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KEYWORDS: Continuous processing, Hydrogen transfer, Homogeneous catalysis, Oxidation, 

Ruthenium catalysis. 

ABSTRACT: A continuous flow method for the selective oxidation of secondary alcohols is 

reported. The method is based on an Oppenauer-type ruthenium-catalyzed hydrogen-transfer 

process that uses acetone as both solvent and oxidant. The process utilizes a low loading (1 

mol%) of the commercially available ruthenium catalyst [Ru(p-cymene)Cl2]2, triethylamine as 

base, and can be successfully applied to a range of different substrates, with a reasonable level of 

functional group tolerance. 
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The oxidation of alcohols is a fundamental transformation in chemical synthesis and many 

protocols have been developed over the years to afford different product outcomes and 

functional group tolerances. However, the development of chemoselective, safe and practical 

oxidation methods continue to be of major interest in the community.
1–4

 

Catalytic oxidation is particularly relevant for large scale industrial processes and, despite the 

outstanding progress, further development is needed if we are to respond to contemporary 

environmental challenges and with limited resources.
1,5

 

Hydrogen transfer methods constitute an attractive approach for many synthetic 

transformations.
6–8

 Among these, reduction processes are more well established.
9–17

 Hydrogen 

transfer oxidation methods have also evolved, with the development of new catalysts, employing 

aqueous media, supported catalysts and in the absence of hydrogen acceptors.
18–25

 Most notably, 

Bäckvall’s group has implemented procedures for hydrogen transfer oxidation employing 

commercial catalysts, and a base, to achieve high yields, and with good functional group 

compatibility.
26,27

 

Furthermore the advantages of continuous flow methods applied to research and development 

programs are now well recognized in academia and industry.
28–38

 

Following our interest in redox reactions using continuous flow methods,
39–42

 we report here 

efforts to develop a continuous ruthenium-catalyzed hydrogen-transfer oxidation process. 

 

We reasoned that we needed to combine the safety and selectivity of hydrogen transfer oxidation 

and continuous flow systems to deliver a method with broad application. For the work, a 
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 5

minimal system was assembled comprising a pump, heated coil and backpressure regulator 

(BPR), with acetone as the chosen proton acceptor to facilitate downstream processing. Steady 

state of the system was followed using an in-line UV-Vis detector.
43

 The continuous system that 

was developed facilitates work beyond normal solvent reflux temperatures employed in other 

studies, and avoids any formation of aldol by-products. 

Dichloro(p-cymene)ruthenium(II) dimer was selected as the catalyst to facilitate the oxidation of 

alcohols. [Ru(p-cymene)Cl2]2 was favored as it is commercially available, air-stable, and 

relatively inexpensive when compared to other precious metal catalysts. 

Previous reports demonstrate that the addition of a base improves the oxidative catalytic 

cycle.
27,44,45

 To avoid the use of inorganic bases, which have poor solubility in acetone, and 

might compromise downstream processes, we opted to use triethylamine. Triethylamine is liquid, 

soluble and can be easily removed by evaporation, and gave us better yields, especially when 

compared to N,N-diisopropylethylamine (see ESI). The initial optimization (see ESI) provided a 

method whereby a 0.1 M solution of the alcohol in acetone, 1 mol% of the ruthenium catalyst 

and 2 equivalents of triethylamine were passed through a 40 mL heated coil (1/8″ o.d. stainless-

steel) reactor (ESI Figure S1) at 1 mL/min. This same protocol was then applied to a variety of 

other alcohols including aromatic, aliphatic and allylic examples (Table 1). 
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 6

Table 1. Substrate scope for the ruthenium catalyzed hydrogen transfer oxidation of alcohols

40 mL
SS 1/8"

1 mL/min

20 bar

R R
1

O

R R
1

OH

0.1 M in Acetone

[Ru(p-cymene)Cl 2]2 (1 mol%)
Et3N (2 equiv.)

T (°C)

 

Entry Substrate Temperature (°C) Yielda(b) 

1 

2 
 

100 

150 

91 

97(95) 

3 

4 

OH

 

100 

150 

80 

80(74) 

5 

6 

N OH

 

100 

150 

71 

97 (92) 

7 

8 
 

100 

150 

86 

99(95) 

9 

 

100 97(95)
c
 

10 

 

100 95 

11 

 

150 99(97) 

12 

 

150 76(74) 

13 

 

150 84 

14 

 

150 99(98) 

15 

 

150 68 
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16 

 

150 0 

17 

 

150 78 

18 

19 
 

100 

150 

50
d
 

64(60)
d
 

20 

 

150 58 

21 

 

150 60 

22 

HO

H

H

H

H

 

150 77(75)
d 

23 

24 

 

100 

150 

75
e
 

84(79)
e
 

25 

26 
NHO

O

O

 

150 

150 

22 

40
f
 

27 

28 N

OH

 

150 

150 

14 

79
f
 

29 

 

150 99(96)
g
 

30 

31 

OH

Cl  

100 

150 

6 

12 

32 

33  

100 

150 

50 

72
f
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34 

OH

HO

 

100 

 

60
 h
 

35 

 

100 0 

a
Yield determined by 

1
H NMR integration against internal standard (1,3,5-trimethoxybenzene). 

b
Isolated yields. 

c
Solution prepared in a mixture 9:1 acetone/toluene. 

d
Solution prepared in a 

mixture 8:2 acetone/toluene. 
e
A 0.05M solution in a mixture 1:1 acetone/toluene was used. 

f
5 

mol% of catalyst used. 
g
In a small scale experiment we have directly compared the flow 

procedure to batch, as expected we obtained a comparable isolated yield.
46

 
h
Yield of ketone, no 

aldehyde observed by 
1
H NMR. 

