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Raffinose oligosaccharides (RO) are the factors primarily responsible for flatulence upon ingestion
of soybean-derived products. ROs are hydrolyzed by a-galactosidases that cleave a-1,6-linkages of
o-galactoside residues. The objectives of this study were the purification and characterization of
extracellular o-galactosidase from Debaryomyces hansenii UFV-1. The enzyme purified by gel filtration
and anion exchange chromatographies presented an M; value of 60 kDa and the N-terminal amino
acid sequence YENGLNLVPQMGWN. The K, values for hydrolysis of pNPaGal, melibiose, stachyose,
and raffinose were 0.30, 2.01, 9.66, and 16 mM, respectively. The a-galactosidase presented absolute
specificity for galactose in the a-position, hydrolyzing pNPGal, stachyose, raffinose, melibiose, and
polymers. The enzyme was noncompetitively inhibited by galactose (Ki = 2.7 mM) and melibiose (K;
= 1.2 mM). Enzyme treatments of soy milk for 4 h at 60 °C reduced the amounts of stachyose and
raffinose by 100%.

KEYWORDS: a-Galactosidase; Debaryomyces hansenii UFV-1; raffinose oligosaccharides; characteriza-
tion; flatulence

INTRODUCTION activity. In addition to melibiose, galactose has been shown to

The enzymex-galactosidaseot.p-galactoside galactohydro- induce enzyme synthesis and results from our laboratory suggest
lase EC 3.2.1.22) catalyzes hydrolysis wofL,6-linked a-ga- that galactose could induce intra- and extracellakayalactosi-
lactoside residues from simple oligosaccharides such as meli-dases irbebaryomyces hansetiiFV-1. Itis the most frequent
biose, raffinose, and stachyose and from polymeric galacto- yeast species in protein-rich fermented products such as sausages

mannans 1). o-Galactosidase is widely distributed in micro- and cheeseslp). o
organisms, plants, and animafs{4). Purification and charac- In the present study, we report the purification and charac-
terization ofa-galactosidases from several sources have beent€rization of thea-galactosidase secreted ByhanseniUFV-1

reported, and according to their source, their properties differ When grown on galactose. The hydrolytic properties and
markedly 6—8). substrate specificities of thig-galactosidase were studied to

This enzyme is of particular interest in view of its biotech- €lucidate its possible applications.

nological applications. Microbial or plart-galactosidases are

added to soybean meal, soy milk, and molasses to hydrolyzeMATERIALS AND METHODS

the raffinose oligosaccharides (ROs) to digestible carbohydrates microorganism. The yeast strain used in this study was isolated

and thereby moderate the flatulence-causing property of soybearfrom a dairy environment in Minas Gerais, Brazil, and has been

products 9, 10). Enzymatic hydrolysis of hemicelluloses is of maintained in the culture collection of the Laboratory of Microorganism

interest for the pulp and paper industry, amdjalactosidase- Physiology, BIOAGRO, UFV, Brazil. This yeast was identified by the

modified galactomannan has been used to improve the gelling!nstitute of Yeasts Identification, Centraalbureau voor Schimmelcultures,

properties of polysaccharidé ). U_t_recht, The ‘Netherlands, & hgnsenii_(Zopf) qu_der & _Kreger-van
Several yeast strains are known to assimilate melibiose as aRil Var- fabryi Nakase & Suzuki. In this work, it is designated @s

. . o . anseniiUFV-1.
nutrient, so they possibly have significantgalactosidase Conditions for Enzyme Production. D. hanseniilUFV-1 stored at

