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Abstract: The phosphonyl radical generated from the reaction of
dimethyl phosphite with manganese(III) acetate adds selectively to
the 3-position of pyridin-2-ones or the 5-position of pyrimidin-4-
ones to afford phosphonylated products in good yields.
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Phosphonylated azaheterocycles such as pyridinones and
pyrimidinones are associated with many biological active
compounds and are important in organic, medicinal, and
agricultural chemistry. Methods for the synthesis of py-
rimidinylphosphonates include direct reaction of dichlo-
ropyrimidine with triethyl phosphite,1 lithium 2,2,6,6-
tetramethylpiperidide promoted rearrangement,2 nucleo-
philic substitution,3 lithium–halogen exchange followed
by phosphonylation.4 Oxidative diphosphonylation has
been developed for 1,4-dihydropyridines and pyridinium
salts.5

Manganese(III) acetate is a useful reagent in radical reac-
tions. The Ishii group reported the first catalytic phospho-
nation of arenes with dialkyl phosphites using
manganese(III) acetate/cobalt(II) acetate/oxygen as a re-
dox couple.6 We have recently reported mangangese(III)-
promoted selective phosphonation of aryl,7 heteroaryl,8

and conjugated alkene systems.9 This paper introduces
first examples of manganese(III) acetate promoted direct
phosphonation of pyridinones and pyrimidinones with a
dialkyl phosphite.10

4,6-Diphenylpyridin-2(1H)-one (1a) was used as a sub-
strate for the development of reaction conditions. After
screening the reaction solvent, reagent ratio, reaction tem-
perature, and time, it was found that acetic acid was a
good solvent and the suitable reagent ratio was 1a/dimeth-
yl phosphite/manganese(III) acetate 1:2:3. It was also
found that the addition of three equivalents of manga-

nese(III) acetate in three portions gave the best results.
The reaction at 80 °C for 120 minutes afforded phospho-
nylated product 3a in 72% yield (Scheme 1).

Scheme 1  Phosphonylation of 4,6-diphenylpyridin-2(1H)-one

A series of 4,6-disubstituted pyridinones were employed
to study the scope of this reaction. The results shown in
Table 1 indicated that in all the cases 3-phosphonylated
pyridinones were produced in moderate to good yields,
and no 5-phosphonylated pyridinones or phenyl phospho-
nylated products were observed. It was found that aromat-
ic substituents at the 4- and 6-positions of the pyridinone
have no significant effect on the product yield. Pyridinone
with methyl substitution at position 6 also produced the
desired product (Table 1, entry 9).

The proposed mechanism for the phosphonylation of pyr-
idinones is shown in Scheme 2. Electrophilic phosphonyl
radical 6 generated from the reaction of manganese(III)
acetate with dimethyl phosphite attacks the 3-position of
pyridinones 1 to form radical 7 because this position has
higher electron density than other sites.10b Radical 7 is ox-
idized by the second equivalent of manganese(III) acetate
to form carbocation 8 followed by the deprotonation to
give product 3.

Pyrimidinone is a privileged ring that exists in many nat-
ural products and synthetic medicines. There are a wide
variety of pharmacological properties and potential appli-
cations of pyrimidin-2(1H)-ones.11–14 They could be suit-
able substrates for phosphonylation. Indeed, the reaction
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of pyrimidinone 4a with dimethyl phosphite afforded 5-
phosphonylated pyrimidinone 5a in 65% yield (Scheme
3). A series of substituted pyrimidinones were used for
phosphonylation. Results shown in Table 2 indicate that
substituents on the phenyl ring or at the 2-position of the
pyrimidinone have no significant effect on product yields.

