

Available online at www.sciencedirect.com

CARBOHYDRATE RESEARCH

Carbohydrate Research 338 (2003) 2375-2385

www.elsevier.com/locate/carres

Synthesis of amino-substituted hexo- and heptopyranoses from D-galactose

Benedikt Streicher, Bernhard Wünsch*

Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Hittorfstraße 58-62, D-48149 Münster, Germany

Received 18 June 2003; accepted 23 July 2003

Abstract

After condensation of D-galactose with two equivalents of acetone, the last free hydroxy group was transformed into an acylated amino group by Swern oxidation, oxime formation, LiAlH₄ reduction and acylation. The intermediate aldehyde was homologated with the Wittig reagent, (methoxymethyl)triphenylphosphonium chloride, to afford, after careful hydrolysis, a homologous heptodialdo-1,5-pyranose. Condensation of the aldehyde with hydroxylamine and subsequent LiAlH₄ reduction provided a bis-O,O-isopropylidene-protected 7-amino-6,7-dideoxygalactoheptopyranose, which was acylated with various carboxylic acid derivatives. The isopropylidene protective groups were cleaved by careful hydrolysis or alcoholysis to yield 6-acylamino-6-deoxy-galactopyranoses and 7-acylamino-6,7-dideoxy-galactohepto-pyranoses.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: 6-Aminogalactopyranoses; 7-Aminoglactoheptopyranoses; Galactose; Homologation

1. Introduction

Monosaccharides with amino substituents in different ring positions are of interest as substructures of aminoglycoside antibiotics, e.g., kanamycin, gentamicin, or neomycin.¹ Moreover, pyranoses **1** with aminoalkyl substituents in position 5 will be used as starting compounds for the synthesis of selectively substituted tetrahydropyran derivatives 2 and bicyclic ring systems 3^{2-4} In the literature only a few examples for 7-amino-7-deoxyheptopyranoses **1b** and **2b** (n = 2) are given.⁵⁻⁷ The bicyclo[3.3.1]nonane derivative **3b** (n = 2) reveals structural similarity to the morphan ring system, which itself represents a substructure of the opioid analgesic morphine.⁸ Following the strategy of modifying monosaccharides allows the stereoselective introduction of various substituents in different ring positions with defined stereochemistry in 2 and $3.^{9,10}$ The products 2 and 3 should be developed as novel ligands for receptors

within the central nervous system, in particular for the class of opioid receptors.¹⁰ (Fig. 1)

This communication deals with the synthesis of novel 6-amino-6-deoxyhexopyranoses (1a) (n = 1) and 7-amino-6,7-dideoxyheptopyranoses (1b) (n = 2), which are derived from the monosaccharide, D-galactose (4).

Fig. 1. Conversion of 6- or 7-amino-6- or 7-deoxy-D-galactohexo- and heptopyranoses to selectively substituted tetrahydropyrans.

^{*} Corresponding author. Tel.: +49-251-8333311; fax: +49-251-8332144.

E-mail address: wuensch@uni-muenster.de (B. Wünsch).

Scheme 1. Reagents and reaction conditions: (a) lit.¹¹; (b) Me_2SO , (COCl)₂, Et_3N , CH_2Cl_2 , -70 °C, 67%; (c) H_2NOH ·HCl, NaOAc, CH_3OH , rt, 76%; (d) LiAlH₄, Et_2O , rt, 69%; (e) RCOCl, Et_3N , CH_2Cl_2 , rt, **9a**: 76%; **9b**: 85%; **9c**: 69%; (f) H_2 , Raney Ni, Ac₂O, NaOAc, 70 bar, 80 °C, **9d**: 64%.

2. Results and discussion

According to a literature report¹¹ D-galactopyranose (4) has been transformed with acetone, CuSO₄ and a catalytic amount of H₂SO₄ into the bisacetonide 5. Swern oxidation of the bisacetonide 5 provided the aldehyde 6,¹² which reacted with hydroxylamine to give the oxime 7.¹³ The 6-amino-6-deoxygalactopyranose derivative 8 was obtained by LiAlH₄ reduction of the oxime 7. Subsequent acylation of the primary amine 8 with various carboxylic acid chlorides gave the amides 9a-c in good yield. Alternatively the oxime 7 was reduced with H₂ (70 bar) and Raney nickel in the solvent, acetic anhydride, leading directly to the acetamide 9d in 64% yield (Scheme 1).

The initial plan for the synthesis of 7-amino-6,7dideoxy-heptopyranoses scheduled homologation of a hexopyranose derivative by introduction of a cyano group. For this purpose the free hydroxy group of **5** was activated for nucleophilic substitution. The bromide **10a** was prepared by an Appel reaction¹⁴ of the alcohol **5** with triphenylphosphane and tetrabromomethane. The sulfonates **10b**^{13,15} and **10c** were available by reaction of the alcohol **5** with *p*-toluenesulfonyl chloride and methanesulfonyl chloride, respectively. However, the reaction of 10a-c with NaCN failed to give the nitrile 11. Several modifications were investigated including variation of the CN⁻ source (LiCN, NaCN, KCN, TMS-CN, KCN and 18-crown-6), the CN⁻-amount (1 to 30 equivalents), the solvent (e.g., acetone, acetonitrile, DMF, Me₂SO, triethyleneglycol) and the reaction temperature (up to 200 °C). Finally, the isolation of a small amount of the nitrile 11 (4.2% yield) succeeded after heating the methanesulfonate 10c with LiCN in DMF for 17 h. Obviously the nucleophilic substitution at the methylene group of 10a-c is impeded by branching in the β -position. (Scheme 2)

The next homologation was performed by a Wittig reaction. The aldehyde **6** was condensed with (methoxymethyl)triphenylphosphonium chloride (Ph₃PCH₂OCH₃Cl)^{16,17} and potassium *tert*-butoxide (KO^{*t*}Bu) to afford the diastereomeric enolethers (*Z*)-**12** and (*E*)-**12**¹⁶ in the ratio 63:37. The aldehyde **13** was obtained in 90% yield after careful hydrolysis of the diastereomeric enolethers **12** with HCl in acetone. In contrast to literature reports, ^{16,17} addition of toxic Hg(OAc)₂ was not necessary. However, the formation of small amounts of the hemiacetals **18a,b** could not be completely suppressed even under very mild hydrolysis conditions (Scheme 3) (compare Scheme 4).

NaBH₄ reduction of the aldehyde **13** provided the bis-O-isopropylidene protected galactoheptopyranose derivative **14**. Condensation of **13** with hydroxylamine yielded the oxime **15**, which was reduced with LiAlH₄ to furnish the primary amine **16**. Acylation of the primary amine with different acyl chlorides afforded the amides **17a**-**c** in 72–79% yield.

During hydrolysis of the diastereomeric enolethers 12, formation of side products, which resulted from additional hydrolysis of the adjacent acetonide protective group, could not be completely avoided. In order to elucidate the structure of these side products, hydrolysis was performed under severe hydrolysis conditions: 2 N H_2SO_4 in acetone for 75 min at reflux temperature. Since complete purification of the hydrolysis products 18a,b failed, and the product contained two isomers according to the ¹H NMR spectrum, the crude product

Scheme 2. Reagents and reaction conditions: (a) CBr_4 , PPh_3 , CH_2Cl_2 , -60 °C, 11%; (b) *p*-TsCl, pyridine, rt, 94%; (c) MsCl, pyridine, rt, 81%; (d) **10c**, LiCN, DMF, 110 °C, 4.2%.

Scheme 3. Reagents and reaction conditions: (a) $CH_3OCH_2PPh_3Cl$, KO'Bu, THF, -78 °C, 63%; (b) Me_2CO , 2 N HCl, rt, 95%; (c) NaBH₄, EtOH, rt, 63%; (d) $H_2NOH \cdot HCl$, NaOAc, CH_3OH , rt, 63%; (e) LiAlH₄, Et₂O, rt, 46%; (f) RCOCl, Et₃N, CH_2Cl_2 , rt, **17a**: 72\%; **17b**: 79\%; **17c**: 78\%.

Scheme 4. Reagents and reaction conditions: (a) Me_2CO , 2 N H_2SO_4 , 56 °C; (b) C_6H_5COCl , Et_3N , DMAP, CH_2Cl_2 , rt, **19a**: 24%; **19b**: 47%.

was acylated with an excess of benzoyl chloride. Separation of the resulting isomeric dibenzoates **19a** and **19b** was accomplished by flash chromatography to obtain **19a** and **19b** in 24 and 47% yield, respectively.

According to the ¹H NMR spectra, a new fivemembered acetalic moiety has been formed. We presume that the configuration of the new stereogenic center in position 7 of **19a** and **19b** is *R* and *S*, respectively. The ¹H NMR spectra of both diastereomers display similar doublets for the protons in position 7 (**19a**: d, $J_{6,7}$ 4.4.Hz; **19b**: d, $J_{6,7}$ 5.9 Hz), indicating coupling of 7-H with only one proton in position 6. However, the spectra of **19a** and **19b** differ significantly in the signal structure of the other 6-H revealing no coupling with 7-H: in the spectrum of **19a**, a large coupling constant between 6-H and 5-H ($J_{5,6}$ 8.1 Hz) is observed, whereas no coupling ($J_{5,6}$ 0 Hz) of these protons is seen for the diastereomer **19b**. These spectroscopic data are in accordance with the (7*R*)- and (7*S*)-configuration for **19a** and **19b**, respectively.