N - p hould be add 1 Tel- —80°C in glycerol and YPD medium (1% yeast extract, 2% peptone,
To whom correspondence should be addressed. Tel: (5531)3899-2374. 4 204 glucose) was streaked on a YPD agar surface (1.5% agar) and
Fax: (5531)3899-2373. E-mail: vmonteze@ufv.br. L : . .
T Universidade Federal de \bea. maintained in an incubation chamber at°8for 36 h. The yeast was
*Universidade Federal de Minas Gerais. then activated in YPD liquid medium and incubated at30200 rpm,
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Table 1. Summary of D. hansenii UFV-1 Extracellular o-Galactosidase Purification

purification volume protein activity total specific activity purification recovery
step (mL) (mg) (U/mL) activity? (U) (U/mg protein) factor (%)
lyophilized extract 102.0 7.45 0.87 88.7 11.9 1.00 100.0
Sephadex G-150 190.0 0.57 0.31 58.9 103.0 8.65 66.4
DEAE-Sepharose 17.0 0.26 3.04 51.7 199.0 16.70 58.3

a0ne unit (U) of enzyme activity is defined as the amount of enzyme that released 1 xmol of pNP per minute.

for 12—15 h. The cells obtained after centrifugation (46®6r 5 min Michaelis-Menten plot. The substrate concentrations expressed in mM
at 4°C) were inoculated in mineral medium containing 0.62 g/LKH were 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9, and
PQ,, 2.0 g/L K,HPOy, 1.0 g/L (NH:);SOs, 0.1 g/L MgSQ:-7H;0, and 1.0 for pNPaGal; 1.25, 2.5, 5, 10, 20, 30, 40, 60, 70, and 80 for
5.0 g/L yeast extract with galactose as the carbon source. After raffinose; 2.5, 5, 8, 10, 15, 20, 25, and 30 for stachyose; and 0.15, 0.3,
incubation at 30C, 200 rpm for 31 h, the biomass was separated by 0.625, 1.25, 2.5, 5.0, 7.5, 10, 15, 20, 30, and 40 for melibiose. The
centrifugation and the supernatant containiegyalactosidase was inhibition constantsk;) for galactose and melibiose were calculated
lyophilized. by the Dixon plot. TheopNPaGal concentrations were 0.05, 0.1, 0.2,
o-Galactosidase Purification. The lyophilized enzymatic sample 0.3, 0.4, 0.5, and 1.0 mM. The concentrations of inhibitor galactose
resuspended in 25 mM sodium acetate buffer was subjected to gelwere 0.5, 1.0, and 2.0 mM, and the melibiose concentrations were 0.25,
filtration chromatography in a Sephadex G-150 column (87.5>xcm 0.50, and 1.0 mM.
2.5 cm) equilibrated with 25 mM sodium acetate buffer, pH 5.5. The Substrate Specificity. Enzymatic assays were performed with
proteins were eluted at a flow rate of 20 mL/h, and 3.3 mL fractions various synthetic, natural, and polymeric substrates. The reaction
were collected. Fractions containing-galactosidase activity were  mixtures contained 650L of 0.1 M sodium acetate buffer, pH 5.0, 70
pooled and subjected to ion exchange chromatography in a DEAE- uL of enzyme solution (0.7&g protein/mL), and 25@L of synthetic
Sepharose column (14.5 cm1.9 cm) equilibrated with 0.1 M sodium  substrates (2 mM), or lactose, maltose, gentiobiose, stachyose, and
acetate buffer, pH 5.5. The proteins were eluted at a flow rate of 40 sucrose (10 mM), or raffinose (15 mM), or melibiose (2 mM), or locust
mL/h, with a linear increasing gradient of NaCl<@.0 M) in 0.1 M bean gum and guar gum solutions (1%). The activities were measured
sodium acetate buffer. All purification procedures were performed at under standard assay conditions at°€D The data presented for all
4 °C. The active fraction was pooled and analyzed for purity by sodium enzyme activity determinations are mean valuesSD of three

dodecyl sulfate-polyacrylamide gel electrophoresis (SBBAGE). measurements.

