

Article

Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)

Unique *N*-phenylacetylation and NRPS with Substrate Promiscuity for Biosynthesis of Heptapeptide Variants, JBIR-78 and JBIR-95

Kunpei Takeda, Kohei Kemmoku, Yasuharu Satoh, Yasushi Ogasawara, Kazuo Shin-ya, and Tohru Dairi

ACS Chem. Biol., Just Accepted Manuscript • Publication Date (Web): 15 May 2017

Downloaded from http://pubs.acs.org on May 15, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Chemical Biology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Unique N-phenylacetylation and NRPS with Substrate Promiscuity for Biosynthesis of
2	Heptapeptide Variants, JBIR-78 and JBIR-95
3	
4	Kunpei Takeda [†] , Kohei Kemmoku [†] , Yasuharu Satoh [†] , Yasushi Ogasawara [†] , Kazuo
5	Shin-ya‡, and Tohru Dairi†*
6	
7	†Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo,
8	Hokkaido 060-8628, Japan
9	Biomedicinal Information Research Center (BIRC), National Institute of Advanced
10	Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
11	
12	*Corresponding author. E-mail: dairi@eng.hokudai.ac.jp, Tel: +81-11-706-7815
13	
14	
15	
16	
17	
18	
19	
	1

20 ABSTRUCT

JBIR-78 (1) and JBIR-95 (2), both of which are heptapeptide derivatives isolated from Kibdelosporangium sp. AK-AA56, have the same amino acid sequences except for the second amino acid; phenylacetic acid (Paa)-L-Val-D-Asp (1)/D-cysteic acid (2)-L-Ala-(3S)-3-hydroxy-D-Leu-Gly-D-Ala-L-Phe. Heterologous expression of the biosynthetic gene cluster including genes encoding non-ribosomal peptide synthetases (NRPS) and in vitro assays with recombinant Orf3, L-cysteic acid synthase homolog, suggested the single A-domain in module 2 activates both L-Asp and L-cysteic acid to yield 1 and 2, respectively, although the substrate specificities of the A-domains of NRPSs are usually strict. Biosynthetic mechanism of introduction of N-terminal Paa was also investigated. Recombinant Orf1 and Orf2 similar to subunits of pyruvate dehydrogenase complex catalyzed the conversion of phenylpyruvate into phenylacetyl-CoA together with dihydrolipoyl dehydrogenase whose encoding gene is located at outside of the gene cluster. Moreover, we showed that phenylacetyl-CoA was directly condensed with L-Val, which was tethered to a peptidyl carrier protein, at the first condensation domain in the NRPS.

36 INTRODUCTION

Peptide antibiotics are a large family of natural products, including clinically important
 pharmaceuticals. In addition to isolated natural products, genome databases have revealed

ACS Chemical Biology

the presence of many biosynthetic genes for this category of compounds. These peptides can be categorized by their biosynthetic machineries as either ribosomally synthesized and post-translationally modified peptides (RiPPs) or nonribosomal peptides (NRPs).^{1,2} In the latter case, nonribosomal peptide synthetases (NRPSs) are representative biosynthetic enzymes. NRPSs are modular type large enzymes and a typical module consists of an adenylation (A) domain, a peptidyl carrier protein (PCP) domain and a condensation (C) domain. The A-domain activates the carboxylic acid of an amino acid with ATP and determines the amino acid to be selected and activated. Unlike ribosomes, NRPSs can utilize nonproteinogenic amino acids as building blocks. The C-domain catalyzes the peptide bond formation between the upstream peptidyl PCP and downstream amino acyl PCP. Besides NRPSs, amino acid ligases with ATP-grasp domains (ATP-grasp-ligases), tRNA-dependent aminoacyl transferase/cyclodipeptide synthases, stand-alone adenylation (A) domains and acyl-CoA synthetases (acyl-AMP-ligases) are also involved in NRP biosynthesis.^{3–6}

1 and 2, both of which are heptapeptide derivatives isolated from *Kibdelosporangium* 54 sp. AK-AA56, have the same amino acid sequence except for the second amino acid 55 (Figure 1).⁷ We are interested in their biosynthetic machineries from the following points of 56 view. One is the difference of the second amino acid. Considering the presence of D-amino 57 acids in 1 and 2, they could be biosynthesized by a NRPS. However, the substrate

specificities of the A-domains of NRPSs are strict and one A-domain usually activates one amino acid. Therefore, we hypothesized three possibilities: (i) the producer possesses separate NRPSs for 1 and 2 biosynthesis; (ii) one NRPS biosynthesizes 1, which is then converted to 2 by tailoring reactions; (iii) L-cysteic acid is independently biosynthesized and a single A-domain is exceptionally able to activate both L-Asp and L-cysteic acid. The other interesting feature is the presence of the *N*-terminal phenylacetate. To date, a dozen phenylacetylated natural polyketides and a few N-terminal phenylacetylated peptides such as penicillin G, microcystin,⁸ and JBIR-96⁹ have been isolated. However, reports on the detailed phenylacetylation mechanism are limited. In the case of penicillin G, isopenicillin N acyltransferase was shown to convert isopenicillin N to penicillin G.¹⁰ In microcystin biosynthesis, phenylpropanoids were suggested to be loaded onto the PCP-domain rather than phenylacetate by ATP-PPi exchange assays and mass spectrometry, although the mechanism by which one carbon is excised from the starter substrate remains unknown.⁸ Recently, Fu et al. reported that a pyruvate dehydrogenase-like protein complex catalyzed the decarboxylation of phenylpyruvate to form a phenylacetyl-S-acyl carrier protein, which would be utilized in a subsequent polyketide biosynthetic assembly line, in ripostatin biosynthesis.¹¹ In this study, we investigated the phenylacetylation mechanism in JBIR-78 (1) and JBIR-95 (2) biosynthesis.

