ORIGINAL PAPER

Fluorescent but 'choked' multipodands: Ag(I) complexation and NMR studies

Prabhpreet Singh¹

Received: 15 June 2020 / Accepted: 19 November 2020 / Published online: 4 January 2021 © Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract

A series of fluorescent and non-fluorescent multipodands, substituted with donor S, N, and O heteroatoms, bridged to mesitylene and benzene core at 1, 3-, 1, 3, 5-, and 1, 2, 4, 5-positions have been synthesized and characterized. The liquid–liquid extraction experiment showed that non-fluorescent podands such as mono-, di-, tri-, and tetrapod exhibited excellent complexation abilities towards Ag^+ ions. The tetrapodand (O, N) shows highest extraction of Ag^+ (73%) and tetrapodand (S, N) shows the highest Ag^+/Pb^{2+} selectivity (135). However, for fluorescent dipodands very weak complexation ability towards metal ions were observed likely due to steric crowding. Significantly, these fluorescent dipodands undergoes protonation at very low pH (ca. < 1.0), reminiscent of acid stability—a structural feature of blue copper proteins. The NMR analysis of fluorescent podands showed that amine-appended anthracene moiety(ies) almost fills the podand cavity as lid, shifting most of the protons upfield (~0.5 ppm), thus causing acid stability.

Graphic abstract

Keywords Transition metal compounds · NMR spectroscopy · Supramolecular chemistry · Fluorescence · Receptors

Introduction

Supramolecular chemistry has continuously progressed since the Nobel Prize to Cram, Lehn, and Pedersen in 1987 which led to great impetus to the development of new synthetic receptors for molecular recognition [1–9]. Podands,

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s0070 6-020-02715-1.

Prabhpreet Singh prabhpreet.chem@gndu.ac.in which are by definition, open chained analogues of crown compounds and cryptands, now exists in a many structural variations ranging from single chained basic compounds to multiarmed dendrimer like molecules and from highly flexible to rather rigidly preorganized molecular architectures [4–11]. From supramolecular point of view, podands can be divided into mono, di, tetra, oligo, or multipodands. These podands (branched oligo and multipodands) possess anchor group to which the podand segments are attached. Although in most cases of tripodands, three podand subunits are attached to nitrogen atom, but benzene platform, 1,3,5 triazines, calixarenes, cyclodextrins fused (aromatic) rings, steroids, or smaller molecules like glycolurils, displays interesting organization properties. Tetrapodands and

¹ Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India

higher polypodal structures could be constructed by considering these platforms [12–15]. Exploiting the concept of 'steric gearing' hexasubstituted benzene derivative has seen extensive use. 1,3,5-Trifunctionalised 2,4,6-(trimethyl/ ethyl)benzene derivatives, in their lowest energy conformation show that the three ethyl/methyl groups and three functional groups are oriented perpendicular to the central ring in a fully alternated up-down disposition making *ababab* type arrangement of these groups [15–18]. Our group and others have reported benzene scaffold which bears different recognition units at 1,4- and 1,3,5-positions including boronic acids, ureas, thioureas, catecholates, guanidinium, imidazolium, pyrazole, oxazolines, 8-hydroxyquinoline etc., for binding of variety of anions and cations [15, 19, 20].

In nature, blue copper proteins play a key role in long range inter- and intraprotein electron transfer and are characterized by high reduction potentials, rapid transfer rates and unique spectral features compared to normal tetragonal copper complexes [21-24]. In rusticyanin the four ligating atoms (2 N+2 S) are arranged around Cu²⁺ in a distorted tetrahedral arrangement but have high acid stability as the copper binding site is located deep within a hydrophobic region. Evidently, the potential of mixed ligating sites (S, N, O or S, N), as prevalent in nature remains more or less unexploited. The 2-aminothiophenol or 2-aminophenol which possesses N and S/O donor sites and its derivatives, have found different applications in the field of medicine, material and coordination chemistry [25–28]. We have earlier reported 2-aminothiophenol based macrocycles [29, 30] containing para-xylylene, and 9,10-anthracene units for Cu^{2+} coordination [31]. The 1,4-placement of ligating sites does not allow the convergence of all ligating sites towards one metal ion and these receptors result in formation of M_2L_2 or M_2L type complexes.

In continuation of our interest in multipodal and macrocyclic system [32, 33], we envisaged that 1,2- or 1,3-placement of the ligating sites on the benzene platform would encourage the convergence of these ligating sites towards one metal cation and these may be able to provide better receptors. Therefore, based on above discussed features and keeping in view the possible structural feature of the active cavity in Cu²⁺ proteins, and the additional stability provided by aromatic rings in the case of rusticyanin, we now report synthesis, complexation and NMR studies of 1,3-, 1,3,5-, and 1,2,4,5-multipodands based on 2-aminothiophenol and 2-aminophenol bridged to mesitylene (1,3,5-trimethylbenzene) and benzene platform. The presence of fluorescent moiety(ies) at one or more than one of these amine nitrogens would increase hydrophobic character as well as enables their evaluation through fluorescence spectroscopy.

Results and discussion

Synthesis and characterization of fluorescent multipodands

The S-alkylation of 2-aminothiophenol with 1-(bromomethyl)-2,4,6-trimethylbenzene, 1,3-bis(bromomethyl)-2,4,6-trimethylbenzene, and 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene, respectively in N,N-dimethylformamide (DMF), NaH (prewashed), and tetrabutylammonium hydrogensulfate as a phase transfer catalyst for 36 h followed by chromatographic (SiO₂) purification provides monopodand 1, dipodand 2, and tripodand 4 in excellent yields (Scheme 1). These reactions have been performed strictly in N2 atmosphere because 2-aminothiophenol leads to the formation of disulfide bond due to oxidation in air and affects the overall yield of the reaction. We also found that using potassium carbonate as base, rather than NaH gives the comparative yields of the products. These podands showed characteristics ¹H NMR signals of the 2-aminophenylthio units which includes two doublets and two triplets and broad singlet of NH₂ group.