The phosphonylation reaction was further extended to
other substrates. The reaction of pyrimidinedione 6a af-
forded 5-phosphonylated product 7a in 60% yield (Table
3, entry 1). Phosphonylation of 6-bromoquinolinone 6b
gave 3-phosphonylated product 7b in 78% yield (Table 3,
entry 2). Finally, direct phosphonylation was also applied
to the reaction of triacetyl uridine 6c to give the expected
product 7c in 70% yield (Table 3, entry 3). A multistep
synthesis is required to make this kind of compound fol-
lowing reported procedures.4

In summary, we have developed a manganese(III)-medi-
ated regioselective phosphonation reaction of pyridinones
and pyrimidinones. The reactions are straightforward and
efficient. This reaction extended further the synthetic util-
ity of free-radical-based phosphonation of heterocyclic
ring systems in the synthesis of biologically interesting
compounds.

Table 1  Phosphonylation of Pyridinones 1a

Entry Substrate R1 R2 Product Yieldb (%)

1 1a Ph Ph 3a 72

2 1b Ph 4-MeC6H4 3b 68

3 1c 4-MeOC6H4 Ph 3c 62

4 1d 4-BrC6H4 Ph 3d 69

5 1e Ph 4-MeOC6H4 3e 66

6 1f Ph 4-BrC6H4 3f 70

7 1g 4-BrC6H4 4-MeOC6H4 3g 63

8 1h Ph 2-MeOC6H4 3h 60

9 1i Me Ph 3i 55

a Method: 1/dimethyl phosphite/Mn(OAc)3 (1:2:3), AcOH (5 mL), 
80 °C, 2 h under air.
b Isolated yield.
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Scheme 2  Proposed mechanism for phosphonylation of pyridinones
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Table 2  Phosphonylation of Pyrimidinones 4a

Entry Substrate R1 R2 Product Yieldb (%)

1 4a Me Ph 5a 65

2 4b Me 4-MeOC6H4 5b 67

3 4c Me 4-BrC6H4 5c 70

4 4d Me 4-ClC6H4 5d 69

5 4e Ph Ph 5e 75

6 4f Ph 4-MeC6H4 5f 70

7 4g Ph 3-MeOC6H4 5g 65

8 4h Ph 4-BrC6H4 5h 68

a Method: 4/dimethyl phosphite/Mn(OAc)3 (1:2:3), AcOH (5 mL), 
80 °C, 2 h under air.
b Isolated yield.
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Scheme 3  Phosphonylation of pyrimidinone
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All reactions were carried out under air. Solvents were dried by the
standard procedures. 1H and 13C NMR spectra were determined in
CDCl3 on a Varian-Inova 300 MHz or 400 MHz spectrometer and
relative to internal TMS. HRMS were recorded on a MicroMass-
TOF machine (EI). Column chromatography was performed with
200–300 mesh silica gel using flash column technique. All of the re-
agents were used directly as obtained commercially unless other-
wise noted.

Dimethyl 2-Oxo-4,6-diphenyl-1,2-dihydropyridin-3-ylphospho-
nate (3a); Typical Procedure
To a mixture of pyridinone 1a (0.25 g, 1.0 mmol), dimethyl phos-
phite (0.22 g, 2.0 mmol), and AcOH (5 mL) was added Mn(OAc)3·2
H2O (0.81 g, 3.0 mmol) in 3 portions; each portion was added when
the red color of soln had faded. The resulting soln was heated at 80
°C for 2 h. To the resulting mixture was added H2O (30 mL) and it
was extracted with EtOAc (3 × 10 mL). The combined organic lay-
ers were dried (anhyd Na2SO4) and concentrated in vacuo. The res-
idue was purified by column chromatography (acetone–petroleum
ether 2:1) to afford 3a as a yellow solid; yield: 0.26 g (72%); mp
174–176 °C.
1H NMR (400 MHz, CDCl3): δ = 12.54 (s, 1 H, NH), 7.90 (d, J =
6.3 Hz, 2 H, ArH), 7.55–7.35 (m, 8 H, ArH), 6.70 (s, 1 H, CH), 3.44
(d, J = 11.2 Hz, 6 H, 2 CH3).
13C NMR (75 MHz, CDCl3): δ = 168.03, 164.65 (d, JPC = 4.1 Hz),
152.80, 142.75, 135.03, 133.40, 131.72, 131.00, 130.38, 130.17,
129.86, 111.82 (d, JPC = 12.8 Hz), 55.35.

