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Abstrac t :  Treatment of alkenyldicyclohexylborane 5 with 1-1ithio-3,4-pentadien-l-ynes derived 
from 10 followed by trimethyltin chloride and acetic acid furnished o-isotoluenes 13 in a single 
operation. The reaction proceeded through an initial formation of diene-allenes 11, which 
underwent facile electrocyclizations to produce 12 leading to o-isotoluenes 13. 
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As an alicyclic isomer of toluene, 5-methylene-l,3-cyclohexadiene (o-isotoluene, 1) possesses an 
additional 24 kcal/mol in energy, 1 which is mainly responsible for its unusual chemical reactivity. 
Dimerization of I via concerted ene reactions to the corresponding ene dimers 2 and 3 (75 % yield, 2:3 = 2:1) 
occurs under mild thermal conditions. 2 Unlike the usual ene reactions which require high reaction 
temperatures, 3 the fonnation of an aromatic system during dimerization of 1 greatly facilitates the rate of 
reaction. Treatment of 1 with tetracyanoethylene also produced the corresponding ene adduct. 4 Similarly, 
reaction with styrene at 80 °C furnished 1,2-diphenylpropane and 1,3-diphenylpropane in a 3:1 ratio in 90 % 
total yield. 4b The o-isotoluene 1 is also sensitive to acid and oxygen, being rapidly converted to toluene 4b and 
benzyl hydroperoxide, 5 respectively. 

1 2 3 
The high reactivities of I and its derivatives put severe constraints on possible synthetic methods for 

these fascinating compounds. Thermolysis of suitable precursors, obtained by multistep syntheses, 
immediately prior to the formation of o-isotoluenes has been employed to accomplish this difficult task. 4'6 

Alternatively, facile electrocyclization of the transient (Z)-l,2,4,6-heptatetraene (diene-allene) has also been 
shown to produce 1. 7 We recently reported a simple and versatile route to (Z)-diene-allenes, thus providing a 
practical synthesis of o-isotoluenes. 7t' We now report a new method for the synthesis of a variety of 
(Z)-diene-allenes, leading to the corresponding o-isotoluenes with diverse structures. 

It was previously reported that treatment of alkenyldicyclohexylboranes 5, readily prepared from 
terminal alkynes 4 and dicyclohexylborane, with 1-1ithio-l-alkynes 6 provided 
1-alkynylalkenyldicyclohexylborates 7 (Scheme 1). 8 Exposure of 7 to tributyltin chloride protnoted a 
selective migration of the alkenyl group from the boron atom to the adjacent acetylenic carbon atom to 
furnish 8, which on treatment with acetic acid was converted to dienes 9 with high geometric purity. 

We envisioned that by using the readily available 3,4-pentadien-l-ynes 109 to produce 
1-1ithio-3,4-pentadien-l-ynes for the subsequent formation of the organoborate complexes, the reaction 
sequence outlined in Scheme 1 could be easily adopted for the synthesis of (Z)-diene-allenes 11 as transient 
intermediates toward o-isotoluenes 13 (Scheme 2). Indeed, this synthetic route was found to be successful for 
the preparation of a variety of o-isotoluenes (Table l). Unlike the parent compound 1 and o-isotoluenes 
without an R group on the six-membered ring, o-isotoluenes 13 having an R group on the ring were stable to 
oxygen and could be isolated and purified by column chromatography as observed previously. 7b 
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The rates of electrocyclization of diene-allenes l l  to 12 were generally very facile, 1° giving rise to 
o-isotoluenes 13 after treatment of 12 with acetic acid. However with the presence of a sterically demanding 
tert-butyl group as the R group, the rate of electrocyclization was significantly reduced, allowing isolation of 
diene-allenes 14a (41%) and 14b (35%) 11 after treatment with acetic acid. On heating in CDC13 at 60 °C for 
96 h (tl/2 = ca. 12 h), 14b was smoothly converted to o-isotoluene 131 in 91% isolated yield. 