Monopodand 1 and dipodand 2 showed two singlets for methyl protons, whereas tripodand 4 showed one singlet for methyl protons which corresponds well with unsymmetrical and symmetrical nature of podands around mesitylene core. Similarly, dipodand 3 [26] and tetrapodand 5 were synthesized by reaction of 1,3-bis(bromomethyl)benzene and 1,2,4,5-tetrakis(bromomethyl)benzene with 2-aminothiophenol under similar reaction conditions. To compare the binding ability of S with O, we also prepared tetrapodand 6 by reaction of 2-nitrophenol with 1,2,4,5-tetrakis(bromomethyl)benzene in acetonitrile using potassium carbonate as base and TBAHSO₄ as phase transfer catalyst in 60% yield, followed by reduction of NO₂ group with NiCl₂/NaBH₄ complex in methanol [36]. To distinguished between tetrapodands 5 and **6**, characteristic ¹H NMR signals of $-CH_2$ (methylene) was closely followed. The ¹H NMR peak of -CH₂ protons close to S-functionality showed upfield shift in compare to O-functionality.

To make fluorescent multipodands, an anthracene or naphthalene fluorescent bulky group(s) were attached to the anilinyl NH₂ group by reductive amination method [37]. The presence of bulky group, either at one-, two- and three-positions as per design, would create hydrophobic pockets for metal ion complexation. Monopodand 1, dipodand 2, and tripodand 4 on condensation with anthracene-9-aldehyde in THF-MgSO₄ mixture and subsequent reduction with NaBH₄ in the presence of I₂ gave fluorescent

a) NaH-DMF, TBA HSO₄; (b) K₂CO₃, CH₃CN, TBA HSO₄; (c) NiCl₂/NaBH₄, CH₃OH, NH₂NH₂.2H₂O

(a) THF, MgSO₄, 9-anthracenecarbaldehyde; (b) THF, MgSO₄, 2-naphthaldehyde and (c) NaBH₄, I₂, THF

monopodand 7, mixture of fluorescent dipodand 9 and 11, and fluorescent tripodand 14, respectively (Schemes 2, 3). Similarly, monopodand 1 and tripodand 4 on condensation with 2-naphthaldehyde and subsequent reduction with NaBH₄-I₂ gave fluorescent monopodand 8 and fluorescent tripodand 15–17 (Schemes 2, 3). All new compounds were characterized by ¹H and ¹³C NMR, FAB-MS spectra, and elemental analysis. In the ¹H NMR spectra

fluorescent monopodand 7 and 8 shows two singlets due to methyl groups, a singlet due to SCH_2 and doublet due to CH_2NH (converts to singlet on D_2O exchange) along with aromatic protons; fluorescent dipodand 9 exhibits three singlets due to three methyl groups, two singlets due to SCH_2 , one doublet due to NCH_2 along with 2-aminophenylthio protons whereas fluorescent dipodand 11 showed two singlets for methyl protons, one singlet each for SCH_2

(a) THF, MgSO₄, 9-anthracenecarbaldehyde; (b) THF, MgSO₄, 2-naphthaldehyde and (c) NaBH4, I₂, THF

and NCH₂ (δ =5.18 ppm, 4H) along with NH and aromatic H signals; fluorescent tripodand **14** exhibit two singlets for methyl group, two singlets for SCH₂ groups, a doublet due to CH₂N along with aromatic protons due to 2-aminophenylthio and anthracene moieties. Benzene based dipodand **3** on condensation with anthracene-9-aldehyde and subsequent reduction with NaBH₄-I₂ gave **10** (*m*/*z* peak at 542) and **12** (*m*/*z* peak at 732). Similarly, dipodand **3** on condensation with NaBH₄-I₂ gave **13** (*m*/*z* peak at 492) (Scheme 2).

Complexation studies for Ag(I) ions

As the process of ligand facilitated transport of cations across apolar membrane has relevance to the development of separation techniques for the cation, the extraction (complexation) properties of the podands towards Ag⁺, Pb²⁺, Tl⁺, alkali (Li⁺, Na⁺, K⁺), and alkaline earth (Mg²⁺, Ca²⁺, Sr^{2+} , Ba^{2+}) cations have been determined [38, 39]. Extraction profiles of these podands show that all these podands extract preferentially Ag⁺ over alkali, alkaline earth, and Pb²⁺ picrates. However, the percentage extraction of the Ag⁺ markedly depends on the number of 2-aminophenylthio groups present in the podands and their spatial positions. Monopodand 1 possessing only one 2-aminophenylthio group extracted only 5% Ag⁺. The presence of two 2-aminophenylthio groups at 1,3-positions of dipodand 2 increased extraction of Ag^+ to 35% which was further increased to 62% in case of tripodand 4, which possesses three 2-aminophenylthio groups at 1,3,5-positions (Fig. 1). These results clearly show that on increasing the number of aminophenylthio groups, their organization or cooperative binding with Ag^+ remarkably increases the extraction of Ag^+ from water. The cooperativity of ligating sites in tripodand **4** is also evident from the increased extraction of even alkali and alkaline earth metal ions in comparison to that of dipodand **2**. Notably, the dipodand **3** showed poor extraction (<2%) of Ag^+ and other metal ions (<0.5%). Therefore, probably the presence of methyl groups on benzene ring in dipodand **2** organizes the ligating sites on one plane of the

Fig. 1 Extraction (%) profile of picrate salts from water into $CHCl_3$ for podands 1, 2, and 4–6

benzene ring and results in enhanced extraction of Ag^+ in comparison to dipod nd **3** (Table S1).