77 RESULTS AND DISCUSSION

78 Identification of 1 and 2 biosynthetic genes

To identify the 1 and 2 biosynthetic gene cluster(s), we generated a draft genome sequence for the producer and searched for *orfs* large enough to encode the seven A-domains essential for substrate activation in heptapeptide biosynthesis. From a BLAST search, we identified one candidate gene cluster (Figure 2, Table 1). The gene cluster consisted of eight orfs containing three orfs (orf4 to orf6) encoding NRPSs. Orf4 and Orf5 had the same domain architectures; C-A-PCP-C-A-PCP-epimerization domain (E-domain). Orf6 was composed of C-A-PCP-C-A-PCP-E-C-A-PCP-thioesterase (TE) domains. The positions of the E-domains perfectly matched the locations of the D-amino acids in 1 and 2. Moreover, the substrate specificities of each of the A-domains predicted by NRPSpredictor2 (http://nrps.informatik.uni-tuebingen.de/Controller?cmd=SubmitJob) were roughly identical to the amino acid sequences of 1 (Supplementary Table 1, 2, and 3). Two orfs (orf1 and orf2), which encode two of the three component enzymes of pyruvate dehydrogenase complex, were found in the region upstream from the NRPS genes. Orfl was composed of pyruvate dehydrogenase (EC 1.2.4.1, E1B unit) and dihydrolipoyl transacetylase (EC 2.3.1.12, E2 unit). Orf2 was similar to the E1a unit of pyruvate dehydrogenase. Although no homologs of dihydrolipoyl dehydrogenase (EC 1.8.1.4, E3 unit) existed in the gene cluster, we identified one homolog outside of the gene cluster.

96 Considering the reaction catalyzed by the pyruvate dehydrogenase complex, Orf1, Orf2, 97 and the dihydrolipoyl dehydrogenase homolog perhaps catalyze the conversion of 98 phenylpyruvate into phenylacetyl-CoA, which would be used for *N*-terminal 99 phenylacetylation.

100 Orf3 showed similarity to the MA3297 protein, which is a pyridoxal 5'-phosphate 101 dependent enzyme that catalyzes a β -replacement reaction converting L-phosphoserine and 102 sulfite into L-cysteic acid and inorganic phosphate.¹² Therefore, Orf3 is plausibly 103 responsible for the biosynthesis of **2**.

Orf8 was similar to cytochrome P450 and presumably participates in the hydroxylation of Leu to form 3-hydroxy-D-Leu. Additionally, Orf7 was similar to MbtH, an integral component of NRPSs that is essential for amino acid activation.¹³ The identified gene cluster was the sole candidate and no paralogs of the identified genes existed in the draft genome database. Therefore, the production of both **1** and **2** was suggested to be governed by this gene cluster.

111 Heterologous expression of the gene cluster

112 Next, we performed a heterologous expression experiment to examine whether the 113 gene cluster identified in this study contained all the genes responsible for **1** and **2** 114 biosynthesis. A cosmid library of the producer was constructed with a shuttle cosmid vector,

ACS Chemical Biology

pOJ446.¹⁴ Positive cosmids carrying the gene cluster were obtained by PCR screening with appropriate primers and the cosmid pC35 was introduced into Streptomyces lividans TK23. After cultivation of the transformants, the products were analyzed by LC-ESI-MS. As shown in Figure 3 and Supplementary Figure 1, the production of both 1 and 2 was suggested. Although the cosmid had one additional gene (Figure 2) downstream of orf8 gene, this gene was suggested to have no relation to 1/2 biosynthesis. Taken together, our results suggested that both products were biosynthesized by this gene cluster alone and that the A-domain responsible for activation of the second substrate exceptionally activated both L-Asp and L-cysteic acid.

5 Characterization of Orf1 and Orf2

To examine whether Orf1 and Orf2 catalyzed the conversion of phenylpyruvate to phenylacetyl-CoA, an in vitro assay with recombinant enzymes was carried out. A DNA fragment carrying both the orf1 and orf2 genes was inserted into the pET28a vector so that only Orf2 was expressed as a His-tagged recombinant enzyme because Orf1 was co-purified with Orf2 by Ni-NTA column chromatography (Supplementary Figure 2). A recombinant enzyme of the putative dihydrolipoyl dehydrogenase (E3 unit) was also prepared as a His-tagged recombinant enzyme (Supplementary Figure 2). After the recombinant enzymes were expressed and purified, they were mixed and incubated with

phenylpyruvate and CoA in the presence of known essential co-factors in the pyruvate
dehydrogenase reaction. A new product whose molecular mass was consistent with that of
phenylacetyl-CoA was specifically detected by LC-ESI-MS analysis (Figure 4). Its high
resolution molecular mass also agreed with that of phenylacetyl-CoA ([M+H]⁺ calcd. for
C29H43N7O17P3S⁺, 886.16435: found 886.16534).

