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Abstract: Bifunctional electrophiles with C4- , C~-, and Cs-chains are reacted 
with the cyclooctatetraene dianio~ to ~electiveIy give novel cyclo- 
annelation and bridging products which possess a surprising stereo- 
chemistry and are useful starting compounds for further syntheses. 

The alkylation of the cyclooctatetraene dianion (!) with bifunctional 

electrophiles such as 1,n-dihaloalkanes has been reported to provide cycloanne- 

lation products via a 1,2-attack of the reagent. 2-5 Little is known about the 

controlled synthesis of 1,2(cycloannelation)- and 1,4(bridging)6'7-products and 

the stereochemistry of the quenching processes. With various alkylation re- 

agents we have achieved a regio- and stereoselective reaction of the primary 

monoanionic product A (see Scheme I) and succeeded in synthesizing a broad 

series of bi- and polycyclic hydrocarbons. The easily accessible products 

transform into novel cyclooctatetraene species and undergo various valence iso- 

merizations. 6'7 
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Reduction of cyclooctatetraene with lithium in mixtures of liquid ammonia 

and tetrahydrofuran (THF) at -60 °C produced the dianion I which was subse- 

quently reacted with the bifunctional dielectrophiles [ - 10 (see Scheme 2). 

The following results are typical for the various alkylation agents: 

- Even long-chain 1,n-dihaloalkanes with n = 6 and 8 (reagents [ and ~, steps a 

and b), provide considerable amounts of cyclization products I_~I and I_~3 (see 

Scheme 2). The latter compounds are formed via 1,4-attack of the electrophile 

and involve the formation of 10- and 12-membered rings. This outcome differs 
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from the behaviour of 1,n-dihaloalkanes with shorter chains (n = I - 4) whereby 
2-5 

only cycloannelation, i.e. 1,2-attack, is observed; 

- The conformational mobility of the long-chain dielectrophiles and thus the 

average distance of the electrophilic groups should influence the competitive 

formation of 1,2- and 1,4-products. However, exclusive formation of the 1,4- 

products 15 and 16 is even observed if ! is reacted with the dimesylate 4, 

derived from cis,cis-hexa-2,4-diene-1,6-diol, and with 1,2-bis(2-bromoethyl) 

benzene (~) (steps c and d); 

- The 2,2 -bis(halomethyl)biphenyl species 6 appear to play a special role as 

C6-dielectrophiles since both the 1,2-adduct I_99 and the 1,4-adduct I_~8 are 

formed (step e). Thus, 2,2'-bis(chloromethyl)biphenyl gives 19 (27%) and I_~8 

(16%) in addition to 9,10-dihydrophenanthrene (2_00) (7%); 

- As in the case of the parent compound 1,4-dibromobutane, C4-dielectrophiles 

of lower conformational mobility such as tetrakis(bromomethyl)ethylene (8) and 

the ditosylate (9) derived from cis-3,4-bis(hydroxymethyl)cyclobutene (9) af- 

ford the 1,2-products 2_~4 and 2-6, respectively (steps g and h). In contrast, 

reaction of ! with 1,2-bis(bromomethyl)benzene (10) only produces the 1,4-com- 

pound 2_88 (step i). 

The tendency of the primary monoanionic quenching product A to undergo a 

subsequent intramolecular alkylation is great enough that ring formation can 
8 

compete with polymerization reactions by intermolecular SN-processes. Increas- 

ing chain length (note e.g. the exclusive formation of I__33) favours 1,4- over I, 

2-attack. It appears, however, (see the formation of 2_44, 2_~6 and 2_~8) that the 

regioselectivity of the ring closure of A depends sensitively upon the struc- 

ture of the alkylating reagent. 