Enzyme Assay.o-Galactosidase was assayed in a reaction system  Effect of lons, Simple Sugars, and Reducing AgentsThe effect
containing 65Q:L of 0.1 M sodium acetate buffer, pH 5.0, 100 of of ions, simple sugars, and reducing agents on the enzyme activity was
enzyme solution (0.7%g protein/mL), and 250uL of 2 mM assayed by the standard methods; enzyme samples were preincubated
p-nitrophenyle-p-galactopyranosidepfPoGal) or other synthetic  with each of the compounds (10 mM) in 0.1 M sodium acetate buffer,
substrates. The reaction was run for 15 min at 60 or atGi@or the pH 5.0, for 20 min at 60C. The data presented for all enzyme activity
purification assays and ended with the addition of 1 mL of 0.5 M determinations are mean valugsSD of triplicate assays.
sodium carbonate. The amount ehitrophenol pNP) released was N-Terminal Amino Acid Sequence Analysis.After blotting onto

determined at 410 nm. This procedure was defined as the standard assay»vDF membrane, the N-terminal amino acid sequences ofitha-

The activities against melibiose, maltose, gentiobiose, and lactose |actosidase were determined by automated Edman degradation, using
were evaluated by the glucosexidase method1@). When sucrose,  an automatic protein sequencer (PPSQ-21/23). Similarity searches were
raffinose, and stachyose were used as the substrate, the production %reformed using BLASTp software.
reducing sugar was o_Ietermined us_ing the 3,5-dinitrosalicylate reagent Enzymatic Hydrolysis of Oligosaccharides Present in Soy Milk.

(14). One enzyme unit (U) was d_eflned as the amoun_t _of enzyme that Soy milk was prepared from dry seeds (50 g). The seeds were chopped
released Jumol of product per min under assay conditions. up, homogenized in 400 mL of water at 8G, incubated for 10 min

Determination of Protein Concentration. The protein concentration at 85°C, and filtered through cheesecloth. Soy milk samples (5 mL)
in the enzymatic extract was determined by the Coomassie Blue bindingyere then incubated with either water or 10.5 U of purifeegjalac-

method with bovine serum albumin (BSA) as the standag. ( tosidase for 0, 2, 4, @6 h under shaking (100 rpm) at 6C. The
Determination of Molecular Mass. The enzyme molecular mass  eaction mixtures were dried, and the soluble sugars from 20 to 30 mg

was estimated by SDSPAGE using a 12.5% polyacrylamide g&f. of lyophilized samples were extracted with 80% aqueous ethanol (v/v)

After electrophoresis, the gel was silver-stainéd)( The molecular (9). The solvent was evaporated at 8@, and the sugars were

mass standards (Pharmacia) were as follows: BSA, 66.0 kDa; yesyspended in 1 mL of 80% ethanol and analyzed by high-performance
ovalbumin, 45.0 kDa; glyceraldehyde-3-phosphate dehydrogenase, 36.Qjquid chromatography (HPLC) on a Shimadzu series 10A chromato-
kDa; carbonic anhydrase, 29.0 kDa; trypsinogen, 24.0 kDa; trypsin graph. An analytical column [aminopropil (N was used for this

inhibitor, 20.1 kDa; andx-lactalbumin, 14.2 kDa. ) purpose, eluted with an acetonitrifevater isocratic mixture (80:20 v/v)

Effect of pH and Temperature. The pH effect of thex-galactosi- at 35°C at a flow rate of 1 mL/min. The individual sugars were
dase activity was investigated at different pH levels (from 3.0 to 8.0) aytomatically identified and quantified by comparison with the retention
by Mcllvaine buffer (citric acid/sodium phosphate) at %D (18). The times and standard sugar concentrations. Gentiobiose was used as an
pH stability of a-galactosidase was also determined by incubating 15 internal standard as it does not interfere with the other sugars and is
uL of enzyme solution (15.@&g protein/mL) with 285«L of above- not found in soybean seeds.

mentioned buffer at 60C for 30 min. After incubation, 100L of the
mixture was used for determination of the residual activity, according
to the standard assay, usipbPaGal as the substrate. RESULTS AND DISCUSSION