- 140 Characterization of Orf3

Orf3 showed similarity to the pyridoxal 5'-phosphate dependent L-cysteic acid synthase. To confirm its expected activity, we tried an in vitro assay with recombinant enzymes. Although we could express Orf3 recombinant enzymes with several expression vectors such as pET vectors, pMAL-c5X and pCold-TF, all recombinant enzymes formed inclusion bodies. Therefore, we carried out heterologous expression of the gene cluster without the *orf3* gene. We constructed a cosmid lacking *orf3* gene ($pC35\Delta orf3$) from pC35. Unexpectedly, the transformant harboring pC35 Δ orf3 did not lose 2 productivity and still produced a small amount of 2 concomitant with enhanced production of 1 (Figure 3 and Supplementary Figure 1). A possible reason for this is that L-cysteic acid might be supplied by an alternative enzyme such as L-serine ammonia-lyase (EC 4.3.1.17) that catalyzes the elimination of water from L-serine to form L-dehydroalanine, to which sulfite attacks. Indeed, 2 productivity was dramatically recovered when L-cysteic acid was added into the

medium (Figure 3 and Supplementary Figure 1), suggesting that the Orf3 product supplies
L-cysteic acid. Furthermore, the productivity of 1 was extremely reduced by the addition of
L-cysteic acid, suggesting that L-cysteic acid competed with L-Asp in the incorporation into
the peptide.

Previously, a few A-domains in NRPSs, which activated two different amino acids, were reported. Pelgipeptin A/C and pelgipeptin B/D possess L-Val and L-Ile at the second position, respectively. The substrate selectivity of A-domains (PlpE A1) responsible for activation of the second amino acid was examined by in vitro experiments and PlpE A1 was shown to activate both L-Val and L-Ile.¹⁵ C-terminal diversity of lichenvsins (L-Ile or L-Leu) was also derived by the substrate selectivity of A-domains (LicC-A).¹⁶ In both cases. the A-domains recognized the structurally and chemically similar amino acids. For the same reason, the A-domain in module 2 might accept L-Asp and L-cysteic acid, both of which are acidic amino acids and have similar sizes.

We then tried denaturation and refolding of the inclusion body to obtain the active form of the recombinant enzyme. After extensive trials to find the best conditions, we successfully obtained active enzymes (Supplementary Figure 3). The refolded enzyme was incubated with L-phosphoserine and sodium sulfite for 15 min at 30°C and the reaction products were analyzed by LC-ESI-MS. As shown in Figure 5, a specific peak, which was eluted at the same retention time and had the same molecular mass as authentic L-cysteic acid, was detected.

174 Characterization of Orf4

Through detailed analysis of each of the domains in Orf4, we found that a PCP-domain to anchor phenylpyruvate was absent. Moreover, Orf1 and Orf2 catalyzed the formation of phenylacetyl-CoA as mentioned above. These results suggested that phenylacetyl-CoA is directly condensed with L-Val at the first C-domain in module 1 of Orf4 in a similar manner to that of surfactin and amphi-enterobactin siderophore biosynthesis.^{17,18} To examine this possibility, a truncated recombinant Orf4 (module 1) was prepared and used for in vitro assay. We first tried to prepare a recombinant enzyme possessing the first module with the C-, A-, and PCP-domains. However, we were unable to obtain recombinant proteins. We then prepared recombinant enzymes divided into C-A-domains and the PCP-domain. In this case, both recombinant enzymes were expressed as soluble forms (Supplementary Figure 4).

The purified recombinants were incubated with L-valine and phenylacetyl-CoA, which was prepared by the enzyme reaction described above, in the presence of ATP and MgCl₂. After the enzymes were precipitated by adding acetone, the thioester bonds were hydrolyzed with 0.1 M KOH. The resulting sample was analyzed by LC-ESI-MS and compared with authentic phenylacetyl valine prepared by chemical synthesis. As shown in

ACS Chemical Biology

Figure 6, a specific peak with the same retention time and molecular mass as those of the authentic standard was clearly detected in the sample, showing that phenylacetyl-CoA was directly condensed with L-valine, which was activated at the A-domain and transferred to PCP in module 1.

195 Recently, a similar mechanism for the formation of phenylacetate from phenylpyruvate 196 by a pyruvate dehydrogenase-like protein complex in ripostatin biosynthesis was reported.¹¹ 197 In this case, however, the phenylacetyl group of *S*-phenylacetyldihydrolipoamide was 198 directly transferred to an acyl carrier protein to form a phenylacetyl-*S*-acyl carrier protein 199 without the formation of phenylacetyl-CoA.

In summary, we studied the biosynthetic machinery of **1** and **2**, which are both heptapeptide derivatives and have the same amino acid sequence except for the second amino acid. Through heterologous expression of the biosynthetic gene cluster and in vitro assay with the recombinant Orf3, the single A-domain in module 2 was suggested to activate both L-Asp and L-cysteic acid. We also showed that *N*-terminal phenylacetylation was catalyzed by the first C-domain in module 1 with L-Val-tethered PCP and phenylacetyl-CoA supplied by a phenylpyruvate dehydrogenase complex.