R 1 R ~ 
.--c--<" 

14a: R 1 Bu, 41% ~ ' - -  - -  \ R  1 60 °C = I= R 1 
14b: R1,R 1 = -(CH2)s-, 35% ~ ~ 131: R1,R 1 = -(CH2)5-, 91% 

The conjugated allenynes 10 were synthesized according to the reported procedures. 9 To 7.326 g (48.2 
mmol) of the readily available 3-butyl-l,2-heptadiene l~- in 150 rnL of THF at -60 °C under an N 2 atmosphere 
was added 19.3 mL of a 2.5 M solution of n-butyllithium in hexanes. After 1 h at -60 °C, 7.61 g (53.0 mmol) 
of anhydrous CuBr in 60 mL of THF was introduced via cannula, and tile mixture was allowed to warm to -20 
°C. The mixture was then cooled to -40 °C, and 11.88 g (53 mmol) of 1-iodo-2-(trimethylsilyl)acetylene 13 
was added dropwise over 1 h. After an additional 1 h at -40 °C, the mixture was allowed to warm to 0 °C and 
then was poured into a saturated NH4C1 solution. Pentane (30 mL) was added and the mixture was filtered. 
The organic layer was separated, and the aqueous layer was extracted with pentane (3 x 40 mL). The 
combined organic layers were washed with water, dried over MgSO 4, and concentrated. The residue was 
distilled (bp 75 °C, 0.2 Tort) to afford 8.658 g (73%) of 1-(trimethylsilyl)-5-butyl-3,4-nonadien-l-yne as a 
colorless liquid. 9a To 3.754 g (15.14 mmol) of 1-(trimethylsilyl)-5-butyl-3,4-nonadien-l-yne in 140 mL of 
ethanol under a nitrogen atmosphere was added 36 mL of a 0.1 N aqueous NaOH solution. After 24 h at rt, 
the mixture was poured into ice/water and was extracted with pentane. The organic layer was washed with a 
saturated NH4C1 solution, dried over MgSO4, and concentrated. The residue was distilled (bp 38 °C, 0.09 
Torr) to furnish 2.383 g (90%) of 10a as a colorless liquid: IR (neat) 3314, 2105, 1955, 1466, 1379 cmq; 1H 
NMR (CDC13) ~ 5.30 (1 H, sextet, J = 2.8 Hz), 2.75 (I H, d, J = 2.4 Hz), 1.99 (4 H, m), 1.37 (8 H, m), 0.90 (6 
H, t); 13C (CDCI3) ~ 210.47, 107.34, 78.32, 76.20, 74.98, 31.89, 29.44, 22.32, 13.85; MS (m/e) 161 
(M÷-CH3), 147, 134, 119, 105, 91, 77. Alternatively, 5-methyl-l-(trimethylsilyl)-3,4-hexadien-l-yne 9a was 
synthesized in 93% isolated yield by sequentially treating a slurry of CuBr and triethylamine in DMF under 
an N 2 atmosphere with (trimethylsilyl)acetylene and 1-bromo-3-methyl-l,2-butadienO 4 at 0 °C followed by 
10 h at 30 °C.9b Desilylation with NaOH/EtOH furnished 10b in 28% isolated yield. The low isolated yield 
for 10b was due to its high volatility. Similarly, 5,5-(pentamethylene)-l-(trimethylsilyl)-3,4-pentadien-l-yne 