Hydrolysis of the 6-benzoylamino-6-deoxy-hexopyranose (9a) furnished a 1:1 mixture of the anomeric hemiacetals 20a and 21a in 79.3% yield. Cleavage of the *O*-isopropylidene protective groups of 9a in ethanol in the presence of a strong acidic ion-exchange resin led to the ethyl glycosides 20c, 21c and 22c. Whereas the α anomer of the ethyl pyranoside 20c could be isolated in 23.6%, yield the β -anomer 21c and the ring-contracted diastereomeric furanoside 22c could not be separated. Flash chromatography yielded a mixture of 21c and 22c (37.6%), which contained predominantly the furanosides 22c (21c:22c = 18:82). (Scheme 5)

Similar observations were made during alcoholysis of the corresponding 7-benzoylamino-6,7-dideoxyheptopyranose (17a). Heating of 17a with methanol and an acidic ion-exchange resin provided the methyl acetals 23b, 24b and 25b. Flash chromatography yielded the α anomeric methyl heptopyranoside 23b (19.8%) and a small amount of the corresponding β -anomer 24b (4.9%). However, an anomeric mixture of the methyl heptofuranoside 25b (α -25b: β -25b = 65:35) was isolated as main product (67.7%). The corresponding ethyl glycosides were prepared in an analogous manner by heating of 17a with ethanol and an acidic ion-exchange resin. Whereas the α -anomer 23c was isolated in 25.5% yield, the β -anomer 24c could not be separated from the

Scheme 5. Reagents and reaction conditions: (a) strong acidic ion-exchange resin, H₂O, 100 °C, 79%; (b) strong acidic ion-exchange resin, EtOH, 78 °C, **20c**: 24%; **21c**, **22c**: 38%; (c) strong acidic ion-exchange resin, CH₃OH, 65 °C, **23b**: 20%; **24b**: 4.9%; **25b**: 68%; (d) strong acidic ion-exchange resin, EtOH, 78 °C, **23c**: 26%; **24c**, **25c**: 74%.

ethyl heptofuranoside **25c**. Thus, a mixture of **24c** and **25c** (**24c**:**25c** = 10:90) was obtained in 73.6% yield.

In summary, the synthesis of various 6-amino substituted hexopyranoses 8, 9a-d and 7-amino-substituted heptopyranoses 16, 17a-c starting from α -D-galactose is presented. Preliminary investigations demonstrate, that removal of the O,O-isopropylidene protective groups succeeds with water, methanol and ethanol to afford the corresponding deprotected monosaccharides 20-25. The described amino substituted hexo- and heptopyranose derivatives should allow the regio- and stereoselective introduction of pharmacophoric substituents into the pyran moiety (compare lead structure 2) and the construction of novel morphan analogues (compare lead structure 3).

3. Experimental

3.1. General methods

Unless otherwise noted, moisture-sensitive reactions were conducted under dry nitrogen. Thin-layer chromatography (TLC) was carried out on silica gel 60 F_{254} plates (E. Merck), and flash chromatography (FC)¹⁸ on silica gel 60, 0.040–0.063 mm (E. Merck); parentheses include diameter of the column (cm), eluent, fraction size (mL), and R_f . Melting points (mp) were determined on a melting point apparatus of Dr Tottoli (Büchi), and the mps are uncorrected. Optical rotations were measured on a Perkin–Elmer model 241 spectropolarimeter

using a 1.0-dm tube; concentration c (g/100 mL); temperature 20 °C. Elemental analyses (CHN) were determined on a Rapid (Heraeus) and on a Perkin– Elmer Elemental Analyzer, model 240. Mass spectra were measured on a Hewlett–Packard 5989A instrument in either the electron-impact (EI) or chemicalionization (CI) mode. FTIR spectra were determined on Perkin–Elmer model 1600 and 2000 FTIR instruments. ¹H NMR (400 MHz) were determined on GSX FT NMR spectrometer (JEOL) using TMS as the internal standard δ -values (in ppm) and coupling constants (in Hz) are given with 0.5 Hz resolution.

3.2. (-)-1,2:3,4-Di-O-isopropylidene- α -D-galactodialdo-1,5-pyranose (6)¹²

A solution of oxalyl chloride (23.6 g, 185.4 mmol) in THF (15 mL) and CH₂Cl₂ (20 mL) was cooled to -70 °C. Then, a solution of Me₂SO (29.0 g, 370.8 mmol) in CH₂Cl₂ (20 mL) was slowly added at -70 °C, and the mixture was stirred for 10 min at -70 °C. A solution of **5** (20.0 g, 76.9 mmol) in CH₂Cl₂ (20 mL) was added within 5 min, and the mixture was stirred for 10 min at -60 °C. The mixture was cooled to -70 °C, and a solution of Et₃N (75.0 g, 741.6 mmol) in CH₂Cl₂ (20 mL) was added within 15 min. After stirring at -60 °C for 30 min, the reaction mixture was warmed to room temperature (rt) and H₂O (100 mL) was added. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 100 mL). The organic extracts were dried (Na₂SO₄), the solvent was evapo-

rated in vacuo, and the residue was purified by FC (8 cm, 70:30 petroleum ether–EtOAc, fractions 50 mL). Colorless oil, yield 12.9 g (67%), lit.¹² 82%; $[\alpha]_{\rm D}$ –131.3° (*c* 1.13, CHCl₃); lit.¹³ $[\alpha]_{\rm D}$ –131° (*c* 0.9, CHCl₃).

3.3. 1,2:3,4-Di-*O*-isopropylidene- α -D-galactodialdo-1,5pyranose-6-oxime (7)¹³

A solution of **6** (1.65 g, 6.35 mmol), NH₂OH·HCl (1.32 g, 19.1 mmol), NaOAc (0.825 g, 13.2 mmol) in H₂O (8.25 mL) and CH₃OH (80 mL) was stirred at rt for 24 h. The mixture was concentrated in vacuo, and the residual aqueous layer was extracted with Et₂O (2×60 mL). The concentrated Et₂O layer (50 mL) was extracted with 1 M NaOH (3×50 mL), then 1 N HCl (pH 4–5) was added to the NaOH layer, and the aqueous layer was extracted with Et₂O (3×70 mL). The Et₂O layer was dried (MgSO₄), concentrated in vacuo and the residual solid was recrystalized. Colorless solid (2-Pr₂O), mp 114–115 °C, lit.¹³ mp 107–108 °C, yield 1.31 g (76%), lit.¹³ 66%. The ratio of (*E*)-7:(*Z*)-7 varied in the range from 1:1 to 2:1.

3.4. (-)-6-Amino-6-deoxy-1,2:3,4-di-*O*-isopropylideneα-D-galactopyranose (8)

A mixture of 7 (1.95 g, 7.14 mmol), LiAlH₄ (0.74 g, 20 mmol) and Et₂O (17 mL) was stirred for 2 h at rt. A small amount of H₂O was carefully added. Then, $MgSO_4$ was added, the mixture was filtered, and the filtrate was concentrated in vacuo. The residue was purified by FC [3 cm, fractions 15 mL, at first the solvent was 96:4 CH₂Cl₂-CH₃OH (225 mL)], then 90:10 CH₂Cl₂-CH₃OH (200 mL), R_f 0.16 96:4 (CH₂Cl₂-CH₃OH). Colorless oil, yield 1.27 g (69%); $[\alpha]_D$ -53.1° (c 1.03, CHCl₃); IR (film): v = 3676 (NH), 3378 (NH), 1383 (C-N), 1256 (C-O), 1212 (C-O), 1168 (C–O); 1069 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.27 (s, 6 H, CH₃), 1.39 (s, 3 H, CH₃), 1.47 (s, 3 H, CH₃), 1.89 (s, broad, 2 H, NH₂), 2.80 (dd, J 13.2/5.1 Hz, 1 H, CH₂NH₂), 2.93 (dd, J 13.2/8.1 Hz, 1 H, CH₂NH₂), 3.67 (ddd, J 8.8/5.1/1.5 Hz, 1 H, 5-H), 4.17 (dd, J 8.1/1.5 Hz, 1 H, 4-H), 4.26 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.54 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.50 (d, J 5.1 Hz, 1 H, 1-H); ¹³C NMR (CDCl₃): δ 24.29 (CH₃), 24.88 (CH₃), 25.92 (CH₃), 26.01 (CH₃), 42.09 (CH₂), 69.06 (C-5), 70.32 (C-3), 70.74 (C-4), 71.71 (C-2), 96.33 (C-1), 108.46 $[C(CH_3)_2]$, 109.19 $[C(CH_3)_2]$; CIMS: m/z 260 (MH⁺), 244 (M⁺ – CH₃); Anal. Calcd for $C_{12}H_{21}NO_5$ (259.2): C, 55.6; H, 8.17; N, 5.40. Found: C, 55.3; H, 8.24; N, 5.38.