REFERENCES

209 (1) Fischbach, M. A., and Walsh, C. T. (2006) Assembly-line Enzymology for Polyketide

210		and Nonribosomal Peptide Antibiotics: Logic, Machinery, and Mechanisms. Chem.
211		<i>Rev. 106</i> , 3468–3496.
212	(2)	Ortega, M. A., and van der Donk, W. A. (2016) New Insights into the Biosynthetic
213		Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural
214		Products. Cell. Chem. Biol. 23, 31-44.
215	(3)	Giessen, T. W., and Marahiel, M. A. (2012) Ribosome-independent Biosynthesis of
216		Biologically Active Peptides: Application of Synthetic Biology to Generate Structural
217		Diversity. FEBS Lett. 586, 2065–2075.
218	(4)	Kadi, N., Oves-Costales, D., Borona-Gomez, F., and Challis, G. L. (2007) A New
219		Family of ATP-dependent Oligomerization-macrocyclization Biocatalysts. Nat. Chem
220		<i>Biol. 3</i> , 652–656.
221	(5)	Maruyama, C., Toyoda, J., Kato, Y., Izumikawa, W., Takagi, M., Shin-ya, K., Katano,
222		H., Utagawa, T., and Hamano, Y. (2012) A Stand-alone Adenylation Domain Forms
223		Amide Bonds in Streptothricin Biosynthesis. Nat. Chem. Biol. 8, 791-797.
224	(6)	Noike, M., Matsui, T., Ooya, K., Sasaki, I., Ohtaki, S., Hamano, Y., Maruyama, C.,
225		Ishikawa, J., Satoh, Y., Ito, H., Morita, H., and Dairi, T. (2015) A Peptide Ligase and
226		the Ribosome Cooperate to Synthesize the Peptide pheganomycin. Nat. Chem. Biol.
227		11, 71–76.
228	(7)	Izumikawa, M., Takagi, M., and Shin-ya, K. (2012) JBIR-78 and JBIR-95:

ACS Chemical Biology

Page 13 of 34			ACS Chemical Biology
1 2 3			
4 5 6	229		Phenylacetylated Peptides Isolated from Kibdelosporangium sp. AK-AA56. J. Nat.
7 8 9	230		<i>Prod.</i> 75, 280–284.
10 11 12	231	(8)	Hicks, L. M., Moffitt, M. C., Beer, L. L., Moore, B. S., and Kelleher, N. L. (2006)
13 14 15	232		Structural Characterization of in vitro and in vivo Intermediates on the Loading
16 17	233		Module of Microcystin Synthetase. ACS Chem. Biol. 1, 93-102.
18 19 20	234	(9)	Ueda, J., Izumilawa, M., Kozone, I., Yamamura, H., Hayakawa, M., Takagi, M., and
21 22 23	235		Shin-ya, K. (2011) A Phenylacetylated Peptide, JBIR-96, Isolated from Streptomyces
24 25	236		sp. RI051-SDHV6. J. Nat. Prod. 74, 1344–1347.
26 27 28	237	(10)	Tobin, M. B., Fleming. M. D., Skatrud, P. L., and Miller, J. R. (1990) Molecular
29 30 31	238		Characterization of the Acyl-coenzyme A: Isopenicillin N Acyltransferase Gene
32 33 34	239		(penDE) from Penicillium chrysogenum and Aspergillus nidulans and Activity of
35 36	240		Recombinant Enzyme in Escherichia coli. J. Bacteriol. 172, 5908–5914.
37 38 39	241	(11)	Fu, C., Auerbach, D., Li,Y., Scheid, U., Luxenburger, E., Garcia, R., Irschik, H., and
40 41 42	242		Müller, R. (2017) Solving the Puzzle of One-carbon Loss in Ripostatin Biosynthesis.
43 44	243		Angew. Chem., Int. Ed. 56, 2192–2197.
45 46 47	244	(12)	Graham, D. E., Taylor, S. M., Wolf, R. Z., and Namboori, S. C. (2009) Convergent
48 49 50	245		Evolution of Coenzyme M Biosynthesis in the Methanosarcinales: Cysteate Synthase
51 52	246		Evolved from an Ancestral Threonine Synthase. Biochem. J. 424, 467–478.
53 54 55 56	247	(13)	Felnagle, E. A., Barkei, J. J., Park, H., Podevels, A. M., McMahon, M. D., Drott, D.
57 58 59 60			13
-			ACS Paragon Plus Environment

~	
2	
3	
~	
4	
5	
5	
6	
7	
1	
8	
0	
9	
10	
4 4	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
10	
19	
20	
20	
21	
22	
~~	
23	
21	
24	
25	
26	
20	
27	
ററ	
20	
29	
20	
30	
31	
~~	
32	
33	
~~	
34	
35	
200	
36	
37	
01	
38	
39	
40	
40	
41	
40	
42	
43	
11	
44	
45	
10	
40	
47	
40	
48	
49	
5U	
51	
50	
52	
53	
- 4	
54	
55	
56	
57	
51	
วช	
-0	
59	
59	

248	W., and Thomas, M. G. (2010) MbtH-like Proteins as Integral Components of
249	Bacterial Nonribosomal Peptide Synthetases. Biochemistry 49, 8815-8817.
250	(14) Vara, J., Lewandowska-Skarbek, M., Wang, Y. G., Donadio, S., and Hutchinson, C. R
251	(1989) Cloning of Genes Governing the Deoxysugar Portion of the Erythromycir
252	Biosynthesis Pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J.
253	Bacteriol. 171, 5872–5881.
254	(15) Qian, C. D., Liu, T. Z., Zhou, S. L., Ding, R., Zhao, W. P., Li, O., and Wu, X. C
255	(2012) Identification and Functional Analysis of Gene Cluster Involvement in
256	Biosynthesis of the Cyclic Lipopeptide Antibiotic Pelgipeptin Produced by
257	Paenibacillus elgii. BMC Microbiology, 12, 197.
258	(16) Konz, D., Doekel, S., and Marahiel, M. A. (1999) Molecular and Biochemica
259	Characterization of the Protein Template Controlling Biosynthesis of the Lipopeptide
260	Lichenysin. J. Bacteriol. 181, 133–140.
261	(17) Kraas, F. I., Helmetag, V., Wittmann, M., Strieker, M., and Marahiel, M. A. (2010)
262	Functional Dissection of Surfactin Synthetase Initiation Module Reveals Insights into
263	the Mechanism of Lipoinitiation. Chem. Biol. 17, 872-880.

