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FLP-Catalyzed Transfer Hydrogenation of Silyl Enol Ethers 
Imtiaz Khan, Benjamin G. Reed-Berendt, Rebecca L. Melen* and Louis C. Morrill*

Abstract: Herein we report the first catalytic transfer hydrogenation 
of silyl enol ethers. This metal free approach employs 
tris(pentafluorophenyl)borane and 2,2,6,6-tetramethylpiperidine 
(TMP) as a commercially available FLP catalyst system and 
naturally occurring γ-terpinene as a dihydrogen surrogate. A variety 
of silyl enol ethers undergo efficient hydrogenation, with the reduced 
products isolated in excellent yields (29 examples, 82% average 
yield). 

Over the past decade, the development of Frustrated Lewis Pair 
(FLP) chemistry has received considerable attention.[1] 
Representing an area of particular interest, FLPs can be 
employed as catalysts in metal free hydrogenation processes.[2] 
Dihydrogen is typically employed as the reductant in such 
processes, however, recent advances have shown that 
amines,[3] cyclohexadienes,[4] ammonia borane,[5] and Hantzsch 
esters[6] can be employed as dihydrogen surrogates in B(C6F5)3-
catalyzed transfer hydrogenation. Systems employing an 
additional Lewis base, rendering it an FLP-type process, have 
been developed by Du and co-workers for the enantioselective 
transfer hydrogenation of ketimines and quinoxalines.[7] 
Alternatively, metal free transfer hydrogenation via 
dehydocoupling catalysis has been developed using borane and 
phosphenium salt catalysts.[8] 
 Silyl enol ethers have often served as a test bed for the 
development of novel FLP catalytic systems (Scheme 1A).[9,10] In 
contrast to imines and N-heterocycles, which can serve the role 
of the Lewis base within an FLP-type system,[2] the lower 
basicity of silyl enol ethers necessitates an additional Lewis 
base for dihydrogen activation and subsequent hydrogenation. 
In 2008, Erker and co-workers reported the first FLP-catalyzed 
hydrogenation of silyl enol ethers using a 1,8-
bis(diphenylphosphino)naphthalene/B(C6F5)3 FLP system.[9a] In 
2012, Paradies and co-workers employed a [2.2]-
paracyclophane derived bisphosphine as the Lewis base 
component of an FLP for silyl enol ether hydrogenation.[9c] Du 
and co-workers subsequently developed methods for 
enantioselective FLP-catalyzed hydrogenation of silyl enol 
ethers using in situ generated axially chiral boranes as Lewis 
acids in combination with t-Bu3P as the Lewis base.[9d,e] Despite 
these notable advances, there exists no reports to date that 
describe the transfer hydrogenation of silyl enol ethers via any 
metal or metal free catalytic process. Furthermore, all previous  

 
Scheme 1. Previous work and outline of the FLP-catalyzed transfer 
hydrogenation strategy. 

reports of FLP-catalyzed hydrogenation of silyl enol ethers 
employ highly specialized FLP systems, such as those shown in 
Scheme 1A, and require >1 bar dihydrogen pressure. Taking 
inspiration from the aforementioned works, and as part of our 
ongoing investigations into novel applications of FLPs in 
catalysis,[11] herein we report the first catalytic transfer 
hydrogenation of silyl enol ethers, which uses a commercially 
available 2,2,6,6-tetramethylpiperidine/B(C6F5)3 FLP catalyst 
system[12] and naturally occurring γ-terpinene[4a] as a dihydrogen 
surrogate (Scheme 1B). 

To commence our studies, we selected silyl enol ether 1 as 
a model substrate (Table 1). After extensive optimization,[13] it 
was found that a FLP system composed of B(C6F5)3 (10 mol %) 
and 2,2,6,6-tetramethylpiperidine (TMP) (10 mol %) using γ-
terpinene 2a (1.3 equiv) as a dihydrogen surrogate in toluene 
([1] = 0.16 M) at 130 °C for 4 h, enabled the efficient transfer 
hydrogenation of 1, giving silyl ether 3 in 96% NMR yield (entry 
1). No observable hydrogenation occurs in the absence of either 
Lewis acid or Lewis base, confirming FLP-type catalysis is in 
operation (entries 2 and 3). Using the Childs’ method,[14] 
Alcarazo and co-workers have determined the relative Lewis 
acidity of the three boranes examined in this study, B(C6F5)3, 
B(2,4,6-F3C6H2)3 and B(2,6-F2C6H3)3, to be 100%, 70% and 56% 
respectively.[15] B(C6F5)3 proved to be optimal for this process,  
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Table 1: Optimization of the FLP-catalyzed transfer hydrogenation.[a] 