The optimum temperature was determined within a temperature range  Galactose-growrD. hanseniiUFV-1 produced high levels
0f 25-80°C at pH 5.0. Thermal stability was investigated by incubating ot jniracellular and extracellulan-galactosidases, similar to

100uL of enzyme solution (0.7&ag protein/mL) and 65@L of 0.1 M : )
sodium acetate buffer, pH 5.0, at various temperatures (40, 50, 55, 60 other species such dsebaryomyces castelllFO 1359, De

65, and 70°C) for 0—48 h. After incubation, 25@L of 2 mM pNPaGal  Paryomyces nepalendisO 1428, and other yeastsq). Results

was added, and the remaining activity was measured. Results of theOf the purification of extracellulan-galactosidase fron.

analyses are presented as me&nSD for three measurements. hanseniilUFV-1 are summarized ifiable 1. The concentrated
Determination of Kinetic Parameters. The Michaelis-Menten culture supernatant was subjected to gel filtration chromatog-

constant Km) andVimax for substrate hydrolysis were calculated by the raphy resulting in the separation of one protein fraction with
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Figure 1. Elution profile of the a-galactosidase from D. hansenii UFV-1
on a (A) Sephadex G-150 column and (B) DEAE-Sepharose column.
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Figure 2. SDS PAGE (12.5%) of D. hansenii UFV-1 o-galactosidase
purification steps. Lane 1, molecular mass standards; lane 2, lyophilized
extract fraction; lane 3, Sephadex G-150 fraction; and lane 4, DEAE-
Sepharose fraction. Protein gel was stained with silver.

o-galactosidase activityFgure 1A). This step resulted in
considerable specific activity enrichmefitaple 1). The final
step was carried out by ion exchange chromatography. The
active fractions were eluted from 0.45 to 0.6 M NaCl and
appeared as a single activity pe&kgure 1B). This procedure
resulted in a purification factor of 16.7 with a recovery level of
the originalo-galactosidase activity of 58.3%#ble 1). Similar
results were reported for purification of extracelluaccha-
romyces carlsbergensisgalactosidase?j. No invertase activity
was detected in the final enzyme preparation.

The electrophoretic profile of the enzyme in SBIBAGE
confirmed the presence of a single protein band, with an
estimated molecular mass of 60 kDigure 2). In previous
reports, purifiedx-galactosidases fromenicillium purpuroge-
num Aspergillus fumigatusandThermomyces lanuginosiid|
158749 presentell; values of 67 20), 54.7 1), and 57 kDa
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(6), respectively. The N-terminal amino acid sequenceéof
hanseniilUFV-1 a-galactosidase was determined as YENGLN-
LVPQMGWN (Table 2). Although this region does not appear
to be conserved among the knowmngalactosidases, the N-
terminal amino acid sequence Bf hanseniilUFV-1 a-galac-
tosidase shared a high similarity with other microlsiagjalac-
tosidases, which belong to the glycoside hydrolase family 27
in comparison with the sequences available in the protein
databaseTable 2). The alignment of the N-terminal amino acid
sequence dD. hansenilUFV-1 a-galactosidase (14 amino acid
residues) with the sequence bBf hanseniiCBS767a-galac-
tosidase showed two nonconservative changes, a substitution
of N for G at residue six and a substitution of V for T at residue
eight. However, the N and V residues presenteD.ifansenii
UFV-1 were conserved in other microbiatgalactosidases, as
observed in the sequence of tMagnaporthe grisear0-15
o-galactosidase, which showed the perfect match to the last 12
amino acids of the protein under studyaple 2).

Substantial activity againspNPoGal was observed for
enzyme preparation within a temperature range of@®°C
and pH range of 3:56.0 (Figure 3). The enzyme achieved
maximal substrate hydrolysis at a temperature ocf®&QFigure
3B). The optimum pH for the enzyme was 5Bidure 3A).
These optimum pH and temperature values are close to those
determined for hydrolysis @iNPaGal by fourc-galactosidases
from Aspergillus nigerATCC 46890 (), Torulaspora del-
brueckii IFO 1255 81), and Thermomyces lanuginosus|
158749 6).