On increasing the number of ligating sites to four in tetrapodand 5 in comparison to three ligating sites in tripodand 4, the extraction of Ag^+ decreased to 54% and points to the poor organization of four ligating sites in binding with Ag⁺. This can be attributed partially to the larger size of sulfur atom which does not allow the four-S-linkage on the same side of phenyl ring. However, on replacing the thioether linkages with ether linkages in tetrapodand 6, significant increases in extraction of Ag⁺ to 73% was observed. The increase in extraction of Ag⁺ with increasing number of ligating sites also results in increased selectivity towards Ag⁺ over similar sized Pb²⁺. Monopodand **1** extracts Ag⁺ only 12.5 times higher than Pb^{2+} but in dipodand 2 Ag⁺/Pb²⁺ selectivity increases to 70 which is further increases to 89 in tripodand 4. Tetrapodand 5 and 6 exhibit Ag⁺/Pb²⁺ selectivity of the order of 135 and 121, respectively. Amongst all these podands, **6** shows highest extraction of Ag^+ (73%) and 5 shows the highest Ag^{+}/Pb^{2+} selectivity (135).

pH titration

The solution of 9 (50 µM, CH₃CN:H₂O, 4:1) displayed absorbance maxima at 385, 366, and 350 nm and on excitation at 366 nm it exhibited fluorescence maxima at 410 nm, with two shoulders at 390 and 437 nm, typical of anthracene unit. The fluorescent multipodands 9 and 14, substituted with aryl/alkyl amine, are non-fluorescent due to efficient photoinduced electron transfer (PET) process from -NH to anthracene fluorophore. It was expected that addition of H⁺ ions will cause the protonation of aryl/alkyl amine unit and may inhibit the PET process to revive the fluorescence of anthracene. The pH titration of 9 showed that the fluorescence intensity remained unchanged between pH ca. 14-1.0 and on lowering the pH from < 1.0, the fluorescence intensity increased progressively at very low pH and it went off scale. Similarly, fluorescence of 14 remained stable up to pH 1.0. Probably, in 9 and 14 the hydrophobic environment created by the aromatic rings makes the protonation more difficult. In the preliminary fluorescence studies, most of the transition metal ions, did not modulate the fluorescence intensity of 9 and 14. Even on addition of excess of Cu²⁺ ions, no increase in the fluorescence intensity was observed. This is likely due to intramolecular π - π and π -CH interactions of the anthracene moiety with the rest of the molecule and as a result although multipodands 9 and 14 seem to have preorganized structures but ligating sites (N, S) have been embedded deep into the hydrophobic environment created by anthracene ring(s). This effect of hydrophobic environment is clearly manifested into the acid stability of these multipodands.

To investigate further the role of aromatic groups we look into the energy minimized structures of **9**, **14** and **20**, **21** (as control) which shows that the anthracene ring is by and large placed as a lid to the pseudocavity formed by two 2-aminophenylthio moieties and covers one half of the central aromatic ring near to it more efficiently than the second half of the central aromatic ring (Fig. S1). This leads to nonequivalency of SCH₂ and CH₃ protons. To further investigate the effect of aromatic group (anthracene) on complexation due to its over placement on the pseudo cavity, the ¹H NMR spectra of these fluorescent multipodands were analyzed in detail.

¹H NMR analysis of multipodands

The ¹H NMR spectra of various multipodands show that the attachment of the anthracene ring to the 1⁰ aromatic amine causes significant changes in chemical shifts of different protons but attachment of the naphthalene ring to the amine does not cause any change in the chemical shift. The comparison of ¹H NMR spectrum of fluorescent tripodand 14 with that of its parent tripodand 4 shows that in 14, the methyl protons are shifted up field by $\Delta \delta = 0.55$ and $\Delta \delta = 0.15$ ppm and SCH₂ singlets are shifted up field by $\Delta \delta = 0.30$ and $\Delta \delta = 0.25$ ppm. Similarly, the methyl protons in fluorescent dipodand 9 are shifted up field by $\Delta \delta = 0.58$, 0.47, and 0.14 ppm and SCH₂ signals are shifted up field by $\Delta \delta = 0.28$ and 0.21 ppm in comparison to chemical shift in dipodand 2. The presence of two anthracene moieties in fluorescent dipodand 11, causes enhanced up field shift of methyl ($\Delta \delta = 0.75$ ppm) and SCH₂ ($\Delta \delta = 0.46$ ppm) protons. Similar up field shift of SCH₂ and methyl protons in fluorescent monopodand 7, in comparison with those in monopodand 1 is observed (Fig. 2). However, in case of naphthyl substituted fluorescent dipodand 13 and tripodand 15, the upfield shift of < 0.10 ppm is observed (Fig. S2). We also observed that NCH₂ signals appeared at 5.18–5.22 ppm range in all podands where anthracene is attached at amine nitrogen which attributes that anthracene rings overlap on the cavity and shield the CH₃, SCH₂ protons whereas NCH₂ protons in these podands are present in the deshielding zone of the anthracene ring current. We observed that NCH₂ signals appeared upfield at 4.44-4.50 ppm in all podands where naphthalene is attached at amine nitrogen which possibly explains the presence of naphthalene very close to NCH₂ rather than CH₃ and SCH₂ and consequently NCH₂ showed upfield shift and negligible shift in case of CH_3 and SCH_2 protons (Table S2).

We also carried out comparison of ¹H NMR spectra of p-phenylene (1,4-linkage) based-fluorescent dipodands **20** and **21** (Fig. S3) [30] with their parent dipodands **18** and **19** which shows that the presence of anthracene ring shifts most

Fig. 2 The comparison of ¹H chemical shifts of 2 with 9 and 11; 4 with 14; 1 with 7

of the protons upfield. In case of **20**, the *para*-xylene ring protons become magnetically non-equivalent and are shifted upfield by 0.17 and 0.28 ppm and SCH₂ signals are shifted up field by 0.24 and 0.07 ppm, whereas, in case of **21**, SCH₂ singlets are shifted up field by 0.22 and 0.08 ppm; the OMe singlets are shifted up field by 0.46 and 0.17 ppm; aromatic H of 2, 5-dimethoxybenzene ring are shifted upfield by 0.17 and 0.13 ppm. From these results, we observed that chemical shifts of the protons are more pronounced in case of 1,3- or 1,3,5-linked podands in compare to 1,4-linked podands.