Data for **8**·HCl: colorless solid (EtOAc), mp 215 °C; $[\alpha]_D -50.1^\circ$ (*c* 1.06, CH₃OH); IR (KBr): $\nu = 3172$ (broad, NH₃⁺), 1599 (NH₃⁺), 1257 (C–O), 1215 (C– O), 1168 (C–O), 1060 cm⁻¹ (C–O); ¹H NMR (CD₃OD): δ 1.32 (s, 3 H, CH₃), 1.32 (s, 3 H, CH₃), 1.44 (s, 3 H, CH₃), 1.65 (s, 3 H, CH₃), 3.22–3.29 (m, 2 H, CH₂), 4.20 (m, 1 H, 5-H), 4.25 (d, J 8.1 Hz, 1 H, 4-H), 4.35 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.63 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.58 (d, J 5.1 Hz, 1 H, 1-H), 8.34 (s, broad, 3 H, NH₃⁺); EIMS: m/z 260 (M⁺ – Cl); Anal. Calcd for C₁₂H₂₂ClNO₅ (295.8): C, 48.8; H, 7.50; N, 4.73. Found: C, 48.6; H, 7.42; N, 4.45.

3.5. (-)-6-Benzoylamino-6-deoxy-1,2:3,4-di-*O*isopropylidene-α-D-galactoyranose (9a)

A solution of 8 (9.31 g, 35.9 mmol), Et₃N (4.72 g, 46.7 mmol) and benzoyl chloride (6.56 g, 46.7 mmol) in CH₂Cl₂ (50 mL) was stirred for 30 min at rt. The organic layer was washed with 1 N HCl (3×50 mL), and a satd solution of NaHCO₃ (3×50 mL), dried (MgSO₄) and concentrated in vacuo. The residue was purified by FC (8 cm, 70:30 petroleum ether-EtOAc fractions 50 mL, R_f 0.24). Colorless solid (2-Pr₂O), mp 132 °C, yield 9.86 g (76%); $[\alpha]_D$ –39.7° (*c* 1.02, CHCl₃); IR (KBr): v =3354 (N-H), 1646 (C=O), 1525 (amide-II), 1254 (C-O), 1215 (C-O), 1159 (C-O), 1071 cm⁻¹ (C-O); ¹H NMR (CDCl₃): δ 17 (s, 3 H, CH₃), 1.22 (s, 3 H, CH₃), 1.33 (s, 3 H, CH₃), 1.34 (s, 3 H, CH₃), 3.27 (ddd, J 13.9/4.4/3.7 Hz, 1 H, CH₂NHCO), 3.83 (ddd, J 13.9/8.1/3.7 Hz, 1 H, CH₂NHCO), 3.89 (ddd, J 8.8/4.4/2.2 Hz, 1 H, 5-H), 4.14 (dd, J 8.1/2.2 Hz, 1 H, 4-H), 4.18 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.49 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.40 (d, J 5.1 Hz, 1 H, 1-H), 6.47 (t, J 3.7 Hz, 1 H, NH), 7.28 (t, J 7.3 Hz, 2 H, H-arom.), 7.33–7.37 (m, 1 H, H-arom.), 7.61 (d, J 7.3 Hz, 2 H, H-arom.); CIMS: m/z 364 (MH⁺), 348 $(M^+ - CH_3)$; Anal. Calcd for $C_{19}H_{25}NO_6$ (363.4): C, 62.8; H, 6.93; N, 3.85. Found: C, 62.7; H, 7.08; N, 3.81.

3.6. (-)-6-Deoxy-1,2:3,4-di-*O*-isopropylidene-6-(phenylacetylamino)-α-D-galactopyranose (9b)

A solution of 8 (0.42 g, 1.62 mmol), Et₃N (0.20 g, 1.94 mmol) and phenylacetyl chloride (0.30 g, 1.94 mmol) in CH₂Cl₂ (10 mL) was stirred for 30 min at rt. The mixture was washed with 1 N HCl (2×5 mL), and a satd solution of NaHCO₃ (3×5 mL), dried (MgSO₄) and concentrated in vacuo. The residue was purified by FC (2 cm, 90:10 petroleum ether-EtOAc, R_f 0.06, then 75:25 petroleum ether-EtOAc fractions 13-15 mL, R_f 0.15). Colorless solid (2-Pr₂O), mp 72 °C, yield 520 mg (85%); $[\alpha]_D - 17.2^\circ$ (*c* 0.97, CHCl₃); IR (KBr): v = 3323(N-H), 1644 (C=O), 1556 (amide-II), 1253 (C-O), 1212 (C-O), 1167 (C-O), 1069 cm⁻¹ (C-O); ¹H NMR (CDCl₃): δ 1.23 (s, 3 H, CH₃), 1.25 (s, 3 H, CH₃), 1.32 (s, 3 H, CH₃), 1.38 (s, 3 H, CH₃), 3.08 (ddd, J 13.2/ 4.4/3.7 Hz, 1 H, CH₂NHCO), 3.49 (s, 2 H, phenyl-CH₂), 3.63 (ddd, J 13.2/8.1/3.7 Hz, 1 H, CH₂NHCO), 3.79 (ddd, J 8.1/5.1/1.5 Hz, 1 H, 5-H), 4.07 (dd, J 8.1/1.5 Hz, 1 H, 4-H), 4.20 (dd, J 4.7/2.2 Hz, 1 H, 2-H), 4.49 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.38 (d, J 5.1 Hz, 1 H,

1-H), 5.80 (t, J 3.7 Hz, 1 H, NH), 7.19–7.29 (m, 5 H, Harom.); CIMS: m/z 378 (MH⁺), 362 (M⁺ – CH₃); Anal. Calcd for C₂₀H₂₇NO₆ (377.4): C, 63.6; H, 7.21; N, 3.71. Found: C, 63.7; H, 7.18; N, 3.67.

3.7. (-)-6-(Benzyloxycarbonylamino)-6-deoxy-1,2:3,4di-*O*-isopropylidene-α-D-galactopyranose (9c)

A solution of 8 (1.00 g, 3.86 mmol), Et₃N (0.78 g, 7.72 mmol) and benzyl chloroformate (0.99 g, 5.79 mmol) in CH₂Cl₂ (20 mL) was stirred for 19 h at rt. The mixture was washed with 1 N HCl $(3 \times 10 \text{ mL})$ and a satd solution of NaHCO₃ (3×10 mL), dried (MgSO₄) and concentrated in vacuo. The residue was purified by FC (3 cm, 90:10 petroleum ether-EtOAc, R_f 0.21, then 70:30 petroleum ether-EtOAc, R_f 0.39 fractions 20 mL). Colorless oil, yield 1.05 g (69%); $[\alpha]_D - 30.3^\circ$ (c 0.96, CHCl₃); IR (film): v = 3384 (N–H), 1723 (C=O), 1526 (amide-II), 1254 (C-O), 1211 (C-O), 1071 (C-O), 1011 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.38 (s, 3 H, CH₃), 1.46 (s, 3 H, CH₃), 1.49 (s, 3 H, CH₃), 1.52 (s, 3 H, CH₃), 3.37 (ddd, J 12.5/5.9/3.7 Hz, 1 H, CH₂NH), 3.56 (ddd, J 12.9/8.1/3.7 Hz, 1 H, CH₂NH), 3.97 (ddd, J 7.7/ 5.9/1.5 Hz, 1 H, 5-H), 4.25 (dd, J 8.1/1.5 Hz, 1 H, 4-H), 4.35 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.65 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.12–5.19 (m, 3 H, CH₂Ph, NH), 5.55 (d, J 5.1 Hz, 1 H, 1-H), 7.31–7.41 (m, 5 H, arom.); CIMS: m/ z 394 (MH⁺), 378 (M⁺-CH₃); Anal. Calcd for C₂₀H₂₇NO₇ (393.4): C, 61.0; H, 6.92; N, 3.56. Found: C, 61.2; H, 7.14; N, 3.39.

3.8. (-)-6-(Acetylamino)-6-deoxy-1,2:3,4-di-O-isopropylidene- α -D-galactopyranose (9d)

NaOAc (9.3 mg, 0.11 mmol) and Raney Ni (15.6 mg) were added to a solution of 7 (90 mg, 0.33 mmol) in Ac_2O (0.25 mL, 0.27 g, 2.01 mmol). The mixture was hydrogenated with 70 bar of H₂ pressure at 80 °C for 16 h. It was filtered, and the filtrate was concentrated in vacuo. The residue was dissolved in CH_2Cl_2 (5 mL), and the solution was washed with 1 N HCl $(3 \times 5 \text{ mL})$ and a satd solution of NaHCO₃ (3×5 mL), dried (MgSO₄) and concentrated in vacuo. Colorless oil, yield 63 mg (64%), R_f 0.24 (75:25 petroleum ether-EtOAc); $[\alpha]_D$ – 27.3° (c 1.03, CHCl₃); IR (film): v = 3318 (N–H), 1654 (C=O), 1542 (amide-II), 1256 (C-O), 1213 (C-O), 1167 (C–O), 1069 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.26 (s, 3 H, CH₃), 1.27 (s, 3 H, CH₃), 1.38 (s, 3 H, CH₃), 1.42 (s, 3 H, CH₃), 1.94 (s, 3 H, CH₃-C=O), 3.12 (ddd, J 13.9/ 9.5/3.7 Hz, 1 H, CH₂), 3.67 (ddd, J 13.9/8.1/3.7 Hz, 1 H, CH₂), 3.83 (ddd, J 9.5/7.3/1.5 Hz, 1 H, 5-H), 4.15 (dd, J 7.7/1.5 Hz, 1 H, 4-H), 4.25 (dd, J 5.1/2.9 Hz, 1 H, 2-H), 4.53 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.45 (d, J 5.1 Hz, 1 H, 1-H), 6.08 (t, J 3.7 Hz, 1 H, NH); CIMS: m/z 302 (MH^+) , 286 $(M^+ - CH_3)$; Anal. Calcd for $C_{14}H_{23}NO_6$

(301.3): C, 55.8; H, 7.69; N, 4.65. Found: C, 55.6; H, 7.9; N, 4.87.