The K, andVmax values were calculated by the Michaelis
Menten plot forpNPo.Gal, melibiose, raffinose, and stachyose
(Table 3). The K, value for pNPaGal is comparable to the
one determined for hydrolysis of the same substrate by
o-galactosidase purified fromAspergillus fumigatug21) and
Ganoderma lucidum(32). The K, values for raffinose and
stachyose were lower than those determined for hydrolysis of
the same substrates by the enzymé& oflelbrueckiilFO 1255
(31). For the natural substrates in use, the lowgs@and Vimax
values were calculated for melibiose. Results indicate Ehat
hanseniiUFV-1 a-galactosidase presents a higher affinity for
melibiose and that the complex ES formation is not the limiting
step for the reaction. The ratM./Km showed that substrate
pNPaGal was used more efficiently by the enzyme, followed
by stachyose, raffinose, and melibiose. The puritiedalac-
tosidase was thermostable. No loss in enzyme activity was
observed after incubation for 24 h at 4C. The enzyme
maintained about 91% of its original activity afté h at 60°C,
but 40% of the activity was lost following 15 min of incubation
at 70 °C (Figure 4). The half-life of D. hansenii UFV-1
o-galactosidase at 50, 55, 60, 65, and®@0was 821, 647, 373,
180, and 34.6 min, respectively. Thesg values were higher
than those reported for soybeangalactosidases9( 10) but
lower than those reported fax-galactosidase fronBacillus
stearothermophilu®dNCIM 5146 @).

TheD. hansenilUFV-1 a-galactosidase retained about 82%
of its activity after incubation for 30 min at 6 in a pH range
of 4.0—-7.6, but 90% of the activity was lost after incubation in
the same conditions at pH 3.Bi¢ure 5). The enzyme showed
significant stability for a wide range of pH and temperature
levels, which is desirable for industrial applications.

The activity ofa-galactosidase against several substrates is
shown in Table 4. Under the experimental conditions, this
enzyme was the most effective to hydroly®é¢PoGal, followed
by stachyose, raffinose, and melibiose, as expressed Wthe
Km ratio (Table 3). Lactose and synthetic substrates containing
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Table 2. Comparison of D. hansenii UFV-1 o-Galactosidase N-Terminal Sequence to Other Microbial o-Galactosidases?

Organism Sequence Reference
Debaryomyces hansenii UFV-1 YENGLNLVPQMGWN This paper
Magnaporthe grisea 70-15 36 NGLNLVPQMGWN 47 22
Debaryomyces hansenii CBS767 21 YENGLGLTPQMGWN 34 23
Torulaspora delbrueckii 25 NGLGLTPQMGWN 36 24
Zygosaccharomyces mrakii 24 NGLGLTPQMGWN 35 25
Saccharomyces cerevisiae 24 NGLGLTPQMGWD 35 26
Saccharomyces mikatae 24 NGLGLTPQMGWD 35 27
Schizosaccharomyces pombe 27 NGLGLKPQMGWN 38 28
Phanerochaete chrysosporium 22 DNGLAITPQMGWN 34 29
Mortierella vinacea 23 NGLAITPQMGWN 34 30

@ Amino acid residues conserved in all sequences are printed in bold.

Activity (mM pNP/min)

0 T T T T

3 4 5 6 ; ; é 2I0 3|0 4‘0 SIO GIO 7|0 - BvO 920
pH Temperature (°C)
Figure 3. pH (A) and temperature (B) influences on the activity of a-galactosidase from D. hansenii UFV-1.
Table 3. K, Vinaw and Vinad/Kn Values Determined by l
Michaelis—Menten Plot 100 ‘%ii ___________ E .......................... Wi, E .......................... .
substrates K (mM) Vinad® Vinax/K (min~?) i
PNPoGal 030 6.09 203 012 %
melibiose 2.01 0.02 0.01 1
stachyose 9.66 8.18 0.85 wl @ ¥
raffinose 16.0 5.99 0.37 o :

2 Vinax is expressed in mM pNP/min for pNPoGal, mM glucose/min for melibiose,
and mM reducing sugar/min for stachyose and rafinose.

