvania, 1991.
(58) Luetkens, M. L.; Sattelberger, A. P.; Murray, H. H.; Basil, J. D.; Fackler, J. P. *Inorg. Synth.* 1989, *26*, 7.

⁽⁵⁹⁾ *bioteX: A Suite of Programs for the Collection, Reduction and Interpretation of Imaging Plate Data;* Molecular Structure Corporation: 1995.

⁽⁶⁰⁾ *teXsan: Crystal Structure Analysis Package*; Molecular Structure Corporation: 1985 and 1992.

The structure was solved by direct methods (SIR92⁶¹). Refinement was by full-matrix least-squares based on F² using SHELXL-93.62 All reflections were used during refinement (F²'s that were experimentally negative were replaced by $F^2 = 0$). The weighting scheme used was $w = 1/[\sigma^2(F_0^2) +$ $0.0189P^2 + 14.5619P$] where $P = (F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined isotropically. The boron hydride was located and refined isotropically. Refinement converged to $R_1 = 0.0760$ and

(62) Sheldrick, G. M. SHELXL-93: Program for the Refinement of

(62) Steuritek, G. M. SHELAL-95. Frigram for the remainment of Crystal Structures, Göttingen University: Göttingen, Germany, 1993. (63) $R_1 = \Sigma(||F_0| - |F_c||)/\Sigma|F_0|$. $wR_2 = \{\Sigma w(F_0^2 - F_c^2)^2/\Sigma w(F_c^2)^2\}^{1/2}$. GOF = $\{\Sigma w(F_0^2 - F_c^2)^2/(n-p)\}^{1/2}$ where n = the number of reflections and p = the number of parameters refined.

 $wR_2 = 0.1248$ for 4457 reflections for which $F > 4\sigma(F)$ and $R_1 = 0.0929$, $wR_2 = 0.1320$, and GOF = 1.229 for all 5123 unique, nonzero reflections and 461 variables.⁶³ The maximum Δ/σ in the final cycle of least squares was -0.034, and the two most prominent peaks in the final difference Fourier were +0.511 and -0.680 e/Å3.

Acknowledgment. We are grateful to the National Science Foundation (CHE-9904798) and Tokyo Electron Massachusetts for support of this work.

Supporting Information Available: Details of the X-ray structure determination (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

OM9908938

⁽⁶¹⁾ SIR92: Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, M.; Giocovazzo, C.; Guagliardi, A.; Polidoro, G. J. Appl. Crystallogr. 1994, 27, 435.