- 264 (18) Zane, H. K., Naka, H., Rosconi, F., Snady, M., Haygoogd, M. G., and Butler, A.
- 265 (2014) Biosynthesis of Amphi-enterobactin Siderophores by *Vibrio harveyi*266 BAA-1116: Identification of a Bifunctional Nonribosomal Peptide Synthetase

ACS Chemical Biology

2 3		
4 5 6	267	Condensation Domain. J. Am. Chem. Soc. 136, 5615-5618.
7 8 9	268	(19) Dairi, T., Nakano, T., Aisaka, K., Katsumata, R., and Hasegawa, M. (1995) Cloning
10 11	269	and Nucleotide Sequence of the Gene Responsible for Chlorination of Tetracycline.
12 13 14	270	Biosci. Biotech. Biochem. 59, 1099–1106.
15 16 17	271	(20) Datsenko, K. A., and Wanner, B. L. (2000) One-step Inactivation of Chromosomal
18 19 20	272	Genes in Escherichia coli K-12 Using PCR Products. Proc. Natl. Acad. Sci. U. S. A.
21 22	273	97, 6640–6645.
23 24 25	274	(21) Quadri, L. E., Weinreb, P. H., Lei, M., Nakano, M. M., Zuber, P., and Walsh, C. T.
26 27 28	275	(1998) Characterization of Sfp, a Bacillus subtilis Phosphopantetheinyl Transferase for
29 30 31	276	Peptidyl Carrier Protein Domains in Peptide Synthetases. Biochemistry 37, 1585-
32 33	277	1595.
34 35 36	278	
37 38 39		
40 41		
42 43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		15

279 METHODS

280 General

All chemicals were purchased from Sigma-Aldrich Japan K.K. (Japan), Tokyo Chemical Industry Co. Ltd. (Japan), or Wako Pure Chemical Industry (Japan). Oligonucleotides were obtained from FASMAC Co. Ltd. (Japan). Enzymes, molecular weight standards and kits for DNA manipulation were purchased from Takara Bio Inc. (Japan) or New England Biolabs Japan Inc. (Japan). PCR reactions were carried out using a GeneAmp PCR System 9700 thermal cycler (Thermo Fisher Scientific Inc.) with Tks Gflex DNA polymerase (Takara Bio). NMR spectra were obtained using a JEOL ECS-400 spectrometer (Japan).

289 Chemical synthesis of phenylacetyl valine

To a stirred solution of 1.03 g (8.8 mmol) of L-valine in 10 mL (20 mmol) of 2 M aq. NaOH at 0°C was added dropwise 1.05 mL (8 mmol) of phenylacetyl chloride. The reaction mixture was allowed to warm to room temperature and stirred. After 20 h of reaction, water (30 mL) was added and the aqueous layer containing the product was washed with Et₂O (50 mL) twice. The water layer was then acidified with 1 M HCl to obtain a white precipitate. The white crystalline product was washed thoroughly with water and then with Et₂O (606 mg, 29%). ¹H NMR (400 MHz, DMSO-d₆) δ 8.24 (d, J = 8.6 Hz, 1H), 7.32–7.09 (m, 5H), 4.15 (dd, J = 8.6, 5.8 Hz, 1H), 3.56 (d, J = 13.8 Hz, 1H), 3.48 (d, J

ACS Chemical Biology

Page 17	of 34	ACS Chemical Biology
1 2		
3		
4 5 6	298	= 13.8 Hz, 1H), 2.05 (m, 1H), 0.88 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H). ¹³ C NMR
7 8 9	299	(100 MHz, DMSO-d ₆) δ 173.1, 170.4, 136.6, 129.0, 128.1, 126.3, 57.1, 41.9, 29.9, 19.1,
10 11 12	300	18.0.
13 14 15	301	
16 17	302	Draft genome sequences
18 19 20	303	Draft sequences of the Kibdelosporangium sp. AK-AA56 genome were determined by a
21 22 23	304	commercial company (Hokkaido System Science, Japan) using an Illumina HiSeq platform
24 25 26	305	(Illumina). A genomic DNA library (350 bp insert) was constructed with the TruSeq Nano
27 28 20	306	DNA LT Sample Prep Kit (Illumina). Paired end data (2 \times 100 bp) were assembled using
29 30 31	307	Velvet (version 1.0.18). Gene prediction and annotation was carried out using Microbial
32 33 34	308	Genome Annotation Pipeline (MiGAP, http://www.migap.org/).
35 36 37	309	
38 39	310	Cloning and heterologous expression of the gene cluster
40 41 42	311	To clone the gene cluster, a cosmid library of the producer was constructed with the shuttle
43 44 45	312	cosmid vector pOJ446. ¹⁴ Genomic DNA of <i>Kibdelosporangium</i> sp. was partially digested
46 47 48	313	with Sau3AI and ligated with the pOJ446 vector digested with BamHI and HpaI and treated
49 50	314	bacterial alkaline phosphatase. This was packaged using Gigapack III XL Packaging
51 52 53	315	Extract (Agilent Technologies Inc.) and transfected to the E. coli XL1-Blue MRF' strain
54 55 56 57 58	316	$(\Delta(mcrA)183 \Delta(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac$
59 60		17
00		ACS Paragon Plus Environment

[F'proAB lacl^qZAM15 Tn10 (Tet')]; Agilent Technologies). Positive cosmids carrying the gene cluster were screened by PCR based on the amplification of both the orf1 and 8 genes with 5'-GGCCGCGACGTGGGGTGAGGAAGTTG-3' the primers and 5'-CGTTCCCGATCTCGGTGAAGGACTTGCTGAG-3' for orf1, and 5'-CATGGGCGAGTAGCGGAACGAGGAGGAACAAG-3' and

322 5'-GGGCCGTAGGCGAATGTCAGGTGTTTGTTC-3' for *orf*8.