3.9. (-)-6-Bromo-6-deoxy-1,2:3,4-di-O-isopropylidene- α -D-galactopyranose (10a)

Under N₂ 1,2:3,4-di-O-isopropylidene- α -D-galactopyranose (5) (3.50 g, 11.5 mmol) and CBr₄ (3.81 g, 11.5 mmol) were dissolved in CH₂Cl₂ (15 mL). The solution was cooled to -60 °C. Then, a solution of PPh₃ (3.01 g, 11.5 mmol) in CH₂Cl₂ (15 mL) was added, and the mixture was stirred for 2 h at -60 °C and 24 h at rt. The solvent was evaporated in vacuo, and the residue was purified by FC (5 cm, 75:25 petroleum ether-EtOAc, fractions 20 mL, R_f 0.10). Colorless solid, mp 46 °C, yield 400 mg (11%); $[\alpha]_D$ -49.3° (c 1.01, CHCl₃); IR (KBr): *v* = 1255 (C–O), 1212 (C–O), 1165 (C–O), 1070 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.34 (s, 3 H, CH₃), 1.36 (s, 3 H, CH₃), 1.45 (s, 3 H, CH₃), 1.55 (s, 3 H, CH₃), 3.42 (dd, J 10.3/6.6 Hz, 1 H, -CH₂Br), 3.52 (dd, J 10.3/ 6.6 Hz, 1 H, -CH₂Br), 3.97 (td, J 6.6/1.5 Hz, 1 H, 5-H), 4.32 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.38 (dd, J 8.1/1.5 Hz, 1 H, 4-H), 4.64 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.54 (d, J 5.1 Hz, 1 H, 1-H); ¹³C NMR (CDCl₃): δ 24.42 (CH₃), 24.86 (CH₃), 25.90 (CH₃), 25.99 (CH₃), 29.69 (CH₂Br), 68.37 (C-3), 70.47 (C-4), 70.87 (C-5), 71.00 (C-2), 96.59 (C-1), 108.86 [C(CH₃)₂], 109.55 [C(CH₃)₂]; CIMS: m/z 325, 323 (MH⁺); Anal. Calcd for $C_{12}H_{19}BrO_5$ (323.1): C, 44.6; H, 5.93. Found: C, 44.8; H, 5.83.

3.10. (-)-1,2:3,4-Di-*O*-isopropylidene-6-*O*-(4methylphenylsulfonyl)- α -D-galactopyranose (10b)^{13,15}

At 0 °C a solution of **2** (2.00 g, 7.69 mmol) in Py (5 mL) was added dropwise to a solution of *p*-TsCl (4.40 g, 23.07 mmol) in Py (5 mL). The reaction mixture was stirred for 12 h at rt and for 2 h at 60 °C. Then water (20 mL) and Et₂O (20 mL) were added, and the aqueous layer was separated and extracted with Et₂O (2 × 20 mL). The organic layer was dried (MgSO₄) and evaporated in vacuo. Colorless solid (2-Pr₂O), mp 88–89 °C, lit.¹⁵ mp 87–89 °C, yield 3.00 g (94%), lit.¹⁵ 87%.

3.11. (-)-1,2:3,4-Di-*O*-isopropylidene-6-*O*-(4methylsulfonyl)-α-D-galactopyranose (10c)

A solution of **2** (2.00 g, 7.69 mmol) in Py (5 mL) was slowly added at 0 °C to a solution of CH₃SO₂Cl (1.76 g, 15.4 mmol) in Py (5 mL). After stirring for 12 h at rt, water (20 mL) and Et₂O (20 mL) were added. The aqueous layer was separated and extracted with Et₂O (2 × 20 mL). The Et₂O layer was dried (MgSO₄) and concentrated in vacuo. Colorless solid (2-Pr₂O), mp 118 °C, yield 2.10 g (81%), R_f 0.35 (75:25 petroleum ether–EtOAc); [α]_D –117.1° (*c* 0.99, CHCl₃); IR (KBr): v = 1348 (R–SO₂OR'), 1239 (C–O), 1216 (C–O), 1174 (R–SO₂OR′), 1163 (C–O), 1075 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.33 (s, 6 H, CH₃), 1.49 (s, 3 H, CH₃), 1.58 (s, 3 H, CH₃), 3.08 (s, 3 H, –O–SO₂–CH₃), 4.11 (ddd, J 6.6/5.1/1.5 Hz, 1 H, 5-H), 4.24 (dd, J 8.1/1.5 Hz, 1 H, 4-H), 4.35 (dd, J 5.1/2.6 Hz, 1 H, 2-H), 4.36–4.40 (m, 2 H, –CH₂–O–SO₂), 4.64 (dd, J 8.1/2.6 Hz, 1 H, 3-H), 5.54 (d, J 5.1 Hz, 1 H, 1-H); ¹³C NMR (CDCl₃): δ 24.33 (CH₃), 24.84 (CH₃), 25.87 (CH₃), 25.90 (CH₃), 37.86 (CH₃SO₃), 66.28 (C-5), 69.05 (C-3), 69.06 (CH₂OSO₂–), 70.34 (C-4), 70.58 (C-2), 96.15 (C-1), 108.99 [C(CH₃)₂], 109.79 [C(CH₃)₂]; CIMS: *m*/*z* 339 (MH⁺), 323 (M⁺ – CH₃); Anal. Calcd for C₁₃H₂₂O₈S (338.4): C, 46.1; H, 6.55. Found: C, 46.1; H, 6.59.

3.12. (-)-6-Cyano-6-deoxy-1,2:3,4-di-O-isopropylidene- α -D-galactopyranose (11)

Methanesulfonate 10c (600 mg, 1.77 mmol) was dissolved in a solution of LiCN in DMF (1 M, 13 mL) and heated to 110 °C for 17 h. Then, H₂O (5 mL) and petroleum ether (10 mL) were added, the organic layer was separated, and the aqueous layer was extracted with petroleum ether $(3 \times 10 \text{ mL})$. The combined petroleum ether layers were dried ($MgSO_4$), concentrated in vacuo and the residue (70 mg) was purified by FC (2 cm, 85:15 petroleum ether-EtAOc, fractions 10 mL, R_f 0.38). Colorless oil, yield 20.2 mg (4.2%); $[\alpha]_{\rm D} - 52.3^{\circ}$ (c 0.57, CHCl₃); IR (film): v = 2255 (CN), 1256 (C–O), 1213 (C-O), 1165 (C-O), 1070 cm⁻¹ (C-O); ¹H NMR $(CDCl_3)$: δ 1.27 (s, 3 H, CH₃), 1.29 (s, 3 H, CH₃), 1.38 (s, 3 H, CH₃), 1.47 (s, 3 H, CH₃), 2.58 (dd, J 16.9/ 7.0 Hz, 1 H, CH₂CN), 2.64 (dd, J 16.9/7.0 Hz, 1 H, CH₂CN), 3.98 (t, J 7.0 Hz, 1 H, 5-H), 4.18 (d, J 7.3 Hz, 1 H, 4-H), 4.27 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.59 (dd, J 7.3/2.2 Hz, 1 H, 3-H), 5.44 (d, J 5.1 Hz, 1 H, 1-H); CIMS: m/z 270 (MH⁺); Anal. Calcd for C₁₃H₁₉NO₅ (269.1): C, 58.0; H, 7.12; N, 5.20. Found: C, 58.3; H, 7.18; N, 4.97.