The aromatic H of 2-aminophenylthio units in podands **7**, **9**, and **14** is also shifted downfield by 0.1–0.2 ppm. This down field shift of 2-aminophenylthio ArH in comparison to upfield shift of SCH₂ and methyl protons clearly shows that SCH₂ and central methyl protons remain in shielding zone of anthracene ring i.e. in its center, whereas 2-aminophenylthio protons are placed in deshielding zone i.e. away from the anthracene ring. The ¹H NMR spectra on recording between 10^{-2} and 10^{-3} M concentrations showed constant chemical shifts and point to lack of any intramolecular interactions in aggregated state. Therefore, in **7**, **9**, **10**, and **14**, the upfield chemical shifts of protons in comparison to those in their parent amines arise due to intramolecular spatial arrangement of anthracene bulky group.

Conclusion

In conclusion, multipodands possessing 2-aminophenylthio groups at 1,3-, 1,3,5-, and 1,2,4,5-positions of benzene platform have been synthesized. Tripodand and tetrapodands showed good extraction of Ag^+ and and tetrapodand showed highest Ag^+/Pb^{2+} selectivity among the other podands. When anthracene groups were connected to the amine of the 2-aminothiophenol unit on dipodands and tripodands, anthracene ring(s) organized themselves on to cavity as lid which causes protonation of amine at low pH due to increased hydrophobicity around the podand. Thus, model structure for blue copper protein cavity could be achieved but at the loss of complexation ability towards Cu^{2+} ions. Further refinement in the model structure by considering stronger coordinating ligands to achieve both factors (hydrophobicity and copper complexation) simultaneously are currently in progress in our lab.

Experimental

Melting points were determined in open capillaries. For monitoring the progress of the reaction and for comparison with authentic samples, thin layer chromatography (tlc) was used. For this purpose, micro slides were coated with silica gel 'G' containing calcium sulfate as binder or with the silica gel HF-254 (Qualigens India), by dipping a pair of slides held back to back in slurry of adsorbent in chloroform-methanol (80:20). The chromatograms were developed in iodine chamber or with UV-254 lamp. Separation of various components was carried out by column chromatography using silica gel 60-120 mesh (Qualigens, India) as adsorbent and hexane, ethyl acetate and their mixtures as eluents. All the fractions collected from column chromatography were compared with chromatograms of the reaction mixture (tlc) for checking their identity and purity. ¹H NMR spectra were recorded on JEOL 300 MHz instrument using CDCl₃ solutions containing tetramethylsilane as an internal standard. Abbreviations used for splitting patterns are s = singlet, bs = broadsinglet, t = triplet, q = quartet, m = multiplet, dd = doubledoublet. ¹³C NMR spectra were recorded at 75 MHz. Mass spectra were recorded at Central Drug Research Institute, Lucknow. Elemental analyses (C, H, N, S) of the samples were performed on a Thermoelectron FLASH EA1112, CHNS analyzer and their results were found to be in good agreement $(\pm 0.3\%)$ with the calculated values. Absorption and emission spectra were obtained respectively on Shimadzu UV-1601 spectrophotometer and on Shimadzu RF-1501 spectrofluorophotometers with 1 cm quartz cells.

2-Aminothiophenol, 2-naphthaldehyde, 1, 3, 5-trimethylbenzene, 1,2,4,5-tetramethylbenzene, TBAHSO₄, and 9-anthracenealdehyde were procured from Aldrich, Spectrochem (India), Loba Chemie, and were used without further purification. 1-(Bromomethyl)-2,4,6trimethylbenzene, 1,3-bis(bromomethyl)-2,4,6-trimethylbenzene, 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene [34], 1,3-bis(bromomethyl) benzene, and 1,2,4,5-tetrakis(bromomethyl)benzene [35] were prepared according to the published procedures and their ¹H NMR spectra were found to be identical with the ones described in references. Moisture-sensitive reactions were performed under N₂ atmosphere. CH₂Cl₂ was freshly distilled from CaH₂, THF from Na/benzophenone, CH₃OH from Mg wire, CH₃CN from P₂O₅, and DMF dried over 4 Å molecular sieves. Other solvents such as hexane, ethyl acetate, chloroform, and acetone were of LR grade and were distilled before use. Water was doubly distilled. Metal salts were of analytical grade. Chloroform and acetonitrile used for extraction studies were of AR grade. Compounds 1-4 and 6 have been already published in literature and physical properties, e.g. ¹H and ¹³C NMR spectra were found to be identical with the ones described in Refs. [40-43].

General procedure for the synthesis of podands 1 and 5

In two neck round bottomed flask, 94 mg pre-washed NaH (3.95 mmol) was taken in dry DMF and 648 mg

2-aminothiophenol (5.19 mmol) was added with stirring under N₂ atm at 40 ± 2 °C. The stirring was continued for 20 min. After the hydrogen evolution ceased, TBA HSO₄ (25–30 mg) and 500 mg 1-(bromomethyl)-2,4,6-trimethylbenzene (2.35 mmol) were added and stirring was continued for additional 24–30 h. During this period reaction was completed (tlc). The suspended solid was filtered off and was washed with ethyl acetate. The combined filtrate was distilled off under vacuum. Recrystallization from CHCl₃–CH₃OH (1:1) produce **1**.

2-[(2,4,6-Trimethylbenzyl)thio]aniline (1, C₁₆H₁₉NS)

Yield 0.42 g (70%); thick liquid; ¹H NMR (300 MHz, CDCl₃): δ =7.24 (d, *J*=7.5 Hz, 1H, ArH), 7.01 (t, *J*=7.5 Hz, 1H, ArH), 6.74 (s, 2H, ArH), 6.51–6.59 (m, 2H, ArH), 4.22 (s, 2H, NH₂, exchanges with D₂O), 3.87 (s, 2H, CH₂S), 2.23 (s, 6H, 2 CH₃), 2.17 (s, 3H, CH₃) ppm; ¹³C NMR (75 MHz, CDCl₃): δ =148.3, 136.7, 136.1, 135.9, 130.7, 129.6, 128.7, 118.1, 117.9, 114.5, 33.8, 20.7, 19.2 ppm; MS (FAB): *m*/*z*=257 (M⁺).