The obtained cosmid, pC35, was introduced into S. lividans TK23 and then the transformants were cultured in 200 mL flasks with baffles containing 30 mL of SK#2 medium¹⁹ containing thiostrepton (10 μ g mL⁻¹) for 4 days at 30°C with agitation (200 rpm). The whole culture broths were directly analyzed by LC-ESI-MS as follows: Waters ACQUITY UPLC system equipped with an SQ Detector2 and ACQUITY PDA Detector (Japan); Mightysil RP-18GP Aqua column (150 mm L × 2.1 mm ID, 3 µm, KANTO CHEMICAL Co., Inc., Japan); flow rate, 0.2 mL min⁻¹; temperature, 40°C; mobile phase A, water containing 0.1% formic acid, mobile phase B, methanol containing 0.1% formic acid; gradient conditions, 15% B, 0-2 min; 15-85% B, 2-40 min; detection, ESI-negative mode; injection volume, 10 µL.

 $pC35\Delta orf3$, in which the *orf3* gene was in-frame deleted, was constructed using Red/ET recombination.²⁰ In brief, DNA fragments containing a Km-resistance gene cassette (Gene Bridges GmbH, Germany) flanked with FRT sites and 50-bp homologous arms,

3		
4 5 6	336	whose sequences were identical to the target regions, were amplified by PCR with the
7 8 9	337	primers
10 11 12	338	5'-CCTGGTGTGGTGTGAATAGACCGCAGTCACGAAGGAGGTATGACCGGATGGA
12 13 14	339	ATTAACCCTCACTAAAGGGCGGC-3' and
15 16 17	340	5'-CACCTGCCGCCTGTCCCGGGTGAGCTGTCATGTCACGCCCCACTCGGGGTAAT
18 19 20	341	ACGACTCACTATAGGGCTCG-3'. The amplified DNA fragments were used to transform
21 22	342	E. coli XL1-Blue MRF' harboring the pC35 cosmid and pRedET plasmid. Gene-disruption
23 24 25	343	in Km-resistant colonies was checked by PCR using two primers,
26 27 28	344	5'-GCGTAATGCGAGGTTGGGTCTATCGAAGG-3' and
29 30	345	5'-CGCATCGACTGGGCCGTGGATCTC-3'. The selection marker in the obtained cosmid
32 33	346	was removed with FLP-recombinase and the deletion was confirmed by PCR with the
34 35 36	347	primers used to check gene disruption as described above.
37 38 39	348	
40 41	349	Preparation and enzyme assay of recombinant enzymes of Orf1, Orf2, and
42 43 44	350	dihydrolipoyl dehydrogenase
45 46 47	351	A DNA fragment containing both the orfl and 2 genes was amplified by PCR using
48 49	352	genomic DNA of Kibdelosporangium sp. as a template and the following primers;
50 51 52	353	5'-CCTATCGG <u>CATATG</u> GTGCTTGGCCGCCGATTCGAC-3' and
53 54 55 56 57	354	5'-ATAT <u>AAGCTT</u> CCGGCTACCCGACCATGATCAGACTGTC-3'. To amplify the
58		

355	dihydrolipoyl dehydrogenase gene of Kibdelosporangium sp., the primers
356	5'-AAGTGAC <u>CATATG</u> GCCACAGTTGACGCGCGCGTA-3' and
357	5'-TATAAGCTTGGCTGACTTGGTGCCGACGGTCAG-3' were used. Restriction sites
358	(underlined) were introduced into the N- and C-terminal regions. The PCR products were
359	cloned into the NdeI-HindIII sites of the pET28a vector (Merck KGaA, Germany). Each of
360	the obtained plasmids was introduced into E. coli BL21(DE3) (F ⁻ , dcm, ompT, hsdS(r _B ⁻
361	m_{B}), gal, λ (DE3); NIPPON GENE CO., LTD, Japan). A liquid culture of each transformant
362	in LB supplied with kanamycin (30 $\mu g \; m L^{-1})$ was induced by adding 0.5 mM IPTG when
363	the optical density at 600 nm reached about 0.6. The cultivation was continued for an
364	additional 16 h at 20°C. Purification of each recombinant protein was carried out as follows.
365	After the cells were disrupted with an ultrasonic disruptor (TOMY, UD-200), the His-tag
366	fused proteins were purified with Ni-NTA column chromatography (QIAGEN K.K., Japan)
367	and their purities were analyzed by SDS-PAGE on 10% gels (Supplementary Figure 2). The
368	proteins were visualized by Coomassie brilliant blue staining and the protein concentrations
369	were determined by the Bradford method with bovine serum albumin as a standard.
370	Co-purified recombinant Orf1 (approximately 0.42 μ M) and Orf2 (approximately 2.3
371	μM), and purified recombinant dihydrolipoyl dehydrogenase (1.9 μM) were incubated with
372	CoA (1.0 mM), sodium phenylpyruvate (2.0 mM), MgCl ₂ (1.0 mM), thiamine