3.13. (*E*)- and (*Z*)-6-Deoxy-1,2:3,4-di-*O*-isopropylidene-7-*O*-methyl-α-D-*galacto*-hepto-6-enopyranose (12)

At $-78 \,^{\circ}$ C KO'Bu (0.90 g, 7.99 mmol) was slowly added to a solution of (methoxymethyl)triphenylphosphonium chloride (2.29 g, 6.66 mmol) in THF (10 mL). Then a solution of aldehyde **6** (0.86 g, 3.33 mmol) in Et₂O (10 mL) was added dropwise. The mixture was stirred for 10 min at $-78 \,^{\circ}$ C, then the cooling bath was removed, and the mixture was stirred for 5 h at rt. Subsequently, H₂O (10 mL) was added, and the aqueous layer was separated and extracted with Et₂O (3 × 20 mL). The organic layer was dried (MgSO₄) and concentrated in vacuo, and the residue was purified by FC (4 cm, 90:10 petroleum ether–EtOAc, fractions 15 mL, R_f 0.29). Colorless oil, yield 0.60 g (63%); IR (film): v =1659 (C=C), 1252 (C–O), 1213 (C–O), 1162 (C–O), 1060 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.34 (s, 6 H, CH₃), 1.36 (s, 3 H, CH₃), 1.48 (s, 3 H, CH₃), 3.59 (s, 3 × 0.37 H, OCH₃), 3.62 (s, 3 × 0.63 H, OCH₃), 4.13 (dd, J 8.8/1.5 Hz, 0.37 H, 4-H), 4.19 (dd, J 8.8/1.5 Hz, 1 H, 3-H), 4.20 (dd, J 8.8/1.5 Hz, 0.63 H, 4-H), 4.29 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.60 (dd, J 8.1/1.5 Hz, 0.37 H, 5-H), 4.66 (dd, J 8.8/5.9 Hz, 0.63 H, (Z)-CH=CH–OCH₃), 4.86 (dd, J 8.8/1.5 Hz, 0.63 H, 5-H), 4.97 (dd, J 13.2/8.8 Hz, 0.37 H, (E)-CH=CH–OCH₃), 5.54 (d, J 5.1 Hz, 1 H, 1-H), 6.05 (d, J 5.9 Hz, 0.63 H, (Z)-CH=CH–OCH₃), 6.64 (d, J 13.2 Hz, 0.37 H, (E)-CH=CH–OCH₃). The ratio (Z)-12:(E)-12 is 63:37; CIMS: *m*/z 287 (MH⁺); Anal. Calcd for C₁₄H₂₂O₆ (286.2): C, 58.8; H, 7.75. Found: C, 58.6; H, 7.87.

3.14. (-)-6-Deoxy-1,2:3,4-di-*O*-isopropylidene-α-Dgalacto-heptodialdo-1,5-pyranose (13)

A solution of 12 (100 mg, 0.35 mmol) and 2 N HCl (0.30 mL, ca. 0.60 mmol HCl) in (CH₃)₂CO (3 mL) was stirred for 15 min at rt. Then, a solution of Na₂CO₃ (64 mg, 0.60 mmol) in H_2O (5 mL) was added (pH 7) and the mixture was extracted with Et_2O (3 × 5 mL). The Et_2O layer was dried (MgSO₄) and concentrated in vacuo, and the residue was purified by FC (2 cm, 90:10, petroleum ether-EtOAc, fractions 10-15 mL, R_f 0.16). Colorless oil, yield 90 mg (95%); $[\alpha]_D$ -64.9° (c 1.01, CHCl₃); IR (film): v = 1727 (C=O), 1257 (C-O), 1213 (C-O), 1168 (C-O), 1070 cm⁻¹ (C-O); ¹H NMR $(CDCl_3)$: δ 1.27 (s, 6 H, CH₃), 1.39 (s, 3 H, CH₃), 1.49 (s, 3 H, CH₃), 2.72 (ddd, J 17.4/7.0/1.8 Hz, 1 H, CH2-CHO), 2.64 (ddd, J 17.4/5.9/1.8 Hz, 1 H, CH2-CHO), 4.15 (dd, J 8.1/2.2 Hz, 1 H, 4-H), 4.23 (ddd, J 7.0/5.9/2.2 Hz, 1 H, 5-H), 4.26 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.56 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.44 (d, J 5.1 Hz, 1 H, 1-H), 9.73 (t, J 1.8 Hz, 1 H, $CH_2-CH=O$); CIMS: m/z 257 (M⁺ – CH₃); Anal. Calcd for C₁₃H₂₀O₆ (272.2): C, 57.4; H, 7.41. Found: C, 57.6; H, 7.12.

3.15. (-)-6-Deoxy-1,2:3,4-di-*O*-isopropylidene-α-Dgalacto-heptopyranose (14)

NaBH₄ (13.9 mg, 0.37 mmol) was carefully added at 0 °C to a solution of **13** (100 mg, 0.37 mmol) in C₂H₅OH (7 mL). The mixture was stirred for 4 h at rt. H₂O (4 mL) and 2 N HCl (1 mL) were added, the mixture was concentrated in vacuo, and the residual aqueous layer was extracted with EtOAc (3 × 10 mL). The organic extract was dried (MgSO₄) and evaporated in vacuo, and the residue was purified by FC (2 cm, 70:30 petroleum ether–EtOAc, fractions 30 mL, R_f 0.31). Colourless oil, yield 63 mg (63%); [α]_D –62.7° (*c* 0.98, CHCl₃); IR (film): ν = 3448 (O–H), 1255 (C–O), 1212 (C–O), 1167 (C–O), 1069 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.34 (s, 3 H, CH₃), 1.35 (s, 3 H, CH₃), 1.47 (s, 3 H, CH₃), 1.54 (s, 3 H, CH₃), 1.72–1.80 (m, 1

H, CH_2CH_2OH), 1.93–2.01 (m, 1 H, CH_2CH_2OH), 2.09 (s, broad, 1 H, OH), 3.75–3.80 (m, 2 H, CH_2CH_2OH), 4.01 (ddd, *J* 8.1/5.9/2.2 Hz, 1 H, 5-H), 4.15 (dd, *J* 8.1/2.2 Hz, 1 H, 4-H), 4.31 (dd, *J* 5.1/2.2 Hz, 1 H, 2-H), 4.61 (dd, *J* 8.1/2.2 Hz, 1 H, 3-H), 5.54 (d, *J* 5.1 Hz, 1 H, 1-H); EIMS: m/z 274 (M⁺), 259 (M⁺ – CH₃); Anal. Calcd for $C_{13}H_{22}O_6$ (274.3): C, 56.9; H, 8.08. Found: C, 56.9; H, 8.09.

3.16. (*E*)- and (*Z*)-6-Deoxy-1,2:3,4-di-O-isopropylidene- α -D-galacto-heptodialdo-1,5-pyranose-7-oxime (15)

A solution of 13 (240 mg, 0.88 mmol), NH₂OH·HCl (184 mg, 2.65 mmol), NaOAc (145 mg, 1.76 mmol), H₂O (1.6 mL) and CH₃OH (16 mL) were stirred for 24 h at rt. The solvent was evaporated in vacuo. The residue was dissolved in H₂O (5 mL) and extracted with Et₂O (2 \times 10 mL). The organic layer was dried (MgSO₄) and concentrated in vacuo. Colorless oil, yield 160 mg (63%), R_f 0.29 (80:20 petroleum ether-EtOAc); IR (film): v =3412 (OH), 1652 (C=N), 1256 (C-O), 1212 (C-O), 1167 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.33 (s, 3 H, CH₃), 1.35 (s, 3 H, CH₃), 1.47 (s, 3 H, CH₃), 1.52 (s, 3 H, CH₃), 2.54 (m, 1 H, CH₂-CH=NOH), 2.69 (m, 1 H, CH₂-CH=NOH), 3.98 (ddd, J 7.3/5.9/2.2 Hz, 1 H, 5-H), 4.17 (dd, J 8.1/2.2 Hz, 1 H, 4-H), 4.32 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.62 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.52 (d, J 5.1 Hz, 1 H, 1-H), 6.90 (t, J 5.1 Hz, 0.5 H, CH₂-CH=NOH), 7.51 (t, J 6.2 Hz, 0.5 H, CH₂-CH=NOH). A signal for the =N-OH proton could not be found; CIMS: m/z 288 (MH^+) , 272 $(M^+ - CH_3)$; Anal. Calcd for $C_{13}H_{21}NO_6$ (287.3): C, 54.3; H, 7.37; N, 4.87. Found: C, 54.1; H, 7.59; N, 4.65.

3.17. (-)-7-Amino-6,7-dideoxy-1,2:3,4-di-Oisopropylidene- α -D-*galacto*-heptopyranose (16)

A solution of 15 (160 mg, 0.56 mmol) in Et_2O (1.5 mL) was slowly added to a suspension of LiAlH₄ (42.3 mg, 1.11 mmol) in Et_2O (1.5 mL). The suspension was stirred for 5 h at rt, then a solution of LiAlH₄ (1 mL, 1 M in Et₂O) was added, and the mixture was stirred for further 12 h at rt. A small amount of H₂O was carefully added, and the suspension was dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by FC (2 cm, 96:4, CH₂Cl₂-CH₃OH, fractions 7 mL, R_f 0.19). Colorless oil, yield 70 mg (46%); $[\alpha]_{\rm D}$ -48.4° (c 1.02, CHCl₃); IR (film): v = 3462 (NH), 3369 (NH), 1289 (C-N), 1231 (C-O), 1099 cm⁻¹ (C-O); ¹H NMR (CDCl₃): δ 1.30 (s, 3 H, CH₃), 1.33 (s, 3 H, CH₃), 1.46 (s, 3 H, CH₃), 1.49 (s, broad, 2 H, NH₂), 1.52 (s, 3 H, CH₃), 1.60–1.67 (m, 1 H, CH₂–CH₂–NH₂), 1.82–1.88 (m, 1 H, CH_2 - CH_2 - NH_2), 2.83-2.89 (m, 2 H, CH_2 -CH₂-NH₂), 3.87 (ddd, J 7.3/5.9/1.5 Hz, 1 H, 5-H), 4.12 (dd, J 8.1/2.2 Hz, 1 H, 4-H), 4.30 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.59 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.53 (d, J 5.1 Hz, 1 H, 1-H); CIMS: m/z 274 (MH⁺), 258 (M⁺ – CH₃); Anal. Calcd for C₁₃H₂₃NO₅ (273.3): C, 57.1; H, 8.48; N, 5.12. Found: C, 56.9; H, 8.19; N, 4.84.