2,2[′],2^{′′′},2^{′′′}-[1,2,4,5-Benzenetetrayltetrakis(methylenethio)]-tetraaniline (5, $C_{34}H_{34}N_4S_4$)

Yield 0.42 g (60%); solid; m.p.: 118–121 °C; ¹H NMR (300 MHz, CDCl₃): δ =7.16 (d, *J*=7.5 Hz, 4H, ArH), 7.11 (t, *J*=7.5 Hz, 4H, ArH), 6.68 (d, *J*=7.5 Hz, 4H, ArH), 6.62 (t, *J*=7.5 Hz, 4H, ArH), 6.60 (s, 2H, ArH), 4.23 (bs, 8H, 4 NH₂, exchanges with D₂O), 3.78 (s, 8H, 4 CH₂S), ppm; ¹³C NMR (75 MHz, CDCl₃): δ =148.7, 136.5, 135.1, 132.6, 130.1, 118.5, 117.1, 114.9, 36.1, ppm; MS (FAB): *m/z*=626 (M⁺).

General procedure for the synthesis of multipodands 7, 9–12, 14

The solution of 300 mg 2 (0.760 mmol) and 205 mg anthracenecarbaldehyde (1.0 mmol) in 30 cm³ dry THF containing suspension of 365 mg dry MgSO₄ (3.04 mmol) was stirred for 48 h at room temperature. MgSO₄ was filtered off and washed with dry THF. The combined filtrate was recollected and to this solution of 68 mg NaBH₄ (1.89 mmol) and 193 mg I_2 (0.759 mmol) was added and was stirred at room temperature for additional 2 h. Then, reaction mixture was refluxed for 36 h. The reaction mixture was cooled; 20 cm³ methanolic KOH (2%) was added and was stirred for 2 h. Then, reaction mixture was diluted with water and was extracted with CH₂Cl₂. The solvent was distilled off and the residue was purified through column chromatography over silica using CH₂Cl₂—hexane as an eluent to get 9 and 11. Similar reactions of diamines 3, 4, and 1 with anthracenecarbaldehyde gave respective fluoroionophores 10 and 12, 14, and 7.

2-[[3-[[(2-Aminophenyl)thio]methyl]-2,4,6-trimethylbenzyl] thio]-*N*-(anthracen-9-ylmethyl)aniline (9, C₃₈H₃₆N₂S₂)

Yield 0.13 g (30%); solid; m.p.: 124–125 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.50 (s, 1H, ArH), 8.28 (d, *J* = 7.5 Hz, 2H, ArH), 8.05 (d, *J* = 7.5 Hz, 2H, ArH), 7.40–7.53 (m, 6H, ArH), 7.21 (d, *J* = 7.5 Hz, 1H, ArH), 7.00–7.09 (m, 2H, ArH), 6.73 (t, *J* = 7.5 Hz, 1H, ArH), 6.58–6.63 (m, 3H, ArH), 5.36 (bs, NH, 1H, exchanges with D₂O), 5.21 (d, *J* = 3.6 Hz, 2H, CH₂NH, converts to singlet on D₂O exchange), 4.23 (bs, 2H, NH₂, exchanges with D₂O), 3.76 (s, 2H, CH₂S), 3.69 (s, 2H, CH₂S), 2.16 (s, 3H, CH₃), 1.83 (s, 3H, CH₃), 1.75 (s, 3H, CH₃) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 149.4, 148.4, 136.6, 136.5, 136.1, 136.1, 135.9, 131.7, 131.5, 131.2, 130.7, 130.5, 129.9, 129.8, 129.1, 128.0, 126.5, 125.1, 124.1, 118.5, 118.2, 118.1, 117.1, 114.7, 109.8, 40.6, 34.8, 34.7, 19.6, 19.0, 14.5 ppm; MS (FAB): *m/z*=585 [(M+1)⁺].

$\label{eq:2.2} 2,2^{'}-[[(2,4,6-Trimethyl-1,3-phenylene)bis(methylene)] - bis(sulfanediyl)]bis[N-(anthracen-9-ylmethyl)aniline] (11, C_{53}H_{46}N_2S_2)$

Yield 0.06 g (10%); solid; m.p.: 230–232 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.47 (2H, s, ArH), 8.24 (4H, d, J=9.0 Hz, ArH), 8.02 (4H, d, J=9.0 Hz, ArH), 7.43–7.50 (m, 8H, ArH), 7.30–7.34 (m, 4H, ArH), 6.98 (d, 2H, J=7.5 Hz, ArH), 6.69 (t, J=7.5 Hz, 2H, ArH), 6.34 (s, 1H, ArH), 5.29 (bs, 2H, 2 NH, exchanges with D₂O), 5.18 (bs, 4H, 2 CH₂NH), 3.51 (s, 4H, 2 CH₂S), 1.59 (s, 3H, CH₃), 1.58 (s, 6H, 2 CH₃) ppm; ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ =149.3, 136.5, 135.9, 131.5, 131.1, 130.5, 130.5, 129.7, 129.1, 128.0, 126.5, 125.1, 124.1, 118.0, 117.1, 109.7, 40.6, 34.4, 18.9, 14.0 ppm; MS (FAB): m/z=774 (M⁺).

