Tetrahedron Letters 52 (2011) 404-406

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Subhash P. Chavan*, Nilesh B. Dumare, Kishor R. Harale, Uttam R. Kalkote

Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411008, India

ARTICLE INFO

ABSTRACT

Article history: Received 25 August 2010 Revised 10 November 2010 Accepted 12 November 2010 Available online 18 November 2010 A synthetic route to (25,35)-3-hydroxypipecolic acid was achieved from readily available nonchiral pool starting material *cis*-2-butene-1,4-diol and involved Claisen orthoester rearrangement, Sharpless asymmetric dihydroxylation and intramolecular lactamisation of azido lactone as the key steps. © 2010 Elsevier Ltd. All rights reserved.

Functionalized chiral piperidine core is an important constituent found in a large number of natural and synthetic compounds

having medicinal significance.¹ (2S,3S)-3-Hydroxypipecolic acid is a nonproteogenic cyclic β -hydroxy- α -amino acid; its enantiomer has been an important precursor in the synthesis of (–) swainsonine **2**,² a potent and specific inhibitor of α -p-mannosidase; its *cis* isomer forms a part of the structure of tetrazomine **5**,³ an antitumor antibiotic, one carbon homologated analogue of **1** is also a constituent of (+)-febrifugine **4**,⁴ a potentially powerful antimalarial agent and its reduced derivative (+)-prosophylline **3**⁵ exhibits analgesic, anaesthetic and antibiotic activities (Fig. 1).

(2S,3S)-3-Hydroxypipecolic acid and its derivatives due to their attractive biological activities have motivated efforts of synthetic chemists towards its synthesis which resulted in many enantioselective syntheses of **1**.⁶ However, most of the reported syntheses have drawbacks involving low enantioselectivity. To overcome these problems there still exists a need to develop a simple, practical, efficient and highly enantioselective synthesis of **1**.

Herein we wish to report a new and highly enantioselective synthesis of **1** employing hydroxy lactone **8** as a source of chirality, which can be readily accessed from commercially available cheap achiral starting material such as *cis*-2-butene-1,4-diol.

A retrosynthetic analysis of (2S,3S)-3-hydroxypipecolic acid is outlined in Scheme 1. The enantiomerically pure hydroxy lactone **8** was obtained in four steps from butene-1,4-diol **9** according to the sequence described by us earlier which involved a Claisen orthoester rearrangement⁷ and Sharpless asymmetric dihydroxylation⁸ to install the requisite chirality. We further surmised that piperidine core **6** could be constructed by intramolecular lactone ring opening of azidolactone **7**. Azidolactone **7** could be obtained from hydroxy lactone **8** (Scheme 1).

Accordingly, asymmetric synthesis of (2*S*,3*S*)-3-hydroxypipecolic acid **1** started from achiral starting material viz. *cis*-2butene-1,4-diol (Scheme 2). The 1,4-diol **9** was rearranged to 1,

* Corresponding author. Fax: +91 20 5892629.

E-mail address: sp.chavan@ncl.res.in (S.P. Chavan).

0040-4039/\$ - see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.11.062

2-diol **10** according to the procedure described in the literature.^{9a} The primary alcohol of **10** was selectively benzylated to furnish the corresponding ether **11**. Claisen rearrangement of the allylic alcohol **11** with triethyl orthoacetate in the presence of catalytic propionic acid at 140 °C gave the, γ , δ -unsaturated ester **12**, which was converted into enantiomerically pure hydroxy lactone **8** via ene ester **12** according to the protocol described by us earlier.^{9b,c,10} Hydroxy lactone **8** was converted into the corresponding mesylate **13** in 91% yield by using triethyl amine, mesyl chloride. The resultant mesylate **13** was subjected to S_N2 displacement with NaN₃ in DMF at 80 °C, to afford azidolatone **7** in 87% yield.

Reductive intramolecular cyclisation of azidolactone **7** using $Pd(OH)_2$ under H_2 atmosphere at 30 psi in methanol furnished

5

g

Scheme 1. Retrosynthetic analysis of (2S,3S)-3-hydroxypipecolic acid.

8

BnC

Scheme 2. Reagents and conditions: (a) HgSO₄, H₂SO₄ (cat), H₂O, 100 °C, 3 h, 65%; (b) KOH (1.1 equiv), BnCl (1.1 equiv), benzene, reflux, 8 h, 60%; (c) CH₃C(OEt)₃, propanoic acid (cat.), 140 °C, 3 h, 85%; (d) K₃Fe(CN)₆, K₂CO₃, (DHQ)₂PHAL, OsO₄, MeSO₂NH₂, 0 °C, 24 h, 94%; (e) MsCl, Et₃N, DMAP (cat.), DCM, 5 h, 91%; (f) NaN₃, DMF, 90 °C, 18 h, 87%; (g) Pd/(OH)₂, H₂, MeOH, 30 psi, rt, 3 h, 90%; (h) LAH, THF, 0 °C to rt, 3 h, 74%; (i) Boc anhydride, Et₃N, DMAP (cat.), dioxane/H₂O, 0 °C, 3 h, 90%; (j) Pd/C, H₂, MeOH, 70 psi, rt, 3 h, 95%; (m) RuCl₃, NalO₄, CH₃CN/CCl₄/H₂O (1:1:3), rt, 30 min, 58%; (n) 6 N HCl, reflux, 2 h.