373 pyrophosphate (0.2 mM), NAD⁺ (2.5 mM), and dithiothreitol (0.6 mM) in potassium

ACS Chemical Biology

phosphate buffer (50 mM, pH 8.0) at 30°C for 16 h. The reaction product was directly analyzed by LC-ESI-MS as follows: Waters ACQUITY UPLC system equipped with an SQ Detector2 and ACQUITY PDA Detector; XBridge BEH C8 column (150 mm L × 2.1 mm ID, 2.5 μ m, Waters); flow rate, 0.2 mL min⁻¹; temperature, 35°C; mobile phase A, 100 mM NH₄COOH containing 5 vol% methanol, mobile phase B, 100 mM NH₄COOH containing 50 vol% methanol; gradient conditions, 10% B, 0-5 min; 10-100% B, 5-40 min; detection, ESI-negative mode; injection volume, 10 µL. The fractionated product was also analyzed by high resolution-ESI-FT-MS (Exactive, Thermo Fisher Scientific Inc.). Preparation and assay of recombinant L-cysteic acid synthase (Orf3) enzyme To express maltose binding protein-fused L-cysteic acid synthase (MAL-CS), the primer pair pMal CS Fw: 5'-GTATGACCATATGTGCGCTCGGCGGCATTACTCGATC-3' and 5'-AGAT<u>AAGCTT</u>CACGCCCCACTCGGGGTGGCTACGTAG-3' pMal CS Rv: was used. The PCR product was cloned into the NdeI-HindIII site of pMal-c5X (New England Biolabs) to construct pMal-CS. Culture and purification conditions were the same as those described above except for the use of amylose affinity column chromatography (New

- England Biolabs) for purification. The purified recombinant Orf3 was treated with Factor
 Xa protease (New England Biolabs) according to the manufacturer's protocol to remove
- 392 MBP. To eliminate the MBP released, the reaction mixture was applied to an amylose

affinity column again. Then, the flow-through fraction containing the enzyme was mixed with 10 volumes of Tris-HCl buffer (20 mM, pH 8.0) containing 6 M urea and DTT (20 mM), and incubated at 37°C for 2 h. The solution was diluted ten times with refolding buffer; Tris·HCl buffer (50 mM, pH 8.0) containing KCl (1 M), glycerol (20 %), MgCl₂ (20 mM), and PLP (10 µM), and stirred at 4°C for 16 h. The enzyme solution was concentrated to 2 mg mL^{-1} with Amicon Ultra filter units (Merck). The refolded recombinant Orf3 enzyme (8.8 μ M) was incubated with PLP (10 μ M), sodium sulfite (5 mM), O-phospho-L-serine (10 mM), and KCl (100 mM) in Tris HCl buffer (100 mM, pH 7.0) at 30°C for 15 min. The reaction product was directly analyzed by LC-ESI-MS as follows: Waters ACQUITY UPLC system equipped with an SQ Detector2 and ACQUITY PDA Detector; Scherzo SM-C18 column (150 mm L \times 2 mm ID, 3 μ m, Imtakt Co., Japan); flow rate, 0.2 mL min⁻¹; temperature, 40°C; mobile phase A, water containing 0.1% formic acid, mobile phase B, acetonitrile containing 0.1% formic acid;

 $406 \quad 10\%$ B isocratic conditions; detection, ESI-positive mode; injection volume, $10 \ \mu$ L.

Preparation and assay of recombinant Orf4 enzyme

The first C-A-domains and PCP-domain in module 1 of Orf4 were expressed separately.
The former was amplified by PCR with two primers,
5'-AAAAAACATATGGACGCGGTCGCGGCCCA-3' and

5'-TGGCGTAAGCTTTCAGCGGGAAGGACTGGT-3'. The latter was amplified with the 5'-AAAAAACATATGCCCGTCACCAGTCCTT-3' primers and 5'-AAAAAGCTTGCCGACCAGCAGCGCGAT-3'. Each amplified fragment was cloned into the NdeI-HindIII site of pET28a to construct the plasmids pOrf4-CA and pOrf4-PCP, to express recombinant enzymes fused with an N-terminal His-tag. For activation of the PCP-domain, the plasmid (pACYC-Sfp) expressing phosphopantetheinyl transferase of Bacillus subtilis (Sfp) was constructed by digesting the pET-Sfp plasmid²¹ with NdeI and *XhoI* and then cloning the *sfp* fragment into the *NdeI-XhoI* site of pACYCDuet-1 (Merck). Each plasmid was used to transform E. coli BL21(DE3) for protein overexpression. Purification procedures were the same as those described above.