4089 

Table 1. Synthesis of o-lsotoluenes 13 

o-isotoluenes, 13, isolated yield a'b 

Bu 13a, R = Bu, 60% 

~ B u  13b, R = 54% n-f5nl l ,  

13c, R = i-Pr, 38% 

13a-g 13d, R = Ph, 16% 

13e, R = 1-cyclohexenyl, 41% 

CH 3 

13h, = Pr, R 41% CH 3 

v ~ R  

13h 
13i, R = Pr, 43% 

13j, R = Ph, 25% 

13f, R = methoxymethyl, 20% 13k, R = i-Pr, 38% 
R 

13g, R = cyclohexylmethyl, 30% 13i-I 131, R = t-Bu, 32% c 

a The isolated products were characterized by IR, 1H (270 MHz) and 13C (67.9 MHz) NMR, 16 and MS. 
b In addition to o-isotoluenes 13, ca. 5% of the 1-cyclohexyl-l,3,4-pentatriene derivatives arising from 

a competing migration of the cyclohexyl group were also isolated. 
c The overall isolated yield from 10c. 

was prepared from 1-bromo-3,3-(pentamethylene)-l,2-propadiene 14 and (trimethylsilyl)acetylene in 85% 
isolated yield. Desilylation with NaOH/EtOH furnished 10c in 86% isolated yield. 

The following procedure for the synthesis of o-isotoluene 13a is representative. To 1.5 mL of a 2.0 M 
solution of BH3-SMe 2 (3.0 mmol) in 8 mL of THF under a nitrogen atmosphere was added 0.61 mL (0.492 g, 
6.0 mmol) of cyclohexene at 0 °C. After 30 rain, a white slun-y of dicyclohexylborane appeared. 15 The 
mixture was kept at 0 °C for an additional 30 min before cooling to -15 °C. A solution of 0.246 g of 1-hexyne 
(3.0 mmol) in 3 mL of THF was then inta'oduced. After 2 h at 0 - 5 °C, the reaction mixture became 
homogeneous and was used immediately to form tile organoborate complex. To a second flask containing 
0.528 g of 10a (3.0 mmol) in 3 mL of THF at -25 °C was added 1.2 mL of a 2.5 M solution of n-butyllithium 
(3.0 mmol) in hexanes. After 15 min at -25 °C, the resulting 1-1ithio-5-butyl-3,4-nonadien-l-yne was 
introduced via cannula to the flask containing (E)-l-hexenyldicyclohexylborane at -25 °C. The reaction 
mixture was stirred at rt for 1 h before cooling to 0 °C. A solution of trimethyltin chloride (3.0 mL, 1.0 M, 
3.0 mmol) in THF was then introduced with a syringe. After an additional 1 h at rt, 2 mL of glacial acetic 
acid was added and the mixture was heated to 50 °C for 1 h before cooling to rt. Methanol (5 mL), 6.3 mL of 
a 6 N NaOH solution, and 1.74 mL of 30% H~_O 2 were then introduced sequentially, and the reaction mixture 
was heated to 50 °C for 1 h. The mixture was then extracted with pentane (3 x 10 mL), and the combined 
organic layers were washed with water, dried over MgSO4, and concentrated. The residue was purified by 
column chromatography (silica gel / hexanes) to furnish 0.465 g (60 %) of 13a as a light yellow liquid: IR 
(neat) 1636, 1466, 1378, 735 cml;  1H NMR (CDCI3) ~ 6.34 (1 H, d, J = 9.9 Hz), 5.94 (1 H, dd, J = 3 and 1 
Hz), 5.93 (1 H, dd, J = 3 and 1 Hz), 5.72 (1 H, dt, J = 9.9 and 3 Hz), 3.23 (1 H, m), 2.2 (2 H, m), 2.07 (1 H, 
m), 1.95 (1 H, m), 1.5 (1 H, m), 1.3 (13 H, m), 0.92 (9 H, m); 13C NMR (CDCI3) 8 141.05, 132.82, 131.71, 
124.76, 122.51, 121.09, 37.81, 37.46, 31.82, 31.66, 31.40, 30.90, 28.14. 23.22, 23.04, 23.01, 14.12, 14.09, 
14.07; MS (m/e) 260 (M+), 203, 161,147, 133, 119, 105, 91. 
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