HRMS (EI): m/z [M]+ calcd for C19H18NO4P: 355.0973; found:
355.0974 (77%).

Dimethyl 2-Oxo-6-phenyl-4-p-tolyl-1,2-dihydropyridin-3-
ylphosphonate (3b)
Yellow solid; yield: 0.25 g (68%); mp 164–166 °C.

1H NMR (400 MHz, CDCl3): δ = 13.07 (s, 1 H, NH), 7.83 (d, J =
7.3 Hz, 2 H, ArH), 7.47–7.35 (m, 3 H, ArH), 7.25 (d, J = 7.7 Hz, 2
H, ArH), 7.15 (d, J = 7.8 Hz, 2 H, ArH), 6.55 (s, 1 H, CH), 3.35 (d,
J = 11.4 Hz, 6 H, 2 CH3), 2.31 (s, 3 H, CH3).
13C NMR (75 MHz, CDCl3): δ = 165.90 (d, JPC = 12.4 Hz), 162.26,
150.90, 138.76, 137.51 (d, JPC = 4.3 Hz), 133.30, 131.04, 129.44,
128.79, 127.99, 127.56, 110.10, 53.05 (d, JPC = 5.9 Hz), 21.57.

HRMS (EI): m/z [M]+ calcd for C20H20NO4P: 369.1130; found:
369.1128 (69%).

Dimethyl 6-(4-Methoxyphenyl)-2-oxo-4-phenyl-1,2-dihydro-
pyridin-3-ylphosphonate (3c)
White solid; yield: 0.24 g (62%); mp 178–180 °C.
1H NMR (400 MHz, CDCl3): δ = 12.80 (s, 1 H, NH), 7.93 (d, J =
8.0 Hz, 2 H, ArH), 7.32–7.46 (m, 5 H, ArH), 7.03 (d, J = 8.0 Hz, 2
H, ArH), 6.56 (s, 1 H, CH), 3.84 (s, 3 H, CH3), 3.43 (d, J = 11.3 Hz,
6 H, 2 CH3).
13C NMR (75 MHz, CDCl3): δ = 165.84 (d, JPC = 12.6 Hz), 162.41
(d, JPC = 6.8 Hz), 162.17, 150.46, 140.68 (d, JPC = 4.1 Hz), 129.27,
128.70, 128.11, 127.95, 124.96, 114.89, 108.71 (d, JPC = 13.2 Hz),
55.75, 53.02 (d, JPC = 6.0 Hz).

HRMS (EI): m/z [M]+ calcd for C20H20NO5P: 385.1079; found:
385.1075 (60%).

Dimethyl 6-(4-Bromophenyl)-2-oxo-4-phenyl-1,2-dihydropyri-
din-3-ylphosphonate (3d)
Yellow solid; yield: 0.30 g (69%); mp 188–190 °C.
1H NMR (400 MHz, CDCl3): δ = 13.21 (s, 1 H, NH), 7.96 (d, J =
7.2 Hz, 2 H, ArH), 7.59–7.48 (m, 5 H, ArH), 7.35 (d, J = 8.0 Hz, 2
H, ArH), 6.63 (s, 1 H, CH), 3.46 (d, J = 11.4 Hz, 6 H, 2 CH3).
13C NMR (75 MHz, CDCl3): δ = 165.89 (d, JPC = 12.3 Hz), 161.12,
151.72, 139.49 (d, JPC = 4.5 Hz), 133.21, 131.50, 129.84, 129.72,
127.79, 123.31, 109.83, 53.32 (d, JPC = 5.8 Hz).

HRMS (EI): m/z [M]+ calcd for C19H17BrNO4P: 433.0079; found:
433.0070 (100%).