 

entry variation from “standard” conditions yield[b] (%) 

1 none 96 

2 no B(C6F5)3 < 2 

3 no TMP < 2 

4 B(2,4,6-F3C6H2)3 instead of B(C6F5)3  7 

5 B(2,6-F2C6H3)3 instead of B(C6F5)3 < 2 

6 DABCO instead of TMP 41 

7 PMP instead of TMP 36 

8 t-Bu3P instead of TMP 43 

9 2b instead of 2a 23 

10 2c instead of 2a < 2 

11 2d instead of 2a < 2 

12 benzene instead of toluene 46 

13 [1] = 0.32 M 87 

14 60 °C < 2 

15 2 h 47 

16 5 mol % catalyst 23 

[a] Reactions performed using 0.5 mmol of silyl enol ether 1 where [1] = 
0.16 M in toluene. [b] Determined by 1H NMR analysis of the crude reaction 
mixture with 1,3,5-trimethylbenzene as the internal standard. 

highlighting that a strong Lewis acid is required for efficient 
hydride abstraction from cyclohexa-1,4-dienes due to the 
formation of a high energy Wheland complex (entries 1, 4 and 
5).[4] Alternative Lewis bases, DABCO, 1,2,2,6,6-
pentamethylpiperidine (PMP) and t-Bu3P, among others 
tested,[13] gave lower conversions to 3 (entries 6-8). Using an 
alternative dihydrogen surrogate, namely 1,5-
dimeththoxycyclohexa-1,4-diene 2b, resulted in only 23% NMR 
yield of 3, which is likely due to coordination of 2b to B(C6F5)3 
(entry 9) via the ether oxygen atoms. Employing cyclohexa-1,4-
diene 2c or ammonia borane 2d instead of 2a gave no 
observable product formation (entries 10 and 11). A range of 
solvents was examined,[13] including benzene (entry 12), but 
none were advantageous over toluene. Increasing the 
concentration [1] to 0.32 M (entry 13), reducing the temperature 
to 60 °C (entry 14), shortening the reaction time to 2 h (entry 15) 
and reducing the catalyst loading to 5 mol % (entry 16) all 
resulted in decreased conversion to 3, confirming that optimal 
reaction conditions (entry 1) had been determined. 

For the purposes of assessing the scope of this protocol, the 
standard reaction conditions (Table 1, entry 1) were used except 
the reaction time was extended to 16 h to ensure full conversion 
across a range of substrates (Scheme 2). Initially, the effect of 

varying the silicon group within the silyl enol ether on the FLP-
catalyzed transfer hydrogenation protocol was examined and it 
was found that TMS, TES, TBS, TIPS and TBDPS protected 
enol ethers were all tolerated. Due to their instability towards 
silica gel chromatographic purification, TMS, TES and TBS 
protected alcohols were deprotected in situ using TBAF (product 
4, 72−93% yield), whereas TIPS and TBDPS protected alcohols 
5 and 6 were isolated in 73% and 74% yields, respectively. In 
order to fully explore the substrate scope of this protocol, we 
initially produced a small library of TMS protected enol ethers. In 
some cases, when subjected to the optimized reaction 
conditions for transfer hydrogenation, significant quantities of 
silyl enol ether decomposition was observed, most likely due to 
the presence of a strong Lewis acid, B(C6F5)3, and the elevated 
reaction temperature (130 °C). This issue was addressed in 
such cases by simply employing the more robust TBS protected 
enol ether. Substitution of the aryl group within the silyl enol 
ether (R1 scope) was explored next, giving the corresponding 
secondary alcohols in excellent isolated yields (products 7−28, 
79% average yield). Within the aryl unit, various 4-, 3- and 2-
alkyl substitution was tolerated in addition to electron-donating 
(4/3/2-OMe) substituents. However, 4-trifluoromethyl substitution 
resulted in only 8% conversion to reduced product 17. This 
result can be rationalized by the inductively electron-withdrawing 
CF3 group reducing the basicity of the silyl enol ether, resulting 
in slow protonation by the protonated Lewis base (cf. Scheme 3 
for proposed reaction mechanism). Halide substitution (4-F, 4-Cl, 
4-Br and 4-I) within the starting materials was tolerated, 
incorporating an additional functional handle into the products 
for subsequent elaboration via cross-coupling methods.[16] 
Extended aromatic systems (1-Np, 2-Np and 9-phenanthryl) and 
heteroaryls (2-thiophenyl, 2-benzothiophenyl and 2-
benzofuranyl) can also be present within the silyl enol ether 
substrate. Trisubstituted indanone- and cyclohexanone-derived 
silyl enol ethers participated in the FLP-catalyzed transfer 
hydrogenation protocol, giving secondary alcohols 28 and 29 in 
84% and 70% isolated yields, respectively. Finally, a pinacolone-
derived TMS-protected enol ether was fully converted to 
pinacolyl alcohol 30 using the optimized reaction conditions. 