the desired six membered lactam 14¹² in 90% yield. Lactam 14 was reduced using LiAlH₄ in anhydrous THF to afford the corresponding amine 15 in 74% yield. To avoid further functional group complication, amine group was protected as carbamate using Boc-anhydride, triethyl amine in dioxane/H₂O (1:1) to furnish urethane 16 in 90% yield. Compound 16 was subjected to hydrogenation using Pd/C in methanol at 70 psi to afford dihydroxy compound 17 in 93% yield (ee >99%).¹³ Using the same strategy we prepared racemic intermediate of **17**¹² which was an important precursor of 3hydroxy pipecolic acid.^{6h,j} The hydroxy group of **16** was protected by using TBSCl, imidazole, DMAP cat. in anhydrous DMF which furnished TBS protected compound 6 in 90% yield. Compound 6 was subjected to hydrogenation by using Pd/C in methanol at 70 psi to furnish compound 18 into 95% yield. Oxidation of the primary hydroxyl group was achieved by using RuCl₃, NaIO₄ as an oxidant to afford acid **19**¹¹ in 58% yield. Finally, removal of both protecting groups under acidic condition using 6 N HCl completed the synthesis of (2S,3S)-3-hydroxypipecolic acid hydrochloride 1. Spectral data of $\mathbf{1}^{12}$ were in complete agreement with the ones reported in the literature.^{6g}

In conclusion we have achieved the enantioselective total synthesis of (25,35)-3-hydroxypipecolic acid **1** based on Sharpless asymmetric dihydroxylation of olefinic ester **12**. Intramolecular lactone ring opening was employed as one of the key steps for the construction of piperidine core.

Acknowledgements

N.B.D. thanks CSIR, New Delhi, India. We thank Mrs. Kunte for HPLC analysis.

References and notes

 (a) Schneider, M. J. Pyridine and Piperidine Alkaloids: Chemistry and Pharmacology. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: Oxford, 1996; pp 155–299; (b) Fodor, G. B.; Colasanti, B. The Pyridine and Piperidine Alkaloids: Chemistry and Pharmacology In *Alkaloids: Chemical and Biological Perspectives*; Pelletier, S. W., Ed.; Wiley-Interscience: New York, 1985; Vol. 3, pp 1–90.

- 2. Ferreira, F.; Greck, C.; Genet, J. P. Bull. Soc. Chim. Fr. 1997, 134, 615.
- 3. Scott, J. D.; Tippie, T. N.; Williams, R. M. Tetrahedron Lett. 1998, 39, 3659.
- 4. (a) Katoh, M.; Matsune, R.; Honda, T. Heterocycles 2006, 67, 189; (b) Ashoorzadeh, A.; Caprio, V. Synlett 2005, 346; (c) Katoh, M.; Matsune, R.; Nagase, H.; Honda, T. Tetrahedron Lett. 2004, 45, 6221; (d) Huang, P. Q.; Wei, B.-G.; Ruan, Y. P. Synlett 2003, 1663; (e) Sugiura, M.; Hagio, H.; Hirabayashi, R.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123, 12510; (f) Sugiura, M.; Hagio, H.; Hirabayashi, R.; Kobayashi, S. J. Org. Chem. 2001, 66, 809; (g) Sugiura, M.; Kobayashi, S. Org. Lett. 2001, 3, 477; (h) Ooi, H.; Urushibara, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2001, 3, 953; (i) Takeuchi, T.; Azuma, K.; Takakura, K.; Abe, H.; Kim, H.-S.; Wataya, Y.; Harayama, T. Tetrahedron 2001, 57, 1213; (j) Takeuchi, T.; Ogasawara, K. Org. Lett. 2000, 2, 3193; (k) Okitsu, O.; Suzuki, R.; Kobayashi, S. Synlett 2000, 989.
- 5. Ojima, E. S.; Vidal, J. J. Org. Chem. **1998**, 63, 7999.
- For recent references 3-hydroxy pipecolic acid synthesis- (a) Chiou, W.-H.; Lin, G. H.; Liang, C.-W. J. Org. Chem. 2010, 75, 1748-1751; (b) Wang, B.; Liu, R. H. Eur. J. Org. Chem. 2009, 2845-2851; (c) Alegret, C.; Ginesta, X.; Riera, A. Eur. J. Org. Chem. 2008, 1789; (d) Yoshimura, Y.; Ohara, C.; Imahori, T.; Saito, Y.; Kato, A.; Miyauchi, S.; Adachi, I.; Takahata, H. Bioorg. Med. Chem. 2008, 16, 8273–8286; (e) Kalamkar, N. B.; Kasture, V. M.; Dhavale, D. D. J. Org. Chem. 2008, 73, 3619; (f) Kim, I. S.; Oh, J. S.; Zee, O. K.; Jung, Y. H. Tetrahedron 2007, 63, 2622; (g) Liang, N.; Datta, A. J. Org. Chem. 2005, 70, 10182; (h) Kumar, P.; Bodas, M. S. J. Org. Chem. 2005, 70, 360; (i) Scott, J. D.; Williams, R. M. Tetrahedron Lett. 2000, 41, 8413; (j) Jourdant, A.; Zhu, J. Tetrahedron Lett. 2000, 41. 7033: (k) Battistini, L.: Zanardi, F.: Rassu, G.: Spanu, P.: Pelosi, G.: Fava, G. G.; Ferrari, M. B.; Casiraghi, G. Tetrahedron: Asymmetry 1997, 8, 2975; (1) Makara, G. M.; Marshall, G. R. Tetrahedron Lett. 1997, 38, 5069; (m) Cochi, A.; Burger, B.; Navarro, C.; Pardo, D. G.; Cossy, J.; Zhao, Y.; Cohen, T. Synlett 2009, 2157-2161; (n) Lemire, A.; Charette, A. B. J. Org. Chem. 2010, 75, 2077-2080; (o) Kokatla, H. P.; Kancharla, P. K.; Doddi, V. R.; Vankar, Y. D. J. Org. Chem. 2010 75 4608-4611
- 7. Trust, R.; Ireland, R. E. Org. Synth. (Coll. Vol.) **1998**, 6, 606.
- (a) Becker, H.; Sharpless, K. B. Angew. Chem., Int. Ed. 1996, 35, 448–481; (b) Torri, S.; Liu, P.; Bhuvaneswari, N.; Amatore, C.; Jutand, A. J. Org. Chem. 1996, 61, 3055–3060; For a review on asymmetric dihydroxylation, see: (c) Kolb, H. C.; Van Niewenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547.
- (a) Ramarao, A. V.; Bose, D. S.; Gurjar, M. K.; Ravindranathan, T. Tetrahedron 1989, 45, 7031–7040; (b) Chavan, S. P.; Praveen, C. Tetrahedron Lett. 2004, 45, 421–423; (c) Chavan, S. P.; Praveen, C.; Ramakrishna, G.; Kalkote, U. R. Tetrahedron Lett. 2004, 45, 6027–6028.
- 10. Chavan, S. P.; Praveen, C.; Sharma, P.; Kalkote, U. R. Tetrahedron Lett. 2005, 46, 439.