Dimethyl 4-(4-Methoxyphenyl)-2-oxo-6-phenyl-1,2-dihydro-
pyridin-3-ylphosphonate (3e)
Yellow solid; yield: 0.25 g (66%); mp 196–198 °C.
1H NMR (400 MHz, CDCl3): δ = 12.80 (s, 1 H, NH), 7.90 (d, J =
6.6 Hz, 2 H, ArH), 7.59–7.48 (m, 3 H, ArH), 7.41 (d, J = 7.6 Hz, 2
H, ArH), 6.96 (d, J = 7.6 Hz, 2 H, ArH), 6.65 (s, 1 H, CH), 3.86 (s,
3 H, CH3), 3.48 (d, J = 11.3 Hz, 6 H, 2 CH3).
13C NMR (75 MHz, CDCl3): δ = 161.93, 160.09, 150.57, 135.17,
132.84, 132.36, 130.90, 129.42, 129.21, 127.27, 113.32, 109.93,
55.32, 52.88.

HRMS (EI): m/z [M]+ calcd for C20H20NO5P: 385.1079; found:
385.1075 (60%).

Dimethyl 4-(4-Bromophenyl)-2-oxo-6-phenyl-1,2-dihydropyri-
din-3-ylphosphonate (3f)
White solid; yield: 0.30 g (70%); mp 184–186 °C.
1H NMR (400 MHz, CDCl3): δ = 12.66 (s, 1 H, NH), 7.93 (d, J =
6.7 Hz, 2 H, ArH), 7.50–7.57 (m, 5 H, ArH), 7.32 (d, J =7.7 Hz, 2
H, ArH), 6.59 (s, 1 H, CH), 3.47 (d, J = 11.0 Hz, 6 H, 2 CH3).
13C NMR (75 MHz, CDCl3): δ = 162.69, 152.68, 140.83, 134.25,
132.80, 131.13, 131.04, 129.08, 124.60, 110.92, 54.61 (d, JPC = 5.4
Hz).

HRMS (EI): m/z [M]+ calcd for C19H17BrNO4P: 433.0079; found:
433.0080 (100%).

Dimethyl 6-(4-Bromophenyl)-4-(4-methoxyphenyl)-2-oxo-1,2-
dihydropyridin-3-ylphosphonate (3g)
Yellow solid; yield: 0.29 g (63%); mp 194–196 °C.

Table 3  Phosphonylation of Other Azaheterocycles 6a

Entry Substrate Product Yieldb 
(%)

1

6a 7a

60

2

6b 7b

78

3

6c 7c

70

a Method: 6/dimethyl phosphite/Mn(OAc)3 (1:2:3), AcOH (5 mL), 80 
°C, 2 h under air.
b Isolated yield.
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1H NMR (400 MHz, CDCl3): δ = 13.27 (s, 1 H, NH), 7.86 (d, J =
8.0 Hz, 2 H, ArH), 7.67 (d, J = 7.9 Hz, 2 H, ArH), 7.39 (d, J = 8.1
Hz, 2 H, ArH), 6.97 (d, J = 8.1 Hz, 2 H, ArH), 6.71 (s, 1 H, CH),
3.87 (s, 3 H, OCH3), 3.50 (d, J = 11.3 Hz, 6 H, 2 CH3).
13C NMR (75 MHz, CDCl3): δ = 166.26, 161.70, 160.34, 132.62,
132.34, 129.63, 129.14, 125.72, 113.56, 110.74, 55.57, 53.07 (d, JPC

= 5.6 Hz).

HRMS (EI): m/z [M]+ calcd for C20H19BrNO5P: 463.0184; found:
463.0185 (55%).

Dimethyl 4-(2-Methoxyphenyl)-2-oxo-6-phenyl-1,2-dihydro-
pyridin-3-ylphosphonate (3h)
Yellow solid; yield: 0.23 g (60%); mp 168–170 °C.
1H NMR (400 MHz, CDCl3): δ = 13.36 (s, 1 H, NH), 7.95 (d, J =
7.3 Hz, 2 H, ArH), 7.55–7.45 (m, 3 H, ArH), 7.37 (t, J = 7.6 Hz, 1
H, ArH), 7.22 (d, J = 7.1 Hz, 1 H, ArH), 7.02 (t, J = 7.3 Hz, 1 H,
ArH), 6.95 (d, J = 8.2 Hz, 1 H, ArH), 6.59 (s, 1 H, CH), 3.81 (s, 3
H, OCH3), 3.51 (d, J = 11.4 Hz, 3 H, CH3), 3.43 (d, J = 11.3 Hz, 3
H, CH3).
13C NMR (75 MHz, CDCl3): δ = 165.75 (d, JPC = 11.7 Hz), 162.90,
159.21, 156.05, 150.78, 133.18, 130.88, 130.01, 129.36, 127.62,
120.28, 110.63, 55.69, 52.97 (d, JPC = 28.5 Hz).