The recombinant C-A-domains (2.9 μ M) and recombinant PCP-domain (82 μ M) were first incubated with L-valine (1 mM), ATP (1 mM), MgCl₂ (10 mM), and DTT (2 mM) in HEPES buffer (50 mM, pH 7.0) at 37°C for 30 min, before phenylacetyl-CoA (approximately 0.1 mM) prepared from the in vitro enzyme assay and additional recombinant C-A-domains (2.9 µM) were added and the reaction was incubated at 37°C for 30 min. The reaction product was precipitated by adding four volumes of acetone to the reaction and keeping it at -80°C for 1 h. After centrifugation, the precipitates were dissolved in 100 µL of 0.1 M KOH and incubated at 70°C for 10 min. After adding ethanol into the solution (final concentration 40%) and centrifugation, the product was recovered

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

431	and analyzed with a Waters ACQUITY UPLC system equipped with an SQ Detector 2 and
432	ACQUITY PDA Detector. The analytical conditions were as follows; InertSustain C18
433	column (150 mm L \times 2.1 mm ID, 3 μm GL Sciences Inc., Japan); flow rate, 0.2 mL min^{-1};
434	temperature, 40°C; mobile phase A, water containing 0.1% formic acid, mobile phase B,
435	acetonitrile containing 0.1% formic acid; gradient conditions, 20% B, 0-2 min; 20-80% B,
436	2–35 min; detection, ESI-negative mode; injection volume, 10 μ L.
437	
438	Accession Codes
439	The nucleotide sequences reported here have been submitted to the DDBJ/GenBank/EBI
440	Data Bank under accession nos. LC217607 (orfl to orf8) and LC223607 (dihydrolipoyl
441	dehydrogenase gene).
442	
443	Supporting Information
444	The Supporting Information is available free of charge on the ACS Publications website
445	
446	Acknowledgments
447	This study was supported by Grants-in-Aid for Research on Innovative Areas from MEXT,
448	Japan (JSPS KAKENHI Grant Number 16H06452) and Grants-in-Aid for Scientific
449	Research from JSPS (15H03110) to T. Dairi.
450	

1 2		
3 4 5	451	The outhors dealers no competing financial interact
6 7	451	The authors declare no competing financial interest.
8 9	452	
10 11 12	453	FIGURE LEGENDS
13 14	454	Figure 1. Chemical structures of JBIR-78 and -95.
15 16 17	455	JBIR-78 (1, upper) and -95 (2, lower).
18 19 20	456	
21 22 23	457	Figure 2. JBIR-78 (1) and -95 (2) biosynthetic gene cluster.
23 24 25	458	The cloned DNA fragment (35,856 bp) contained 9 orfs. Orf4, 5, and 6 (yellow) were
26 27 28	459	NRPSs and their domain architectures are shown. A, adenylation domain (red); C,
29 30 31	460	condensation domain (blue); E, epimerization domain (green); PCP, peptidyl carrier protein
31 32 33 34 35 36	461	domain (gray); TE, thioesterase domain (black). They activated and condensed, in order,
	462	L-Val, L-Asp (or L-cysteic acid), L-Ala, L-Leu, Gly, L-Ala, and L-Phe. The C-domain in
37 38 39	463	module 1 condensed L-Val-PCP and phenylacetyl-CoA, which was supplied by Orf1 and 2
40 41 42	464	from phenylpyruvate, CoA, and NAD^+ , to form phenylacetylated L-Val-PCP.
43 44	465	
45 46 47	466	Figure 3. Heterologous expression of the gene cluster.
48 49 50	467	The broths of the transformants and authentic standards were analyzed by LC-MS
50 51 52	468	monitoring at m/z 824 ([M–H] ⁻ of 1, traces (a)–(e)) or 860 ([M–H] ⁻ of 2, traces (f)–(j)). (a)
ວ <i>3</i> 54 55	469	Standard of 1, (f) Standard of 2, (b) and (g) recombinant cells harboring pOJ446 (empty

ACS Paragon Plus Environment

470 vector), (c) and (h) recombinant cells harboring pC35, (d) and (i) recombinant cells 471 harboring pC35 Δ orf3 without L-cysteic acid, (e) and (j) recombinant cells harboring 472 pC35 Δ orf3 with L-cysteic acid.

474 Figure 4. LC-MS analysis Orf1, Orf2, and the dihydrolipoyl dehydrogenase reactions.

The LC-MS profile was monitored at m/z 884 ([M–H][–] of phenylacetyl-CoA). (a) Reaction products formed with Orf1 and Orf2. (b) Reaction products formed with dihydrolipoyl dehydrogenase. (c) Reaction products formed with Orf1, Orf2, and dihydrolipoyl dehydrogenase.

480 Figure 5. LC-MS analysis of the Orf3 reaction.

The LC-MS profile was monitored at m/z 170 ([M+H]⁺ of cysteic acid). (a) Standard of L-cysteic acid. (b) Reaction products formed with boiled Orf3. (c) Reaction products formed with refolded Orf3.

Figure 6. LC-MS analysis of the Orf4 reaction. The LC-MS profile was monitored at m/z234 ([M–H][–] of phenylacetyl valine). (a) Standard of phenylacetyl valine. (b) Reaction products formed with the recombinant PCP-domain. (c) Reaction products formed with recombinant C-A- and PCP-domains.

489	Table 1. Deduced functions of the Orfs.		
490	Orf	Amino acids	Proposed function
491		(no.)	
192	1	677	pyruvate dehydrogenase complex, $E1\beta$ and $E2$ unit
93	2	312	pyruvate dehydrogenase complex, $E1\alpha$ unit
94	3	425	cysteic acid synthase
95	4	2565	NRPS (C-A-PCP-C-A-PCP-E)
96	5	2540	NRPS (C-A-PCP-C-A-PCP-E)
97	6	3825	NRPS (C-A-PCP-C-A-PCP-E-C-A-PCP-TE)
98	7	69	MbtH domain protein
99	8	406	cytochrome P450
00	9	223	hypothetical protein
)1			
02			
			27

ACS Paragon Plus Environment

Figure 2 82x48mm (300 x 300 DPI)

ACS Paragon Plus Environment

- 58 59
- 60

Т

т

160x80mm (300 x 300 DPI)