2-[[3-[[(2-Aminophenyl)thio]methyl]benzyl]thio]-*N*-(anthracen-9-ylmethyl)aniline (10, C₃₅H₃₀N₂S₂)

Yield 0.09 g (20%); solid; m.p.: 85–87 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.51 (s, 1H, ArH), 8.26 (d, J = 7.5 Hz, 2H, ArH), 8.06 (d, J = 7.5 Hz, 2H, ArH), 7.46–7.54 (m, 4H, ArH), 7.38 (t, J = 7.5 Hz, 1H, ArH), 7.25 (d, J = 7.5 Hz, 1H, ArH), 7.14 (d, J = 7.5 Hz, 1H, ArH), 7.04 (d, J = 7.5 Hz, 1H, ArH), 7.01 (d, J = 7.5 Hz, 1H, ArH), 6.83–6.88 (m, 2H, ArH), 6.66–6.70 (m, 2H, ArH), 6.59 (d, J = 7.5 Hz, 1H, ArH), 6.56 (s, 1H, ArH), 6.55 (t, J = 7.5 Hz, 1H, ArH), 6.00 (s, 1H, NH, exchanges with D₂O), 5.19 (s, 2H, CH₂NH), 3.60 (s, 2H, CH₂S), 3.56 (s, 2H, CH₂S) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 149.1, 148.4, 138.1, 137.7, 136.7, 136.2, 131.5, 130.6, 130.5, 129.9, 129.1, 128.1, 128.0, 127.3, 127.3, 126.5, 125.1, 124.1, 118.3, 117.3, 117.3, 117.0, 114.7, 110.0, 40.7, 39.3, 39.1 ppm; MS (FAB): *m*/*z* = 542 (M⁺).

2,2[']-[[1,3-Phenylenebis(methylene)]bis(sulfanediyl)]bis[*N*-(anthracen-9-ylmethyl)aniline] (12, C₅₀H₄₀N₂S₂)

Yield 0.05 g (8%); solid; m.p.: 177–180 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.41 (s, 2H, ArH), 8.18 (d, J = 8.2 Hz, 4H, ArH), 7.96 (d, J = 9.0 Hz, 4H, ArH), 7.38–7.48 (m, 8H, ArH), 7.29 (t, J = 7.5 Hz, 2H, ArH), 7.16 (d, J = 7.5 Hz, 2H, ArH), 6.93 (d, J = 7.5 Hz, 2H, ArH), 6.69 (t, J = 7.5 Hz, 2H, ArH), 6.60 (t, J = 7.5 Hz, 2H, ArH), 6.55 (d, J = 7.5 Hz, 2H, ArH), 6.22 (s, 1H, ArH), 5.12 (bs, 2H, 2 NH, exchanges with D₂O), 5.06 (bs, 4H, 2 CH₂NH), 3.36 (s, 4H, 2 CH₂S) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 149.1, 137.5, 136.4, 131.5, 130.4, 129.1, 128.9, 128.0, 127.1, 126.4, 125.1, 124.0, 117.3, 117.0, 109.9, 40.7, 38.9 ppm; MS (FAB): m/z = 732 (M⁺).

$\label{eq:2.2} 2,2^{'}-[[[5-[[[2-[(Anthracen-9-ylmethyl)amino]phenyl]thio]-methyl]-2,4,6-trimethyl-1,3-phenylene]bis(methylene)]-bis(sulfanediyl)]dianiline (14, C_{45}H_{43}N_3S_3)$

Yield 0.09 g (23%); solid; m.p.: 187–190 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.50 (s, 1H, ArH), 8.28 (d, *J* = 7. 5 Hz, 2H, ArH), 8.05 (d, *J* = 7.5 Hz, 2H, ArH), 7.40–7.53 (m, 6H, ArH), 7.21–7.23 (m, 2H, ArH), 7.03–7.10 (m, 3H, ArH), 6.74 (t, *J* = 7.5 Hz, 1H, ArH), 6.60–6.66 (m, 4H, ArH), 5.35 (bs, 1H, NH, exchanges with D₂O), 5.22 (d, *J* = 2.7 Hz, 2H, CH₂NH, converts to singlet on D₂O exchange), 4.25 (bs, 4H, 2 NH₂, exchanges with D₂O), 3.77 (s, 4H, 2 CH₂S), 3.72 (2H, s, CH₂S), 2.24 (s, 3H, CH₃), 1.84 (s, 6H, 2 CH₃) pm; ¹³C NMR (75 MHz, CDCl₃): δ = 149.4, 148.4, 136.5, 136.0, 135.8, 135.6, 132.0, 131.5, 130.7, 130.5, 129.8, 129.1, 128.0, 126.5, 125.2, 124.1, 118.6, 118.2, 118.0, 117.2, 114.8, 109.8, 40.6, 35.4, 15.7, 15.1 ppm; MS (FAB): *m/z* = 721 (M⁺).

N-(Anthracen-9-ylmethyl)-2-[(2,4,6-trimethylbenzyl)thio] - aniline (7, C₃₁H₂₉NS)

Yield 0.11 g (22%); solid; m.p.: 147–149 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.50 (s, 1H, ArH), 8.28 (d, *J* = 7.5 Hz, 2H, ArH), 8.05 (d, *J* = 7.5 Hz, 2H, ArH), 7.40–7.53 (m, 6H, ArH), 7.08 (d, *J* = 7.5 Hz, 1H, ArH), 6.72 (t, *J* = 7.5 Hz, 1H, ArH), 6.59 (s, 2H, ArH), 5.38 (bt, *J* = 4.2 Hz, 1H, NH exchanges with D₂O), 5.22 (d, *J* = 4.2 Hz, 2H, CH₂NH converts to singlet on D₂O exchange), 3.69 (s, 2H, CH₂S), 2.11 (s, 3H, CH₃), 1.79 (s, 6H, 2 CH₃) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 149.4, 137.1, 136.6, 136.4, 131.6, 130.6, 130.5, 130.1, 129.1, 128.7, 128.0, 126.5, 125.1, 124.1, 118.2, 117.1, 109.8, 40.6, 33.9, 20.8, 18.8 ppm; MS (FAB): *m*/*z* = 447 (M⁺).