HRMS (EI): m/z [M]+ calcd for C20H20NO5P: 385.1079; found:
385.1082 (15%).

Dimethyl 6-Methyl-2-oxo-4-phenyl-1,2-dihydropyridin-3-
ylphosphonate (3i)
Yellow solid; yield: 0.16 g (55%); mp 190–192 °C.
1H NMR (400 MHz, CDCl3): δ = 13.64 (s, 1 H, NH), 7.40 (s, 5 H,
ArH), 6.08 (s, 1 H, CH), 3.53 (d, J = 11.0 Hz, 6 H, 2 CH3), 2.42 (s,
3 H, CH3).
13C NMR (75 MHz, CDCl3): δ = 165.75, 162.78, 149.67, 140.44,
128.63, 128.04, 127.82, 110.47 (d, JPC = 13.5 Hz), 53.00 (d, JPC =
5.2 Hz), 19.42.

HRMS (EI): m/z [M]+ calcd for C14H16NO4P: 293.0817; found:
293.0816 (100%).

Dimethyl 2-Methyl-6-oxo-4-phenyl-1,6-dihydropyrimidin-5-
ylphosphonate (5a); Typical Procedure
To a mixture of pyrimidinone 4a (0.19 g, 1.0 mmol), dimethyl phos-
phite (0.22 g, 2.0 mmol), and AcOH (5.0 mL) was added
Mn(OAc)3·2 H2O (0.81 g, 3.0 mmol) in 3 portions and the resulting
soln was heated at 80 °C for 2 h. To the resulting mixture was added
H2O (30.0 mL) and it was extracted with EtOAc (3 × 10.0 mL). The
combined organic layers were dried (anhyd Na2SO4) and concen-
trated in vacuo. The residue was purified by column chromatogra-
phy (acetone–petroleum, 2:1) to afford 5a as a white solid; yield:
0.19 g (65%); mp 191–192 °C.
1H NMR (400 MHz, CDCl3): δ = 13.4 (br s, 1 H), 7.61–7.68 (m, 2
H), 7.41–7.47 (m, 3 H), 3.56 (d, J = 10.1 Hz, 6 H), 2.56 (s, 3 H).
13C NMR (75 MHz, CDCl3): δ = 172.7 (d, J = 5.0 Hz), 161.7, 139.6,
130.7, 129.5, 128.5, 53.8 (d, J = 2.9 Hz), 22.6.

HRMS (ESI): m/z [M + H]+ calcd for C13H16N2O4P: 294.0769;
found: 295.0842.

Dimethyl 4-(4-Methoxyphenyl)-2-methyl-6-oxo-1,6-dihydropy-
rimidin-5-ylphosphonate (5b)
White solid; yield: 0.22 g (67%); mp 189–191 °C.
1H NMR (400 MHz, CDCl3): δ = 13.30 (br s, 1 H), 7.65 (d, J = 8.6
Hz, 2 H), 6.90 (d, J = 8.6 Hz, 2 H), 3.79 (s, 3 H), 3.55 (d, J = 11.4
Hz, 6 H), 2.47 (s, 3 H).
13C NMR (75 MHz, CDCl3): δ = 172.1 (d, J = 8.0 Hz), 165.7, 162.0,
161.0, 131.8, 131.7, 113.7, 108.7 (d, J = 201.7 Hz), 55.9, 53.6 (d,
J = 6.1 Hz), 22.4.