Relative activity (%)

S-linkages or containing xylose, arabinose, mannose, and %] O
glucose residues were not hydrolyzed by the enzyme. Thus, the : §
enzyme presents specificity not only for anomeric carbon but P = N - i N

it also seems to be regiospecific for the galactoside configura- 0 200 400 600 800 1000 1200 1400
tion, in contradistinction to some promiscuous glycosidases Incubation time (min)

reported in the literature3@). The enzyme exhibited the ability

to hydrolyze polymers such as locust bean gum and guar gum
suggesting its potential industrial application for an improvement
of the gelling properties of polysaccharide. On the other hand,

Figure 4. Temperature influences on the stability of the o.-galactosidase
'from D. hansenii UFV-1. Enzyme preparations were preincubated for 48
h at temperatures of 40 (@), 50 (¥), 55 (O), 60 (v), 65 (M), and 70 °C

. ; . . . 0).
Trichoderma reesei-galactosidase arl. nigera-galactosidase ©
showed high specificity for oligosaccharides and low activity
for polymeric substrates34). The aforementioned-galactosi- The D. hanseniiUFV-1 a-galactosidase showed distinct

dases fronPenicillium simplicissimunseem to have different  sensitivities to simple sugars and mono- and bivalent ions
substrate specificities. One form of the enzyme is able to (Figure 6). The enzyme presented very low or no inhibition by
hydrolyze galactomannan, while the other acts more specifically EDTA, Mg(ll), iodoacetamide, Na(l), SDS, K(l), Ca(l|};mer-

on small oligosaccharide8%). Extracellulara-galactosidase  captoethanol, raffinose, maltose, sucrosglucose, lactose,
from D. castellii IFO 1359 (9) and riceo-galactosidase3p) gentiobiose, stachyose, amtmannose. The enzyme was
hydrolyzed galactomanno-oligosaccharides such advaaj completely inhibited by Cu(ll) and Ag(l) and was partially
(6%-a-p-galactopyranosyl-1,4-p-mannotriose). inhibited by p-galactose and melibiose. Reduction in the
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Table 4. Hydrolysis of Several Substrates with o.-Galactosidase from
D. hansenii UFV-1

substrate concentration? activity (U/mL) = SD
pNPaGal? 05 339+0.15
PNPABGal? 0.5 0.0
PNPaGlch 05 0.0
PNPBXilb 05 0.0
pNPaMan? 05 0.0
PNPaAra? 05 0.0
ONPBGal? 05 0.0
ONPSGIc? 05 0.0
sucrose 10 0.0
stachyose 10 3.84 £0.02
raffinose 15 2.78+£0.05
melibiose 2 0.002
gentiobiose 10 0.0
maltose 10 0.0
lactose 10 0.0
locust bean gum 1 0.64 £0.01
guar gum 1 0.56 +0.01

2 Concentrations in mM, except the locust bean gum and guar gum substrates
(%). ® pNPBGal, para-nitrophenyl-3-b-galactopyranoside; pNPaGlc, para-nitrophen-
yl-o-p-glucopiranoside; pNPSX, para-nitrophenyl-3-b-xylopyranoside; pNPaA, para-
nitrophenyl-o.-p-arabinopyranoside; pNPaM, para-nitrophenyl-a.-p-mannopyranoside;
oNPfGlc, ortho-nitrophenyl-3-b-glucopyranoside; and oNP/3Gal, ortho-nitrophenyl-
[-D-galactopyranoside.

a-galactosidase activity by Cu(ll) and Ag(l) was reported for
a-galactosidases purified from. delbrueckiilFO 1255 @1)

and B. stearothermophilutNCIM 5146 @®). Participation of
carboxyl and/or histidine imidazolium groups in the catalytic
action is supposed on the basis of the inhibitory eff8a@).(It

has been suggested tlagalactosidase is not a metalloenzyme
and that the sulfhydryl groups do not take part in catalysis, since
there is no enzyme inhibition under EDTA or iodoacetamide
treatment, respectively. This is in agreement with results reported
for a-galactosidase isolated froRenicillium sp. 23 88) and

for soybeanu-galactosidasel(Q).

