CHEMISTRY LETTERS, pp. 1031-1034, 1980.

CYCLOADDITION REACTIONS OF 4,6-DIPHENYLTHIENO[3,4-c]-1,2,5-OXADIAZOLE AND -1,2,5-THIADIAZOLE WITH 6,6-DIPHENYLFULVENE AND TROPONE¹

Otohiko TSUGE*, Toshiaki TAKATA, and Michihiko NOGUCHI Research Institute of Industrial Science, Kyushu University 86, Hakozaki, Higashi-ku, Fukuoka 812

4,6-Diphenylthieno[3,4-c]-1,2,5-oxadiazole (1) reacts as a thiocarbonyl ylide with 6,6-diphenylfulvene to give the exo-[4 + 2] adduct <u>via</u> a stereoselective and regiospecific cycloaddition. The <u>exo</u>-adduct undergoes thermal cleavage of the oxa-diazole ring to nitrile and nitrile oxide moieties which can be trapped as 1,3-cycloadducts to the fulvene and dimethyl acetylenedicarboxylate. The reaction of 4,6-diphenylthieno[3,4-c]-1,2,5-thiadiazole (2) with the fulvene affords a mixture of analogous <u>exo</u>- and <u>endo</u>-adducts which are subject to a retro-cycloaddition reaction. On the other hand, 1 reacts with tropone to give the corresponding [4 + 6] adduct which is susceptible to a retro-cycloaddition reaction. However, 2 did not react with tropone.

Recently, 10π -electron condensed thiophenes containing tetravalent sulfur have become considerable practical and theoretical interest.² Previously, we have reported that 4,6-diphenylthieno-[3,4-c]-1,2,5-oxadiazole (1)³ containing tetravalent sulfur is a reactive substrate for cyclo-

additions, behaving as a thiocarbonyl ylide.^{3, 4} It has also been found that both the <u>endo-</u> and <u>exo-</u>adducts obtained from 1 and N-phenylmaleimide undergo thermal cleavage of the oxadiazole ring to nitrile and nitrile oxide moieties which can be captured as 1,3-cycloadducts by olefins and acetylenes,^{5, 6} whereas analogous cycloadducts formed from 4,6-diphenylthieno[3,4-c]-1,2,5-thiadiazole (2)⁷ and the maleimide are subject to a retro-cycloaddition reaction.⁵

X = 0 N = 0 Y = 0 Y = 0 Y = 0 Y = 0 Y = 0 Y = 0 Y = 0

It has recently been recognized by several workers that the fulvene⁸⁻¹⁰ and tropone systems¹¹⁻¹³ can function as either a 2π - or 6π -addend with several 1,3-dipoles. Thus, the fulvene and tropone systems seemed to be interesting substrates in the cycloadditions of 1 and 2 behaving as a thio-carbonyl ylide. In the present paper we wish to report the cycloaddition reactions of 1 and 2 with 6,6-diphenylfulvene (3) and tropone (4).¹⁴

<u>Reaction with Fulvene</u> 3. When a solution of 1 and 3 in benzene was refluxed, under nitrogen, for 12 h, a 1:1 adduct 5 was obtained as the major product, accompanied by a 1:2 adduct 6. In the reaction employing excess of 1, 5 was obtained as the sole product (Scheme 1). The ¹H and ¹³C NMR spectra of 5 exclude both the [4 + 2] adduct to the exocyclic C=C bond of 3 and [6 + 4] adduct from possible structures for 5, and are compatible with either <u>exo</u>- or <u>endo</u>-[4 + 2] adducts. On the basis of comparison of ¹H NMR spectral data with those of analogous cycloadducts of 2 to 3 described below, however, it was concluded that <u>exo</u> structure is more reasonable than <u>endo</u> structure.

On the other hand, 1:2 adduct $\underline{6}$ was assigned as an isoxazoline derivative arising from a 1,3cycloaddition of $\underline{3}$ to a nitrile oxide moiety generated from $\underline{5}$ on the basis of the following evidences. The reaction of $\underline{5}$ with $\underline{3}$ afforded a 23% yield of $\underline{6}$ as an isolable product.¹⁵ In addition, $\underline{5}$ reacted with dimethyl acetylenedicarboxylate (DMAD) to give two 1:1 adducts $\underline{7}$ and $\underline{8}$ in 48 and 15% yields respectively. The IR spectra of 6 as well as of χ and 8 exhibited a weak band ascribable to $v_{C=N}$ absorption as observed in the 1:2 adducts of 1 to acetylenes.⁴ It is thus reasonable to conclude that 6 or χ and 8 are cycloadducts of 3 or DMAD to a nitrile oxide moiety generated from 5, respectively.