3.18. (–)-7-(Benzoylamino)-6,7-dideoxy-1,2:3,4-di-*O*isopropylidene-α-D-*galacto*-hepto-pyranose (17a)

Et₃N (0.85 g, 8.42 mmol) and benzoyl chloride (1.18 g, 8.42 mmol) were added at 0 °C to a solution of 16 (1.92 g, 7.02 mmol) in CH₂Cl₂ (20 mL). After stirring for 30 min at rt, the mixture was washed with 1 N HCl (3×20) mL) and a saturated solution of NaHCO₃ (3×20 mL). The organic layer was dried (MgSO₄) and concentrated in vacuo. Colorless solid (2-Pr₂O), mp 120 °C, yield 1.90 g (72%), R_f 0.14 (75:25 petroleum ether-EtOAc); $[\alpha]_D$ -62.5° (c⁻¹.00, CHCl₃); IR (KBr): v = 3369 (N–H), 1639 (C=O), 1533 (amide-II), 1260 (C-O), 1212 (C-O), 1166 (C–O), 1069 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.37 (s, 3 H, CH₃), 1.40 (s, 3 H, CH₃), 1.41 (s, 3 H, CH₃), 1.52 (s, 3 H, CH₃), 1.98–2.07 (m, 2 H, CH₂–CH₂–NH), 3.67-3.69 (m, 2 H, CH₂-CH₂-NH), 3.94 (ddd, J 7.3/ 4.4/2.2 Hz, 1 H, 5-H), 4.21 (dd, J 8.1/2.2 Hz, 1 H, 4-H), 4.37 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.65 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.63 (d, J 5.1 Hz, 1 H, 1-H), 6.86 (s, broad, 1 H, NH), 7.47 (t, J 7.3 Hz, 2 H, arom.), 7.53 (t, J 7.0 Hz, 1 H, arom.), 7.84 (d, J 7.3 Hz, 2 H, arom.); EIMS: m/z $377 (M^+)$, $362 (M^+ - CH_3)$; Anal. Calcd for C₂₀H₂₇NO₆ (377.4): C, 63.6; H, 7.21; N, 3.71. Found: C, 63.8; H, 7.23; N, 3.51.

3.19. (-)-6,7-Dideoxy-1,2:3,4-di-*O*-isopropylidene-7-(phenylacetylamino)-α-D-galacto-hepto-pyranose (17b)

 Et_3N (31 mg, 0.31 mmol) and phenylacetyl chloride (47.5 mg, 0.31 mmol) were added at 0 °C to a solution of 16 (70 mg, 0.26 mmol) in CH₂Cl₂ (2 mL). After stirring for 45 min at rt, the mixture was washed with 1 N HCl $(2 \times 5 \text{ mL})$ and a satd solution of NaHCO₃ $(3 \times 5 \text{ mL})$. The organic extract was dried (MgSO₄) and concentrated in vacuo. The residue was purified by FC (2 cm, 70:30 petroleum ether-EtOAc, fractions 15 mL, R_f 0.19). Colorless solid (2-Pr₂O), mp 62 °C, yield 79.2 mg (79%); $[\alpha]_D - 38.4^\circ$ (c 1.00, CHCl₃); IR (KBr): v =3339 (N-H), 1640 (C=O), 1535 (amide-II), 1261 (C-O), 1213 (C–O), 1165 (C–O), 1070 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.24 (s, 3 H, CH₃), 1.25 (s, 3 H, CH₃), 1.33 (s, 3 H, CH₃), 1.38 (s, 3 H, CH₃), 1.63–1.73 (m, 2 H, CH₂-CH₂-NH), 3.17-3.24 (m, 1 H, CH₂-CH₂-NH), 3.37-3.42 (m, 1 H, CH₂-CH₂-NH), 3.49 (s, 2 H, phenyl-CH₂), 3.65 (ddd, J 6.6/4.6/2.2 Hz, 1 H, 5-H), 3.99 (dd, J 8.1/2.2 Hz, 1 H, 4-H), 4.19 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.48 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.29 (d, J 5.1 Hz, 1 H, 1-H), 5.91 (s broad, 1 H, NH), 7.20-7.30 (m, 5 H, arom.); CIMS: m/z 392 (MH⁺), 376 (M⁺-CH₃); Anal. Calcd for C₂₁H₂₉NO₆ (391.5): C, 64.4; H, 7.47; N, 3.58. Found: C, 64.6; H, 7.54; N, 3.39.

3.20. (-)-7-(Benzyloxycarbonylamino)-6,7-dideoxy-1,2:3,4-di-*O*-isopropylidene-α-D-*galacto*-hepto-pyranose (17c)

Et₃N (340 mg, 3.36 mmol) and benzyl chloroformate (287 mg, 1.68 mmol) were added at 0 °C to a solution of 16 (460 mg, 1.68 mmol) in CH₂Cl₂ (10 mL). After stirring for 16 h at rt, the mixture was washed with 1 N HCl (3 \times 10 mL) and a satd solution of NaHCO₃ (3 \times 10 mL). The organic extract was dried (MgSO₄) and concentrated in vacuo. Colorless solid (1:1 hexane-2-Pr₂O), mp 94 °C, yield 534 mg (78%), R_f 0.22 (80:20 petroleum ether–EtOAc); $[\alpha]_D$ –28.6° (*c* 1.00, CHCl₃); IR (KBr): v = 3357 (NH), 1716 (C=O), 1533 (amide-II), 1255 (C–O), 1211 (C–O), 1167 (C–O), 1071 cm⁻¹ (C– O); ¹H NMR (CDCl₃): δ 1.32 (s, 3 H, CH₃), 1.35 (s, 3 H, CH₃), 1.46 (s, 3 H, CH₃), 1.59 (s, 3 H, CH₃), 1.80-1.91 (m, 2 H, CH₂-CH₂-NH), 3.30-3.50 (m, 2 H, CH₂-CH₂-NH), 3.81-3.84 (m, 1 H, 5-H), 4.12 (dd, J 6.6/ 2.2 Hz, 1 H, 4-H), 4.31 (dd, J 5.1/2.2 Hz, 1 H, 2-H), 4.59 (dd, J 8.1/2.2 Hz, 1 H, 3-H), 5.09–5.13 (m, 3 H, CH₂Ph, NH), 5.53 (d, J 5.1 Hz, 1 H, 1-H), 7.30–7.53 (m, 5 H, arom.); CIMS: m/z 408 (MH⁺); Anal. Calcd for C₂₁H₂₉NO₇ (407.5): C, 61.9; H, 7.17; N, 3.44. Found: C, 61.7; H, 7.30; N, 3.47.

3.21. (+)-(7*R*)-3,7-di-*O*-Benzoyl-6-deoxy-1,2-*O*isopropylidene- α -D-*galacto*-heptodialdo-1,5-pyranose-4,7-furanose (19a) and (+)-(7*S*)-3,7-di-*O*-benzoyl-6deoxy-1,2-*O*-isopropylidene- α -D-*galacto*-heptodialdo-1,5-pyranose-4,7-furanose (19b)

A solution of **12** (200 mg, 0.70 mmol) and 2 N H_2SO_4 (0.30 mL) in (CH₃)₂CO (6 mL) was heated to reflux for 75 min. The solution was neutralized with 2 N NaOH (0.3 mL) and concentrated in vacuo. The residue was purified by FC (2 cm, 96:4 CH₂Cl₂-CH₃OH, fractions 30 mL) to yield **18a** and **18b** colorless oils, yield 57 mg (35%).

Et₃N (0.46 g, 4.5 mmol), benzoyl chloride (0.56 g, 4.0 mmol) and DMAP (100 mg, 0.8 mmol) were added at 0 °C to a solution of **18a/18b** (105 mg, 0.45 mmol, **18a:18b** = 1:2) CH₂Cl₂ (10 mL). After stirring for 48 h at rt, the mixture was extracted with 1 N HCl (2×10 mL) and a satd solution of NaHCO₃ (2×10 mL). The organic layer was dried (MgSO₄) and concentrated in vacuo, and the residue was purified by FC (2 cm, 85:15 petroleum ether–EtOAc, fractions 20 mL). Fractions 7 and 8 contained the isomer **19a**, and fractions 13–21 contained the isomer **19b**.