Galactose and melibiose inhibition were found to be non-
competitive, and th&; values were 2.7 and 1.2 mM, respec-
tively, as determined by the Dixon plot, in opposition to data
found in the literature for mosti-galactosidases that are
competitively inhibited byp-galactose g, 39).

The data presented for allgalactosidase activity determina-
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Figure 6. Effect of EDTA (2), MgCl; (3), iodoacetamide (4), AgNO; (5),
NaCl (6), SDS (7), KCI (8), CuSOy (9), CaCl, (10), S-mercaptoethanol
(11), raffinose (12), maltose (13), sucrose (14), melibiose (15), p-glucose
(16), p-galactose (17), lactose (18), gentiobiose (19), stachyose (20), and
mannose (21) on a-galactosidase from D. hansenii UFV-1 and without
effectors (1). The final concentration of all effectors was 2 mM.
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Figure 7. HPLC analysis of hydrolysis products of ROs present in soy
milk by extracellular o-galactosidase from D. hansenii UFV-1. (A) Soy
milk before enzyme treatment and (B) after 4 h of enzyme treatment.

The potential ofD. hansenii UFV-1 a-galactosidase to
hydrolyze the oligosaccharides present in soybean aqueous
extract (soy milk) was demonstratedrigure 7). Sucrose,
raffinose, and stachyose were present in the reaction mixture at
the concentrations 3.69, 1.33, and 2.70% (w/v), respectively
(Figure 7A). After 2 h of incubation with the enzyme, a
reduction of 24 and 100% was observed in the amount of
raffinose and stachyose, respectively. The difference in hy-
drolysis may be due to accumulation of raffinose, which is
formed after stachyose hydrolysis. However, when the enzyme
was incubated with soy milk under the same conditions for a
period d 4 h (Figure 7B), raffinose and stachyose were
completely hydrolyzed and the sucrose concentration rose to
6.53% (w/v). No oligosaccharide hydrolysis was detected in
control tubes where the enzyme extracts had been replaced by
water. As the enzyme preparation showed no invertase activity,
our results indicate th&. hansenilUFV-1 o-galactosidase acts
on the oligosaccharides present in soy milk. The ability of the
enzyme to hydrolyze stachyose and raffinose is of particular
interest for biotechnological applications. Several food scientists
have suggested the possibility of improving the nutritional value

tions are mean values of triplicate assays in which the standardof soy milk and soybean flour by reducing the RO content.

deviations values were always smaller than 10%.

Microbial a-galactosidases were used to degrade RO in soy milk
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(40—42). Nevertheless, no reliable, inexpensive, and efficient
enzymic process with native or recombinant yeast enzymes is
available so far. The potential enzymes suggested for this
purpose are generally of microbial origin and do not have the
GRAS (generally recognized as safe) staibishanseniiis the
most frequent yeast species found in protein-rich fermented
products, such as sausages and chedssThere should be

no restriction regarding safeness for the use of this microorgan-
ism in food processing.

As theD. hansenilUFV-1 a-galactosidase shows stability at
the pH range of soy milk (6:06.5) and at the temperature of
60 °C, the enzyme could be applied after the soy milk thermal
treatment, during the cooling step, at approximately®0The
properties ofx-galactosidase described here, especially the broad
pH and temperature stability and the specificity for ROs, suggest
its application to remove flatulence-inducing compounds from
soy milk.
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