Enamines are another class of enolate equivalent that have 
been studied as substrates for FLP-catalyzed hydrogenation,[17] 
but have never been employed in an FLP-catalyzed transfer 
hydrogenation process. Encouraged by our success with silyl 
enol ethers, the previously optimized reaction conditions were 
employed using acetophenone-derived disubstituted enamine 31 
as substrate, giving 16% conversion to tertiary amine 32. 
Unfortunately, despite re-optimization efforts, the maximum 
NMR yield of 32 observed was 23% when 2,6-lutidine or 2,4,6-
collidine was employed as the Lewis base. Similarly, suitable 
reaction conditions could not be identified to effect the FLP-
catalyzed transfer hydrogenation of tri- and tetrasubstituted 
enamines 33 and 34, with starting materials returned in both 
cases. Previous reports of FLP-catalyzed hydrogenation of 
enamines employ specialized boranes or borenium cations with 
lower relative Lewis acidity compared to B(C6F5)3.[17] As such, 
the low conversions observed in this system are likely due to 
coordination of the nucleophilic enamine to B(C6F5)3. 

TMP (10 mol %), B(C6F5)3 (10 mol %)
γ-terpinene, 2a (1.3 equiv)

130 ºC, toluene, 4 h
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OTMS
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Scheme 2. Scope of the FLP-catalyzed transfer hydrogenation process. Reactions performed using 0.5 mmol of silyl enol ether starting material. All yields are 
isolated yields after chromatographic purification unless otherwise stated. [a] Determined by 1H NMR analysis of the crude reaction mixture with 1,3,5-
trimethylbenzene as the internal standard. 

 
Scheme 3. Proposed catalytic cycle for the FLP-catalyzed transfer 
hydrogenation process. 

The proposed mechanism for the FLP-catalyzed transfer 
hydrogenation begins with initial hydride abstraction of γ-

terpinene by B(C6F5)3,[18] giving a Wheland intermediate and 
[HB(C6F5)3]− (Scheme 3).[4] 2,2,6,6-Tetramethylpiperidine (TMP) 
is then protonated by the Brønsted acidic Wheland 
intermediate,[19] producing p-cymene as a by product. This step 
is supported by evidence that no transfer hydrogenation occurs 
in the absence of TMP (cf. Table 1, Entry 3). Subsequent 
hydrogenation of the electron rich silyl enol ether occurs via 
proton transfer from [HTMP]+, to form a strongly electrophilic 
carbonyl moiety, followed by hydride transfer from [HB(C6F5)3]− 
to complete the catalytic cycle.[20] 

In conclusion, we have developed the first catalytic transfer 
hydrogenation of silyl enol ethers. This metal free approach 
employs a commercially available FLP system composed of 
B(C6F5)3 and 2,2,6,6-tetramethylpiperidine (TMP) and uses 
naturally occurring γ-terpinene as a dihydrogen surrogate. A 
diverse array of silyl enol ethers undergo efficient hydrogenation, 
accessing the reduced products in excellent isolated yields (29 
examples, 82% average yield). Ongoing studies are focused on 
further applications of FLPs in catalysis and these results will be 
reported in due course. 
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R2

TMP (10 mol %), B(C6F5)3 (10 mol %)
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29 examples (82% average yield)
di- and tri-substituted silyl enol ethers

A) Scope of FLP-catalyzed transfer hydrogenation of silyl enol ethers

B) Attempted FLP-catalyzed transfer hydrogenation of enamines
base (10 mol %) 
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silyl enol ethers. This metal free approach employs tris(pentafluorophenyl)borane 
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system and naturally occurring γ-terpinene as a dihydrogen surrogate. A variety of 
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in excellent yields (29 examples, 82% average yield). 
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