Data for **19a** (R_f 0.35): colorless solid (2-Pr₂O), mp 144 °C, yield 47.4 mg (24%); $[\alpha]_D$ +18.0° (*c* 0.25, CHCl₃); IR (KBr): v = 1725 (C=O), 1268 (C–O), 1114 (C–O), 1078 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.38 (s, 3 H, CH_{3exo}), 1.58 (s, 3 H, CH_{3endo}), 2.47 (dt, *J* 14.7/5.1 Hz, 1 H, 6-H), 2.63 (ddd, *J* 14.7/8.1/1.5 Hz, 1 H, 6-H), 4.50 (t, J 4.8 Hz, 1 H, 2-H), 4.64 (dd, J 6.9/4.4 Hz, 1 H, 4-H), 4.88 (dt, J 8.1/5.5 Hz, 1 H, 5-H), 5.58 (d, J 5.1 Hz, 1 H, 1-H), 5.79 (t, J 4.4 Hz, 1 H, 3-H), 6.62 (d, J 4.4 Hz, 1 H, 7-H1), 7.39–7.45 (m, 4 H, arom.), 7.52–7.95 (m, 2 H, arom.), 7.96 (dd, J 8.1/1.5 Hz, 2 H, arom.), 8.05 (dd, J 7.3/1.5 Hz, 2 H, arom.); EIMS: m/z 319 [M⁺ – PhCO₂]; Anal. Calcd for C₂₄H₂₄O₈ (440.5): C, 65.4; H, 5.49. Found: C, 65.3; H, 5.60.

Data for **19b** (R_f 0.15): colorless solid (2-Pr₂O), mp 155 °C, yield 92.8 mg (47%); $[\alpha]_{\rm D}$ +16.6° (c 0.25, CHCl₃); IR (KBr): v = 1732 (C=O), 1276 (C-O), 1120 (C–O), 1076 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.38 (s, 3 H, CH_{3exo}), 1.62 (s, 3 H, CH_{3endo}), 2.45 (d, J 15.4 Hz, 1 H, 6-H), 2.61 (dt, J 15.4/5.9 Hz, 1 H, 6-H), 4.47 (t, J 4.4 Hz, 1 H, 2-H), 4.55 (t, J 5.9 Hz, 1 H, 4-H), 4.67 (t, J 5.9 Hz, 1 H, 5-H), 5.77 (d, J 5.1 Hz, 1 H, 1-H), 5.91 (dd, J 6.6/4.4 Hz, 1 H, 3-H), 6.48 (d, J 5.9 Hz, 1 H, 7-H), 6.94 (t, J 7.3 Hz, 2 H, arom.), 7.22–7.27 (m, 3 H, arom.), 7.47 (dd, J 7.3/1.5 Hz, 1 H, arom.), 7.73 (dd, J 7.3/1.5 Hz, 2 H, arom.), 7.86 (dd, J 6.6/1.5 Hz, 2 H, arom.); ¹³C NMR (CDCl₃): δ 25.17 (CH_{3exo}), 25.96 (CH3endo), 38.89 (C-6), 64.60 (C-3), 68.51 (C-5), 72.32 (C-2), 77.58 (C-4), 97.01 (C-1), 98.95 (C-7), 110.14 $[C(CH_3)_2]$, 127.86 (2 × C-arom.), 128.06 (2 × Carom.), 128.95 (C-arom.), 129.69 (4 × C-arom.), 129.83 (C-arom.), 132.70 (C-arom.), 132.81 (C-arom.), 165.70 (2 \times C=O). The signals were assigned by a ¹H,¹³C HETCOR spectrum; EIMS: m/z 319 [M⁺-PhCO₂]; Anal. Calcd for C₂₄H₂₄O₈ (440.5): C, 65.4; H, 5.49. Found: C, 65.4; H, 5.58.

3.22. 6-(Benzoylamino)-6-deoxy- α - and β -D-galactopyranose (20a and 21a)

A mixture of 9a (40 mg, 0.11 mmol), a strong acidic ionexchange resin (40 mg), (CH₃)₂CO (7 mL) and H₂O (1 mL) was heated to reflux for 25 h. Then the mixture was filtered, the solvent was evaporated in vacuo, and the residue was purified by FC (2 cm, 80:20 CH₂Cl₂-CH₃OH, fractions 10 mL, R_f 0.49). Colorless oil, yield 24.7 mg (79%); IR (film): v = 3363 (O-H, N-H), 1634 (C=O), 1546 cm⁻¹ (amide-II); ¹H NMR (CD₃OD): δ 3.35-3.76 (m, 5 H, 3-H, 4-H, 5-H, 6-H), 4.10 [t, J 6.6 Hz, 0.5 H, 2-H (21a)], 4.33 [td, J 7.3/4.4 Hz, 0.5 H, 2-H (20a)], 5.05 [d, J 3.7 Hz, 0.5 H, 1-H (20a)], 7.35 (t, J 7.3 Hz, 2 H, arom.), 7.43 (td, J 7.3/1.5 Hz, 1 H, arom.), 7.73 (dd, J 7.3/1.5 Hz, 2 H, arom.). The signal of H-1 of the anomer 21a was hidden under the HCD₂OD signal (4.70-4.85 ppm) of the solvent. The signals of the OHand NH-protons are not seen in the solvent CD₃OD. The ratio of anomers 20a:21a is 1:1; EIMS: m/z 266 $(M^+ - OH)$; Anal. Calcd for $C_{13}H_{17}NO_6$ (283.3): C, 55.1; H, 6.05; N, 4.94. Found: C, 54.9; H, 6.09; N, 5.09.

3.23. (–)-Ethyl 6-(benzoylamino)-6-deoxy- α -Dgalactopyranoside (20c) (–)-ethyl 6-(benzoylamino)-6deoxy- β -D-galactopyranoside (21c), and ethyl 6-(benzoylamino)-6-deoxy- α - and β -D-galactofuranoside (22c)

A mixture of **9a** (40 mg, 0.11 mmol), a strong acidic ionexchange resin (40 mg) and C_2H_5OH (8 mL) was heated to reflux for 69 h. Then, the mixture was filtered and concentrated in vacuo, and the residue was purified by FC (2 cm, 98:2 EtOAc-CH₃OH, fractions 10 mL).

Data for **20c** (R_f 0.24): colorless oil, yield 8.1 mg (24%); [α]_D -23.9° (*c* 0.34, CHCl₃); IR (film): ν = 3356 (O–H, N–H), 1644 (C=O), 1544 cm⁻¹ (amide-II); ¹H NMR (CDCl₃): δ 1.25 (t, *J* 7.0 Hz, 3 H, OCH₂CH₃), 3.43 (s, broad, 1 H, OH), 3.56 (dq, *J* 16.2/7.0 Hz, 1 H, OCH₂CH₃), 3.74–3.89 (m, 4 H, OCH₂CH₃, 5-H, 6-H), 4.07–4.16 (m, 4 H, 2-H, 3-H, 4-H, OH), 4.96 (s, broad, 1 H, OH), 5.09 (s, 1 H, 1-H), 7.03 (s, broad, 1 H, NH), 7.47 (t, *J* 7.7 Hz, 2 H, arom.), 7.56 (t, *J* 7.3 Hz, 1 H, arom.), 7.81 (d, *J* 6.6 Hz, 2 H, arom.); CIMS: *m/z* 312 (MH⁺), 266 (M⁺-C₂H₅O); Anal. Calcd for C₁₅H₂₁NO₆ (311.3): C, 57.9; H, 6.80; N, 4.50. Found: C, 57.6; H, 7.05; N, 4.46.

Data for **21c** and **22c** (R_f 0.19): fractions 8–15 contained an inseparable mixture of **21c**:**22c** in a ratio of 18:82. Colorless oil, yield 12.9 mg (38%).

3.24. (-)-Methyl 7-(benzoylamino)-6,7-dideoxy- α -Dgalacto-heptopyranoside (23b), (+)-methyl 7-(benzoylamino)-6,7-dideoxy- β -D-galacto-heptopyranoside (24b), and methyl 7-(benzylamino)-6,7-dideoxy- α - and β -D-galacto-heptofuranoside (25b)

A mixture of **17a** (160 mg, 0.42 mmol), a strong acidic ion-exchange resin (60 mg) and CH₃OH (8 mL) was heated to reflux for 48 h. Then the mixture was filtered and concentrated in vacuo, and the residue was purified by FC (2 cm, 90:10 CH₂Cl₂-CH₃OH, fractions 10 mL).

Data for **23b** (R_f 0.27): colorless oil, yield 26.1 mg (20%); $[\alpha]_D - 10.8^{\circ}$ (*c* 0.46, CHCl₃); IR (film): $\nu = 3333$ (O–H, N–H), 1637 (C=O), 1545 (amide-II), 1023 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.76–1.90 (m, 2 H, 6-H), 3.05 (s, broad, 1 H, OH), 3.49 (s, 3 H, OCH₃), 3.51–3.56 (m, 1 H, 7-H), 3.76–3.84 (m, 5 H, 2-H, 3-H, 5-H, 2 × OH), 4.08–4.13 (m, 2 H, 7-H, 4-H), 4.85 (d, *J* 2.2 Hz, 1 H, 1-H), 6.88 (s, broad, 1 H, NH), 7.42–7.45 (m, 2 H, arom.), 7.47–7.56 (m, 1 H, arom.), 7.77 (dd, *J* 8.8/1.5 Hz, 2 H, arom.); CIMS: m/z 312 (MH⁺), 280 (M⁺ – CH₃O); Anal. Calcd for C₁₅H₂₁NO₆ (311.3): C, 57.9; H, 6.80; N, 4.50. Found: C, 57.6; H, 7.12; N, 4.45.