HRMS (ESI): m/z [M + H]+ calcd for C14H18N2O5P: 324.0875;
found: 325.0944.

Dimethyl 4-(4-Bromophenyl)-2-methyl-6-oxo-1,6-dihydropy-
rimidin-5-ylphosphonate (5c)
White solid; yield: 0.26 g (70%); mp 212–214 °C.
1H NMR (400 MHz, CDCl3): δ = 13.16 (br s, 1 H), 7.55 (d, J = 8.1
Hz, 2 H), 7.52 (d, J = 8.4 Hz, 2 H), 3.60 (d, J = 11.4 Hz, 6 H), 2.51
(s, 3 H).
13C NMR (75 MHz, CDCl3): δ = 170.9 (d, J = 8.6 Hz), 164.6, 161.7,
138.0, 131.2, 130.8, 124.9, 109.8 (d, J = 200.5 Hz), 53.5 (d, J = 6.0
Hz), 22.0.

HRMS (ESI): m/z [M + H]+ calcd for C13H15BrN2O4P: 371.9876;
found: 372.9960.

Dimethyl 4-(4-Chlorophenyl)-2-methyl-6-oxo-1,6-dihydropy-
rimidin-5-ylphosphonate (5d)
White solid; yield: 0.23 g (69%); mp 219–220 °C.
1H NMR (400 MHz, CDCl3): δ = 13.3 (br s, 1 H), 7.59 (d, J = 8.2
Hz, 2 H), 7.38 (d, J = 8.2 Hz, 2 H), 3.60 (d, J = 11.0 Hz, 6 H), 2.49
(s, 3 H).
13C NMR (75 MHz, CDCl3): δ = 171.0 (d, J = 6.1 Hz), 161.5, 137.7,
136.4, 130.6, 128.2, 53.4 (d, J = 4.6 Hz), 22.1.

HRMS (ESI): m/z [M + H]+ calcd for C13H15ClN2O4P: 328.0380;
found: 328.0460.

Dimethyl 6-Oxo-2,4-diphenyl-1,6-dihydropyrimidin-5-ylphos-
phonate (5e)
White solid; yield: 0.27 g (75%); mp 195–197 °C.
1H NMR (400 MHz, CDCl3): δ = 13.6 (br s, 1 H), 8.31–8.55 (m, 2
H), 7.71–7.84 (m, 2 H), 7.35–7.62 (m, 6 H), 3.51 (d, J = 11.1 Hz, 6
H).
13C NMR (75 MHz, CDCl3): δ = 172.4 (d, J = 8.7 Hz), 158.2, 139.6,
133.2, 131.3, 130.4, 129.6, 129.3, 128.9, 127.9, 53.3 (d, J = 4.6 Hz).

HRMS (ESI): m/z [M + H]+ calcd for C18H18N2O4P: 356.0926;
found: 357.1014.

Dimethyl 6-Oxo-2-phenyl-4-p-tolyl-1,6-dihydropyrimidin-5-
ylphosphonate (5f)
White solid; yield: 0.26 g (70%); mp 189–190 °C.
1H NMR (400 MHz, CDCl3): δ = 13.63 (br s, 1 H), 8.44 (d, J = 7.3
Hz, 2 H), 7.73 (d, J = 7.8 Hz, 2 H), 7.54–7.57 (m, 3 H), 7.27 (d, J =
7.9 Hz, 2 H), 3.55 (d, J = 11.4 Hz, 6 H), 2.42 (s, 3 H).
13C NMR (75 MHz, CDCl3): δ = 172.6 (d, J = 8.0 Hz), 158.2, 141.1,
136.9, 133.4, 131.6, 131.6, 130.0, 129.5, 129.1, 128.9, 53.5 (d, J =
6.1 Hz), 22.0.

HRMS (ESI): m/z [M + H]+ calcd for C19H20N2O4P: 370.1082;
found: 371.1157.