Now, the generation of two isomeric nitrile oxides, <u>A</u> and <u>B</u>, is possible from <u>5</u>. On the basis of NMR spectral data, <u>7</u> and <u>8</u> were assigned as the isoxazole derivatives arising from <u>A</u> and <u>B</u> respectively. Differences in chemical shifts of H_a and H_b in <u>7</u> and <u>8</u> can be accounted for by considering the effects of isoxazole ring and phenyl group on the <u>exo</u>-methylene moiety. Based on the similarities of the ¹H NMR pattern with those of <u>7</u> (for H_a and H_b) and the reported adduct <u>9</u>⁹ (for H_e — H_h), the 1:2 adduct was assigned as <u>6</u> but not <u>6</u>' nor <u>6</u>". Stereochemistry of the isoxazoline moiety in <u>6</u> was based on the comparison of ¹H NMR spectral data of the isoxazoline derivatives obtained from the reaction of the exo-adduct of 1 to N-phenylmaleimide with olefins.⁶

5: mp 191-194^oC(dec); ¹H NMR(CDC1₃) δ 4.04(1H, ddd, H_b, J=6, 2.5, 1.5 Hz), 4.54(1H, d, H_a, J=6 Hz), 5.56(1H, dd, H_c, J=6, 2.5 Hz), 6.75(1H, dd, H_d, J=6, 1.5 Hz), 6.3-6.5(2H, m), 6.8-7.7(18H, m); ¹³C NMR (CDC1₃) δ 55.41, 63.79(tert. <u>C</u>), 66.61, 68.85(quat. <u>C</u>), 165.97, 166.32(<u>C</u>=N).

7: mp 135-137^oC(dec); IR(KBr) 2220 cm⁻¹; ¹H NMR(CDC1₃) δ 3.50, 3.94(each 3H, s), 5.00(1H, ddd, H_b, J=6, 2.5, 2 Hz), 5.12(1H, d, H_a, J=6 Hz), 5.35(1H, dd, H_d, J=6, 2 Hz), 6.35(1H, dd, H_c, J=6, 2.5 Hz), 6.6-7.5(20H, m).

8: mp 283-285^oC(dec); IR(KBr) 2220 cm⁻¹; ¹H NMR(CDC1₃) δ 3.38, 3.91(each 3H, s), 4.33(1H, ddd, H_b, J=6, 2.5, 2 Hz), 5.33(1H, dd, H_d, J=6, 2 Hz), 6.20(1H, d, H_a, J=6 Hz), 6.26(1H, dd, H_c, J=6, 2.5 Hz), 6.45-7.8(20H, m).

Chemistry Letters, 1980

Next, our attention was directed toward the reaction of 2 with 3. When a solution of 2 and 3 in xylene was refluxed under nitrogen, two isomeric [4 + 2] adducts 10 and 11 like 5 were obtained. On the basis of ^{1}H NMR spectral data, 10 and 11 were assigned as the exo- and endo-adducts respectively. Thus, the protons H_a and H_b in 11 appear at low field than those in 10, because of the deshielding effect of the sulfur bridge. Analogous effects have been noted for other related exo-endo adducts pairs containing a sulfur bridge.^{3, 16} As mentioned above, the protons H_a and H_b in 5 appear at δ 4.54 and 4.04 respectively, positions very close to those in \underline{exo} -adduct 10.

Sc	heme	2

10: mp 204-205^oC(dec); ¹H NMR(CDC1₃) δ 4.08(1H, ddd, H_b, J=5.5, 2.5, 1.5 Hz), 4.52(1H, d, H_a, J=5.5 Hz), 5.51(1H, dd, H_c, J=6, 2.5 Hz), 6.69(1H, dd, J=6, 1.5 Hz), 6.3-6.5(2H, m), 6.75-7.65(18H, m). 11: mp 194-195^oC(dec); ¹H NMR(CDC1₃) δ 4.86(1H, dd, H_b, J=7.5, 2.5, 1.5 Hz), 5.47(1H, d, H_a, J=7.5)

Hz), 5.66(1H, dd, H_c, J=6, 2.5 Hz), 5.89(1H, dd, H_d, J=6, 1.5 Hz), 6.65-8.0(20H, m).

As shown in Scheme 2, the 10/11 ratio depended on reaction time, indicating that both the adducts 10 and 11 are subject to a retro-cycloaddition reaction to yield 2 and 3, which undergo re-cycloaddition. In fact, when a solution of endo-adduct 11 in xylene was refluxed with DMAD, under nitrogen, for 18 h, benzothiadiazole derivative 12^4 , which was formed from the reaction of 2 with DMAD, was obtained in 48% yield.