Data for **24b** (R_f 0.20): colorless oil, yield 6.5 mg (4.9%); $[\alpha]_D$ +86.7° (*c* 0.21, CHCl₃); IR (film): ν = 3351 (O–H), 1641 (C=O), 1551 (amide-II), 1029 cm⁻¹ (C–O); ¹H NMR (CDCl₃): δ 1.60–1.71 (m, 1 H, 6-H), 2.06–2.14 (m, 1 H, 6-H), 2.88 [d, *J* 11.7 Hz, 1 H, OH (C-4)],

3.31 (ddd, J 13.9/9.5/4.4 Hz, 1 H, 7-H), 3.40 (s, 3 H, OCH₃), 3.82–3.85 (m, 1 H, 5-H), 3.96 (d, J 11.0 Hz, 1 H, 2-H), 4.01–4.07 (m, 3 H, 7-H, 3-H, 4-H), 4.88 (d, J 11.0 Hz, 1 H, 1-H), 4.94 (s, broad, 1 H, OH), 5.70 (s, broad, 1 H, OH), 6.51 (t, J 5.5 Hz, 1 H, NH), 7.47 (t, J 8.1 Hz, 2 H, arom.), 7.52–7.58 (m, 1 H, arom.), 7.77 (dd, J 8.8/1.5 Hz, 2 H, arom.); the signals were assigned by a ¹H,¹³C COSY spectrum; CIMS: m/z 312 (MH⁺), 280 (M⁺ – CH₃O); Anal. Calcd for C₁₅H₂₁NO₆ (311.3): C, 57.9; H, 6.80; N, 4.50. Found: C, 57.6; H, 7.04; N, 4.39.

Data for 25b (R_f 0.14): colorless oil, yield 89.3 mg (68%); IR (film): v = 3344 (O–H), 1640 (C=O), 1544 (amide-II), 1075 (C-O), 1040 cm⁻¹ (C-O); ¹H NMR (CD₃OD): δ 1.78–1.96 (m, 2 H, 6-H), 3.26 (s, 3 × 0.65 H, OCH₃), 3.35-3.38 (m, 2×0.65 H, 7-H), 3.40 (s, $3 \times$ 0.35 H, OCH₃), 3.44–3.50 (m, 0.65 H, 4-H, 3 × 0.35 H, 7-H, 4-H), 3.57-3.68 (m, 0.35 H, 5-H), 3.74-3.77 (m, 2 × 0.65 H, 2-H, 3-H, 2 × 0.35 H, 2-H, 3-H), 3.75 (q, J 4.4 Hz, 0.65 H, 5-H), 4.02 (d, J 7.3 Hz, 0.35 H, 1-H), 4.59 (d, J 2.9 Hz, 0.65 H, 1-H), 7.33-7.37 (m, 2 H, arom.), 7.41-7.43 (m, 1 H, arom.), 7.70-7.73 (m, 2 H, arom.), the signals of the OH- and NH-protons were not observed in the solvent, CD₃OD. The signals were assigned by a ¹H,¹H COSY spectrum. The ratio of the α - and β -anomers α -**25b**: β -**25b** was 65:35; ¹³C NMR (CD₃OD): δ 31.37 (C-6), 31.75 (C-6), 37.97 (C-7), 38.21 (C-7), 55.73 (OCH₃), 57.25 (OCH₃), 69.46 (C-5), 70.05 (C-5), 71.49 (C-4), 72.21 (C-4), 72.41 (C-3), 72.74 (C-3), 73.96 (C-2), 75.01 (C-2), 101.54 (C-1), 105.82 (C-1), 128.2 (C-arom.), 129.5 (C-arom.), 132.6 (C-arom.), 135.7 (C-arom.), 170.3 (C=O); the signals were assigned by a ¹H, ¹³C HETCOR spectrum; EIMS: m/z 311 (M⁺), 280 (M⁺ – CH₃O); Anal. Calcd for $C_{15}H_{21}NO_6$ (311.3): C, 57.9; H, 6.80; N, 4.50. Found: C, 57.7; H, 7.05; N, 4.74.

3.25. (–)-Ethyl 7-(benzoylamino)-6,7-dideoxy- α -Dgalacto-heptopyranoside (23c), ethyl 7-(benzoylamino)-6,7-dideoxy- β -D-galacto-heptopyranoside (24c), and ethyl 7-(benzylamino)-6,7-dideoxy- α - and β -D-galactoheptofuranoside (25c)

A mixture of **17a** (40 mg, 0.11 mmol), a strong acidic ion-exchange resin (40 mg) and C_2H_5OH (8 mL) was heated to reflux for 70 h. Then the mixture was filtered and concentrated in vacuo, and the residue was purified by FC (2 cm, at first 96:4 CH₂Cl₂-CH₃OH) (ca. 100 mL) then EtOAc (200 mL), fractions 15 mL.

Data for **23c** (R_f 0.29 90:10 CH₂Cl₂–CH₃OH): colorless oil, yield 8.8 mg (26%); [α]_D –16.6° (c 0.26, CHCl₃); IR (film): ν = 3362 (O–H), 1634 (C=O), 1538 cm⁻¹ (amide-II); ¹H NMR (CDCl₃): δ 1.20 (t, J 7.0 Hz, 3 H, OCH₂CH₃), 1.64–1.70 (m, 1 H, 6-H), 2.03–2.11 (m, 1 H, 6-H), 3.04 (s, broad, 1 H, OH), 3.29–3.37 (m, 1 H, 7-H), 3.52 (dq, J 16.9/7.3 Hz, 1 H, OCH₂CH₃), 3.74–3.85 (m, 2 H, OCH₂CH₃, 5-H), 3.96–4.06 (m, 4 H, 2-H, 3-H, 4-H, 7-H, CH_2N), 4.95 (s, broad, 1 H, OH), 5.04 (s, 1 H, 1-H), 5.59 (s, broad, 1 H, OH), 6.61 (s, broad, 1 H, NH), 7.46 (t, *J* 7.3 Hz, 2 H, arom.), 7.54 (t, *J* 7.3 Hz, 1 H, arom.), 7.76 (dd, *J* 8.8/1.5 Hz, 2 H, arom.); CIMS: *m/z* 326 (MH⁺), 280 (M⁺ – C₂H₅O); Anal. Calcd for C₁₆H₂₃NO₆ (325.4): C, 59.1; H, 7.13; N, 4.30. Found: C, 59.1; H, 6.93; N 4.57.

Data for **24c** and **25c** (R_f 0.24, 90:10 CH₂Cl₂– CH₃OH): fractions 9–25 contained an inseparable mixture of **24c:25c** in a ratio of 10:90. Colorless oil, yield 25.4 mg (74%).

Acknowledgements

Financial support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. Thanks are also due to the Degussa AG for donation of chemicals.

References

- 1. Roth, H.J.; Fenner, H. *Arzneistoffe*, 3rd. ed. Deutscher Apotheker Verlag, Stuttgart, 2000, pp. 65–72.
- Hashimoto, K.; Mori, K.; Okada, M. Chem. Lett. 1991, 2223–2226.
- 3. Canas-Rodriguez, A.; Tobed, A. M. Carbohydr. Res. 1977, 56, 289–299.

- Nakahara, Y.; Beppu, K.; Ogawa, T. *Tetrahedron Lett.* 1981, 22, 3197–3200.
- Kanai, K.; Sakamoti, I.; Ogawa, S.; Suami, T. Bull. Chem. Soc. Jpn. 1987, 60, 1529–1531.
- Jones, K.; Wood, W. W. Carbohydr. Res. 1986, 155, 217– 222.
- 7. Dziewiszek, K.; Zamojski, A. Carbohydr. Res. 1986, 150, 163–171.
- Blakemore, P. R.; White, J. D. Chem. Commun. (Cambridge) 2002, 1159–1168.
- Streicher, B.; Wünsch, B. Eur. J. Org. Chem. 2001, 115– 120.
- Höfner, G.; Streicher, B.; Wünsch, B. Arch. Pharm. Pharm. Med. Chem. 2001, 334, 284–290.
- Schmidt, O. T. Methods Carbohydr. Chem. 1963, 2, 319– 325.
- Midland, M.; Azirnatham, G.; Cheng, J. C.; Miller, J. A.; Morell, L. A. J. Org. Chem. 1994, 59, 4438–4442.
- Horton, D.; Nakadate, J.; Tronchet, J. M. J. Carbohydr. Res. 1968, 7, 56–65.
- Appel, R. Angew. Chem. 1975, 87, 863–874, Angew. Chem., Int. Ed. Engl. 1975, 14, 801–812.
- Tipson, R. S. Methods Carbohydr. Chem. 1963, 2, 246– 250.
- Nicolaou, K. C.; Magolda, R. L.; Claremon, D. A. J. Am. Chem. Soc. 1980, 102, 1404–1409.
- Trost, B. M.; Grese, T. A. J. Org. Chem. 1991, 56, 3189– 3192.
- Kahn, M.; Mitra, A.; Still, W. S. J. Org. Chem. 1978, 43, 2923–2924.