Dimethyl 4-(3-Methoxyphenyl)-6-oxo-2-phenyl-1,6-dihydropy-
rimidin-5-ylphosphonate (5g)
White solid; yield: 0.25 g (65%); mp 192–193 °C.
1H NMR (400 MHz, CDCl3): δ = 13.65 (br s, 1 H), 8.44 (d, J = 7.6
Hz, 2 H), 7.54–7.62 (m, 3 H), 7.35–7.41 (m, 3 H), 7.01–7.06 (m, 1
H), 3.88 (s, 3 H), 3.55 (d, J = 11.4 Hz, 6 H).
13C NMR (75 MHz, CDCl3): δ = 172.1 (d, J = 8.6 Hz), 159.2, 140.8,
133.3, 131.8 (d, J = 9.4 Hz), 129.3, 129.2, 129.1, 129.1 (d, J =176.2
Hz), 128.9, 122.0, 116.8, 114.5, 110.0, 55.7, 53.5 (d, J = 6.1 Hz).

HRMS (ESI): m/z [M + H]+ calcd for C19H20N2O5P: 386.1032;
found: 387.1103.

Dimethyl 4-(4-Bromophenyl)-6-oxo-2-phenyl-1,6-dihydropy-
rimidin-5-ylphosphonate (5h)
White solid; yield: 0.30 g (68%); mp 240–241 °C.
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1H NMR (400 MHz, CDCl3): δ = 13.45 (br s, 1 H), 8.31–8.51 (m, 2
H), 7.50–7.71 (m, 7 H), 3.57 (d, J = 14.0 Hz, 6 H).

HRMS (ESI): m/z [M + H]+ calcd for C18H17BrN2O4P: 434.0031;
found: 435.0105.

Dimethyl 2,4-Dioxo-6-phenyl-1,2,3,4-tetrahydropyrimidin-5-
ylphosphonate (7a)
White solid; yield: 0.18 g (60%); mp 210–213 °C.
1H NMR (400 MHz, CDCl3): δ = 8.39 (s, 1 H, NH), 8.16 (s, 1 H,
NH), 7.46–7.57 (m, 5 H), 3.55 (d, J = 10.7 Hz, 6 H).

HRMS (ESI): m/z [M + H]+ calcd for C12H14N2O5P: 296.0562;
found: 297.0635.

Diethyl 6-Bromo-2-oxo-1,2-dihydroquinolin-3-ylphosphonate 
(7b)
Yellow powder; yield: 0.28 g (78%); mp 120–122 °C.
1H NMR (400 MHz, CDCl3): δ = 11.68 (br s, 1 H, NH), 8.48 (d, J =
17.4 Hz, 1 H, ArH), 7.81 (s, 1 H, ArH), 7.67 (d, J = 8.7 Hz, 1 H,
ArH), 7.27 (s, 1 H, CH), 4.50–4.10 (m, 4 H, 2 CH2), 1.40 (t, J = 6.7
Hz, 6 H, 2 CH3).
13C NMR (75 MHz, CDCl3): δ = 163.10, 150.01, 140.19, 136.71,
132.19, 122.31, 121.13, 120.92, 118.96, 116.54, 64.12 (d, JPC = 5.8
Hz), 17.48 (d, JPC = 6.3 Hz).

HRMS (EI): m/z [M]+ calcd for C13H15BrNO4P: 358.9922; found:
358.9922.

Dimethyl 2,4-Dioxo-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-
1,2,3,4-tetrahydropyrimidin-5-ylphosphonate (7c)4

Yellow oil; yield: 0.34 g (70%).
1H NMR (400 MHz, CDCl3): δ = 10.36 (br, 1 H, NH), 8.25 (d, J =
13.5 Hz, 1 H), 5.95 (d, J = 5.1 Hz, 1 H), 5.43–5.38 (m, 1 H), 5.36–
5.33 (m, 1 H), 4.33–4.29 (m, 3 H), 3.78 (d, J = 2.4 Hz, 3 H, OCH3),
3.75 (d, J = 2.4 Hz, 3 H, OCH3), 2.08 (s, 3 H, CH3), 2.05 (s, 3 H,
CH3), 2.01 (s, 3 H, CH3).
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