 

The reaction proved to be compatible with double bonds, heterocycles and esters. Pleasingly, 

very hindered alcohols could be successfully oxidized, such as exo-norborneol (entries 3 & 4) 

and adamanthanol (entries 18 & 19). 5α-Cholestan-3β-ol and terfenadine further exemplified the 

application of the method to natural product and active pharmaceutical ingredient substrates 

(entries 22 & 23 respectively). While nitrogen-containing substrates were successfully oxidized 

(e.g. entries 5 & 13), N-Boc-L-prolinol and a pyridine derivative (entries 25-28) required a 

higher catalyst loading to provide good yields of products. Reaction outputs were generally very 

clean, being composed of unreacted starting material and product. The system demonstrated high 

selectivity towards secondary alcohols over primary alcohols. For instance, p-chlorobenzyl 

alcohol provided only 12% of product at 150 °C (entry 31), while its secondary analogue was 

readily oxidized (entry 29). So when (R)-1-phenyl-1,3-propanediol was submitted to the reactor 

system, only the secondary position was oxidized, showing excellent chemoselectivity (entry 

34). Despite the lower reactivity of geraniol (entries 32 & 33), it could be oxidized by increasing 

the catalyst loading at 150 °C. Not surprisingly, strongly chelating substrates such as 1,2-

octanediol (entry 35) failed to oxidize under a range of different reaction conditions. When (R)-
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 9

1-(2-bromophenyl)ethan-1-ol (entry 16) was submitted to the system, starting material was 

recovered, while the para substituted analogue (entry 15) was readily converted to the 

corresponding ketone. This can be rationalized as the alpha substituted can hinder the hydroxyl 

group, differently from the para substituted analogue. 

To further evaluate the chemoselectivity of the method a mixture of octan-2-ol and nonan-1-ol 

was reacted under standard conditions. In this experiment, more than 98% of the secondary 

alcohol was oxidized while less than 3% of the aldehyde was detected (Scheme 1). 

Scheme 1. Oxidation of a mixture of primary and secondary alcohols 

OH

OH +

O

O +

98%

<3%40 mL
SS 1/8"

1 mL/min

20 bar

0.1 M in Acetone

[Ru(p-cymene)Cl 2]2 (1 mol%)
Et3N (2 equiv.)

150 °C

H

 

 

The scalability of the system was rapidly evaluated using 2-octanol as a model substrate (Table 

S2, ESI). By increasing concentration of the substrate and flow rate it was possible to achieve a 

productivity of 34.6 g/h of 2-octanone (Scheme 2). At 10 mL/min a second coil was used to cool 

the reaction mixture and prevent it from boiling after the BPR. The reaction was operated 

continuously for 4 hours with no issues, such as clogging, being observed. When we attempted to 

use the system using even higher concentration and catalyst load, blockage occurred after 40 

minutes (Table S2, ESI). 

Scheme 2. Scale-up experiment for the oxidation of 2-octanol 
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 10

OH O

90%

34.6 g/h

138.4 g after 4 h
1.1 mol

40 mL
SS 1/8"

10 mL/min

0.5 M in Acetone
[Ru(p-cymene)Cl 2]2 (0.5 mol%)

Et3N (2 equiv.)

150 °C

5 mL

RT

20 bar

 

 

Downstream processing was incorporated with the reaction output (28 mL) delivered to a flask 

containing QuadraSil
TM

-MP (1.94 g, 1.2 mmol/g) to remove the soluble residual Ru content from 

the reaction stream. After filtration and solvent removal, effective removal of Ru was shown by 

ICP-MS data (1.19 ppm) delivering the product with high level of purity. 

We were also interested in understanding the role of the Ru catalyst, as previous reports had 

shown that Ru-catalyzed hydrogen transfer reactions can proceed through different routes.
47

 

Ruthenium dichloride catalysts are understood to follow a mono or di-hydric pathway in both 

dehydrogenation and hydrogenation reaction. Sasson argued that Ru
0
 nanoparticles are the real 

catalyst for the hydrogen transfer reductions using [(C6H5)3P]3RuCl2.
48

 Similarly to Sasson’s 

report, our process was characterized by a color change during the reaction progression (from red 

to black), with the eventual deposition of particles after time (see ESI). We also noticed that the 

formation of Ru particles was directly related to the temperature of the system. To help 

understand the nature of the catalyst, mercury poisoning experiments were performed
48,49

 and no 

difference in catalytic activity was observed. These results support the proposal of a soluble 

catalyst, and that the particles observed are formed as a by-product from the redox process. 

Elemental analysis of the black particles showed 3-6% of carbon and 1%< for both hydrogen and 

nitrogen. TEM analysis (see ESI) showed the particles are highly aggregated with an average 
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 11

diameter of diameter of 2.35697 nm (+0.13) and particle distribution of 5.36%. Measurement of 

lattice fringes are in accordance with the values expected for ruthenium. 

 

In summary, we have developed a continuous flow system for the ruthenium-catalyzed 

hydrogen-transfer oxidation of mainly secondary alcohols. The method utilizes 1 mol% of the 

commercially available catalyst [Ru(p-cymene)Cl2]2 and triethylamine as base. The process was 

successfully applied to a range of different substrates, and represents a notable improvement on 

our previous related oxidation studies. 
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