- 11. Merino, P.; Lanaspa, A.; Merchan, F. L.; Tejero, T. *Tetrahedron: Asymmetry* **1998**, 9, 629.
- 9, 629. 12. All compounds were characterized by IR, ¹H NMR, ¹³C NMR and mass spectral analysis: *compound* **14**: $[\alpha]_D^{25} = +30.34$ (c 1.45, MeOH); IR (CHCl₃, cm⁻¹): 3435, 1672.97; ¹H NMR (200 MHz, CDCl₃ + CCl₄): δ 1.7–2.05 (m, 2H), 2.17–2.56 (m, 2H), 3.38–3.54 (m, 2H), 3.64–3.84 (m, 2H), 4.52 (s, 2H), 6.54 (s, 1H), 7.33 (s, 5H); ¹³C (50 MHz, CDCl₃): δ 27.4, 28.0, 57.9, 65.3, 71.5, 73.2, 127.5, 127.7, 128.3, 137.2, 172.1; *Compound* **17**: mp = 133–135 °C; $[\alpha]_D^{25} = -27.58$ (c 1.0, MeOH); ¹H NMR (200 MHz, CD₃OD): δ 1.15–1.29 (m, 1H), 1.39 (s, 9H), 1.61–1.82 (m, 3H), 2.69–2.82 (m, 1H), 3.45–3.61 (m, 2H), 3.89–3.92 (m, 2H), 4.08–4.16 (m, 1H); ¹³C (125 MHz, C₂D₆S0 + CDCl₃): δ 18.9, 2.66, 28.2, 39.8, 59.1, 59.9, 63.8, 79.1, 155.9; HRMS (CI+): calcd for C₁₁H₂₁NO₄: 231.1471; found: 231.1484; MS(CI): m/z = 231; XRD (single X-ray confirmed that the relative

stereochemistry of both hydroxy and hydroxy methyl group are trans to each other). *Compound* **1**: $[\alpha]_{D}^{25}$ = +13.8 (*c* 1.0, H₂O); ¹H NMR (400 MHz, D₂O); δ 1.50–1.74 (m, 2H), 1.82–1.94 (m, 2H), 2.90–3.00 (m, 1H), 3.19–3.30 (m, 1H), 3.72 (d, *J* = 7.6 Hz, 1H), 3.94–4.03 (m, 1H).

13. For racemic dihydroxy compound (17) HPLC chiracel OD-H column (250 × 4.6 mm) isopropanol/*n*-hexane = 5:95 flow rate 0.5 ml/min, λ = 210 nm) retention time (min): R_1 = 15.52; R_2 = 17.34 (1:1) enantiomerically pure dihydroxy compound (17) HPLC chiracel OD-H column (250 × 4.6 mm) isopropanol/*n*-hexane = 5:95 flow rate 0.5 ml/min, λ = 210 nm) retention time (min): 17.34 (exclusive).