Reaction with Tropone 4. When a solution of 1 and 4 in benzene was refluxed under nitrogen, a 1:1 adduct 13, mp 138-140^oC (dec), was obtained together with recovery of starting materials (Scheme 3). The structure of 13 was deduced to be the [4 + 6] adduct on the basis of spectral data. The IR spectrum of 13 showed the bridging carbonyl absorption at 1730 cm⁻¹, while the ¹H NMR spectrum (CDC13)

1	+	reflux	in benzer	ne o N N Ph	HB HX HX HB HX HB HB	_H _A >H _A	NC·Ph E Ph E-ON 14. (E=C00Me)
		 Reaction conditions		Yield, %	Recove	ery, %	
		1/4(mol/mol)	time, h	13	L	4_	
		 1/1	16	2	78	98	
		1/1	48	15	68	73	
		 1/3	48	30	44	85	-

Scheme	3
SCHEINE	5

indicating $A_2B_2X_2$ spin system at δ 3.93 (2H, d, J=6.5 Hz), 5.38 (2H, H_B), and 6.24 (2H, H_A) demonstrated the symmetrical nature of the adduct, and corresponded closely to the NMR spectra of the [6 + 6] photodimer of 4^{17} and [6 + 4] adduct of 4 to a cyclopentadienone.¹⁸

It has also been found that 13 undergoes a retro-cycloaddition reaction. Upon heating 13 in refluxing benzene for 48 h, 1 and 4 were formed in 48 and 44% yields respectively, besides recovery of 13 (48%). Furthermore, when a solution of 13 in benzene was refluxed with an excess of DMAD for 24 h, isoxazole derivative 14⁶ corresponded to a 1:2 adduct of 1 to DMAD was formed in 34% yield.

References and Notes

- 1. Studies on 10π -Electron Heterocycles Containing Tetravalent Sulfur. Part 5. Part 4: Ref. 4.
- 2. M. P. Cava and M. V. Lakshmikantham, Acc. Chem. Res., 8, 139 (1975).
- 3. O. Tsuge, T. Takata, and M. Noguchi, Heterocycles, <u>6</u>, 1173 (1977).
- 4. O. Tsuge and T. Takata, J. Org. Chem., in press.
- 5. O. Tsuge, T. Takata, and I. Ueda, Chem. Lett., 1979, 1029.
- 6. 0. Tsuge and T. Takata, Heterocycles, <u>14</u>, 423 (1980).
- 7. J. D. Bower and R. H. Schlessinger, J. Am. Chem. Soc., 91, 6891 (1969).
- 8. K. N. Houk and L. J. Luskus, Tetrahedron Lett., 1970, 4029.
- 9. P. Caramella, P. Frattini, and P. Grünanger, ibid., 1971, 3817.
- 10. N. Dennis, B. Ibrahim, and A. R. Katritzky, J. Chem. Soc. Perkin I, 2307 (1976).
- 11. M. Franck-Neumann, Tetrahedron Lett., 1970, 2143.
- 12. D. Mukherjee, C. R. Watts, and K. N. Houk, J. Org. Chem., <u>43</u>, 817 (1978).
- 13. C. De Micheli, R. Gandolfi, and P. Grünanger, Tetrahedron, 30, 3765 (1974).
- 14. All new compounds in this paper gave satisfactory elemental analyses.
- 15. In the reaction of 1 with an equimolar amount of 3 as well as in this case, a mixture of 1:2 adducts (ν_{C≡N} 2220 cm⁻¹, ¹H NMR (CDCl₃) complex signals at δ about 3.8 and 4.5-6.5) other than 6 was obtained. However, attempts to isolate pure adduct(s) were unsuccessful.
- M. P. Cava, N. M. Pollack, O. A. Mamer, and M. J. Mitchell, J. Org. Chem., <u>36</u>, 3932 (1971); M. P. Cava, N. M. Pollack, and G. A. Dieterle, J. Am. Chem. Soc., <u>95</u>, 2558 (1973); M. P. Cava, M. Behforonz, G. E. M. Husbands, and M. Srinivasan, ibid., 95, 2561 (1973).
- 17. T. Mukai, T. Tezuka, and Y. Akasaki, J. Am. Chem. Soc., 88, 5025 (1966).
- 18. K. N. Houk and R. B. Woodward, J. Am. Chem. Soc., <u>92</u>, 4145 (1970).

(Received May 19, 1980)