Ring formation in A can give rise to a cis- or trans-configuration of the 

1,2-product while the 1,4-attack can produce an outward, outward ("cis") or 

outward, inward ("trans") pyramidalization of the bridgehead CH-groups. It 

appears that the 1,2- and 1,4-products 2_~4 and 2_88 (formed with C4-dielectro- 

philes) both possess a cis-configuration. On the other hand, the 1,4-product I__88 

as well as the 1,2-product 19 (formed with C6-dielectrophiles) have a trans- 

configuration. An assignment of configuration is possible by NMR spectroscopy: 

the number of 13C-NMR signals reflects the symmetry (e.g. C I in I_~I and C s in 
I 

2_88), and the bridgehead protons exhibit characteristic H-NMR chemical shifts: 

cis-1,4:63.5 - 3.2, trans-1,4:4.3 - 4.0 (endo), 3.4 - 3.1 (exo); cis-1,2: 

2.9 - 2.8; trans-1,2:2.9 - 2.8. 9 The cis-configuration of 2_44 is proven via the 

C symmetry of its Diels-Alder adduct 25. 
s 

Since the ion pairing situation and the prevailing steric effects in A are 

unknown, the in,out-arrangement of the bridgehead hydrogens in e.g. I_~I, I-6 or 

18 cannot be readily explained. It should be noted that force field 

calculations predict the in,out-structures to be more stable in the case of 
I0 

larger bicycloalkanes. Consequently, it is not clear whether the above 

stereochemistry results from kinetic or thermodynamic control. 
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Reductive alkylation 11 of I (steps a-i): NH3/THF (5:1), Li (2 eq.), -60°C; 

a) 1,6-Dibromohexane (2): 44% 11; b) 1,8-Dibromooctane (3): 18% I_~3; c) 1,6-Bis 

(mesyloxy)-cis,cis-hexa-2,4-diene (4): 38% 15; d) 1,2-Bis(2-bromoethyl)benzene 

(5): 59% 16;e) 2,2'-Bis(halomethyl)biphenyl (6): X = Br, 8% 18, 14% 19, 27% 20; 

X = CI, 16% 18, 27% 19, 7% 20; f) 2,2',6,6'-Tetrakis(halomethyl)biphenyl ([): X 

= Br 11% 22, X = C1 24% 22;g) Tetrakis(bromomethyl)ethylene (8): 54% 24;h) cis- 

3,4-Bis(tosyloxymethyl)cyclobutene (9): 35 % 2_~7 (two diastereomers, differing 

by the (syn/anti-)arrangement of the two four-membered rings which are both 

cis-fused with the cyclohexane); i) 1,2-Bis(bromomethyl)benzene (I-0): 24%, 28. 

Further transformations of the alkylation products: k) NH3/THF (4:1), -40 

°C, I. KNH 2 2.CdCl 2 58% 2-1; i) CHCI3, p-benzoquinone, 20 °C, I h, 87% 2-5 (only 

one diastereomer); m) 60°C, I/2 h; n) 80 °C, 3 h; o) NH3/THF (4:1), -40 °C, 1. 

KNH 2 2. CdC12 92% 23. 
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Certain 1,2(cycloannelation)-products are not isolated as 1,3,5-cycloocta- 

triene, but as bicyclo[4.2.0]octadiene systems. Thus, one obtains 27, and not 

the isomer 26; in contrast, 19 only exists as the cylooctatriene isomer. The 

1,4-products with trans-configuration characteristically undergo a 1,5-hydride 

shift under rather mild conditions to produce 1,3,5-cyclooctatriene systems 

such as 12. In the case of 13, the hydride shift leading to the formation of a 

1,3,5-cyclooctatriene species is followed by an electrocyclic reaction to af- 

ford the tricycle 14. 

1,2-Cycloannelation of two cyclooctatetraene units can be achieved by the 

use of tetrafunctional electrophiles. Thus, 2,2',6,6'-tetrakis(halomethyl)bi- 

phenyl (~) affords compound 22 with four condensed eight-membered rings (step 

f). The syntheses of 19 and 22 constitute the first cyclooctannelations of 

cyclooctatetraene. Via deprotonation and subsequent oxidation (see Scheme 2, 

steps k and o) 19 can be transformed into the dihydrooctalene species 21, while 

22 gives rise to the analogous product 23 with two separate cyclooctatetraene 
12 

units. 
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