General procedure for synthesis of multipodands 8, 13, 15–17

The solution of 300 mg compound 3 (0.852 mmol) and 159 mg 2-naphthaldehyde (1.0 mmol) in 30 cm³ dry THF containing suspension of 271 mg dry $MgSO_4$ (2.25 mmol) was stirred for 48 h at room temperature. After the completion of the reaction (tlc), MgSO₄ was filtered off and washed with dry THF. The combined filtrate was recollected and to this solution of 77 mg NaBH₄ (2.12 mmol) and 143 mg I_2 (0.57 mmol) was added and reaction was stirred at room temperature for 2 h. Then reaction mixture was further refluxed for 36 h. The reaction mixture was cooled; 20 cm³ methanolic KOH (2%) was added and stirred for additional 2 h. The reaction mixture was diluted with water and was extracted with CH₂Cl₂. The solvent was distilled off and the residue was purified through column chromatography over silica using CH₂Cl₂—hexane as an eluent to get 13. Similar reaction of diamine 4 and 1 with 2-naphthaldehyde gave fluorescent multipodand 15-17 and 8.

2-[[3-[[(2-Aminophenyl)thio]methyl]benzyl]thio]-N-(naphthalen-2-ylmethyl)aniline (13, C₃₁H₂₈N₂S₂)

Yield 0.075 g (18%); thick liquid; ¹H NMR (300 MHz, CDCl₃): δ = 7.75–7.83 (m, 4H, ArH), 7.42–7.49 (m, 3H, ArH), 6.89–7.28 (m, 8H, ArH), 6.56–6.66 (m, 4H, ArH), 4.43 (s, 2H, CH₂NH), 3.82 (s, 2H, CH₂S), 3.76 (s, 2H, CH₂S) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 149.3 148.4, 138.3, 136.7, 136.6, 136.3, 133.4, 132.7, 130.4, 129.9, 129.3, 128.8, 128.3, 127.7, 127.6, 127.5, 127.4, 126.1, 125.7, 125.5, 118.4, 117.4, 117.1, 117.0, 114.8, 110.5, 48.1, 39.8, 39.4 ppm; MS (FAB): m/z = 492 (M⁺).

2,2[']-[[[2,4,6-Trimethyl-5-[[[2-[(naphthalen-2-ylmethyl)amino]phenyl]thio]methyl]-1,3-phenylene]bis(methylene)]bis(sulfanediyl)]dianiline (15, C₄₁H₄₁N₃S₃)

Yield 0.095 g (25%); solid; m.p.: 126–128 °C; ¹H NMR (300 MHz, CDCl₃): δ =7.81–7.85 (m, 4H, ArH), 7.45–7.48 (m, 3H, ArH), 7.40 (d, *J*=7.5 Hz, 1H, ArH), 7.28 (d, *J*=7.5 Hz, 2H, ArH), 7.19 (t, *J*=7.5 Hz, 1H, ArH), 7.10 (t, *J*=7.5 Hz, 2H, ArH), 6.62–6.71 (m, 6H, ArH), 4.55 (bs, 1H, NH, exchanges with D₂O), 4.49 (s, 2H, CH₂NH), 4.03 (bs, 4H, 2 NH₂, exchanges with D₂O), 4.01 (s, 2H, CH₂S), 3.93 (s, 4H, 2 CH₂S), 2.35 (s, 3H, CH₃), 2.30 (s, 6H, 2 CH₃) ppm; ¹³C NMR (75 MHz, CDCl₃): δ =149.4, 148.4, 136.6, 136.5, 136.1, 135.8, 133.5, 132.7, 132.3, 130.4, 129.9, 128.4, 127.7, 127.7, 126.2, 125.7,125.6, 118.6, 118.2, 117.9, 117.2, 114.8, 110.5, 48.2, 35.9, 35.5, 15.8 ppm; MS (FAB): *m*/*z* = 672 [(M + 1)⁺].

2,2[']-[[[5-[[(2-Aminophenyl)thio]methyl]-2,4,6-trimethyl-1,3-phenylene]bis(methylene)]bis(sulfanediyl)]bis[*N*-(naphthalen-2-ylmethyl)aniline] (16, C₅₂H₄₉N₃S₃)

Yield 0.12 g (26%); solid; m.p.: 133–135 °C; ¹H NMR (300 MHz, CDCl₃): δ =7.78–7.83 (m, 8H, ArH) 7.44–7.47 (m, 6H, ArH), 7.36 (d, *J*=7.5 Hz, 2H, ArH), 7.23 (d, *J*=7.5 Hz, 1H, ArH), 7.14 (d, *J*=7.5 Hz, 1H, ArH), 7.10 (d, *J*=7.5 Hz, 1H, ArH), 7.07 (d, *J*=7.5 Hz, 1H, ArH), 6.59–6.67 (m, 6H, ArH), 5.58 (t, *J*=5.4 Hz, 2H, 2 NH, exchanges with D₂O), 4.47 (d, *J*=5.1 Hz, 4H, 2 CH₂NH, converts to singlet on D₂O exchange), 4.24 (bs, 2H, NH₂, exchanges with D₂O), 3.95 (s, 4H, 2 CH₂S), 3.85 (s, 2H, CH₂S), 2.28 (s, 6H, 2 CH₃), 2.26 (s, 3H, CH₃) ppm; ¹³C NMR (75 MHz, CDCl₃): δ =149.3, 148.4, 136.6, 136.4, 136.0, 135.7, 133.4, 132.7, 132.3, 132.2, 130.4, 129.8, 128.4, 127.7, 127.7, 126.2, 125.7, 125.7, 125.5, 118.6, 118.2, 117.9, 117.2, 114.8, 110.5, 103.3, 48.2, 35.8, 35.5, 15.8 ppm; MS (FAB): *m/z*=811 (M⁺).

2,2',2''-[[(2,4,6-Trimethylbenzene-1,3,5-triyl)tris-(methylene)]tris(sulfanediyl)]tris[*N*-(naphthalen-2-ylmethyl)aniline] (17, C₆₃H₅₇N₃S₃)

Yield 0.11 g (20%); solid; m.p.: 140–142 °C; ¹H NMR (300 MHz, CDCl₃): δ =7.75–7.80 (m, 12H, ArH), 7.41–7.46 (m, 9H, ArH), 7.31 (d, *J*=7.5 Hz, 3H, ArH), 7.12 (t, *J*=7.5 Hz, 3H, ArH), 6.56–6.63 (m, 6H, ArH), 5.54 (bt, 3H, NH, exchanges with D₂O), 4.44 (d, *J*=4.8 Hz, 6H, 3 CH₂NH, converts to singlet on D₂O exchange), 3.88 (s, 6H, 3 CH₂S), 2.23 (s, 9H, 3 CH₃) ppm; ¹³C NMR (75 MHz, CDCl₃): δ =149.2, 136.6, 136.3, 135.7, 133.4, 132.7, 132.3, 130.3, 128.4, 127.7, 126.2, 125.7, 125.6, 125.4, 117.9, 117.2, 110.5, 48.2, 35.8, 15.8 ppm; MS (FAB): *m/z*=952 [(M+1)⁺].

N-(Naphthalen-2-ylmethyl)-2-[(2,4,6-trimethylbenzyl)thio]aniline (8, C₂₇H₂₇NS)

Yield 0.14 g (30%); thick liquid; ¹H NMR (300 MHz, CDCl₃): δ = 7.76–7.84 (m, 4H, ArH), 7.36–7.48 (m, 4H, ArH), 7.14 (t, *J* = 7.5 Hz, 1H, ArH), 6.76 (s, 2H, ArH), 6.58–6.63 (m, 2H, ArH), 5.62 (t, *J* = 5.4 Hz, 1H, NH, exchanges with D₂O), 4.45 (d, *J* = 5.4 Hz, 2H, CH₂NH converts to singlet on D₂O exchange), 3.96 (s, 2H, CH₂S), 2.22 (s, 6H, 2 CH₃), 2.21 (s, 3H, CH₃) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 149.4, 136.9, 136.6, 136.5, 133.4, 132.7, 131.0, 130.3, 128.9, 128.3, 127.7, 126.1, 125.7, 125.5, 118.1, 117.1, 110.3, 48.2, 34.5, 20.9, 19.4 ppm; MS (FAB): *m*/*z* = 397 (M⁺).

Extraction of metal picrates

For the extraction experiments, metal picrate solutions $(0.001 \text{ mol } \text{dm}^{-3})$ were prepared in deionised distilled water. The solutions of receptors $(0.001 \text{ mol } \text{dm}^{-3})$ were prepared in chloroform (A.R Grade). An aqueous solution (2 cm^3) of a metal picrate $(0.001 \text{ mol } \text{dm}^{-3})$ and a chloroform solution (2 cm^3) of a receptor $(0.001 \text{ mol } \text{dm}^{-3})$ in a cylindrical tube closed with a septum was shaken for 5 min and kept at 27 ± 1 °C for 3–4 h. An aliquot of the chloroform layer (1 cm^3) was withdrawn with a syringe and diluted with acetonitrile to 10 cm^3 . The UV absorption was measured against CHCl₃-CH₃CN (1:9) solution at 374 nm. Extraction of the metal picrate has been calculated as the percentage of the metal picrate extracted in the chloroform layer and values are the mean of the three independent measurements which were within ± 0.02 error.

Acknowledgements We thank DST, New Delhi for financial assistance and FIST programme, UGC, New Delhi for CAS programme.

References

- 1. Pedersen CJ (1967) J Am Chem Soc 89:2495
- 2. Dietrich B, Lehn JM, Sauvage JP (1969) Tetrahedron Lett 10:2885
- Cram DJ, Kaneda T, Helgeson RC, Lein GM (1979) J Am Chem Soc 101:6752
- 4. Swager TM, Mirica KA (2019) Chem Rev 119:1
- Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P, Kumar S (2012) Coord Chem Rev 256:1992
- Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W (2019) Chem Rev 119:10403
- Dhiman S, Ahmad M, Singla N, Kumar G, Singh P, Luxami V, Kaur N, Kumar S (2020) Coord Chem Rev 405:213138
- 8. You L, Zha D, Anslyn EV (2015) Chem Rev 115:7840
- 9. Mako TL, Racicot JM, Levine M (2019) Chem Rev 119:322
- Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J (2018) Chem Soc Rev 47:8842
- Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2017) Chem Soc Rev 46:7105
- 12. Vogtle F, Weber E (1979) Angew Chem Int Ed 18:753
- Gokel GW, Murillo O (1996) Podands. In: Atwood JL, Davies JED, McNicol DD, Vogtle F (eds) Comprehensive supramolecular chemistry, vol 1. Elsevier Science, Oxford, p 1
- 14. Weber E, Vogtle F (1980) Inorg Chim Acta 45:L65
- 15. Hennrich G, Anslyn EV (2002) Chem Eur J 18:2218
- 16. Diaz SG, Lynch V, Anslyn EV (2002) J Supramol Chem 2:201

- 17. McNicol DD, Wilson DR (1976) J Chem Soc Chem Commun 5:355
- 18. Simaan S, Siegel JS, Biali SE (2003) J Org Chem 68:3699
- 19. Filby MH, Steed JW (2006) Coord Chem Rev 250:3200
- Singh P (2006) Design and synthesis of amine and thioether based acyclic and cyclic receptors. Ph.D. Thesis, Guru Nanak Dev University, Amritsar, India
- Romero A, Nar H, Huber R, Messerschmidt A, Kalverda AP, Canters DR, Mathews FS (1994) J Mol Biol 236:1196
- 22. Hay M, Richards JH, Lu Y (1996) Proc Natl Acad Sci USA 93:461
- 23. Buning C, Comba P (2000) Eur J Inorg Chem 2000:1267
- 24. Buning C, Canters GW, Comba P, Dennison C, Jeuken L, Melter M, Sanders-Loehr J (2000) J Am Chem Soc 122:204
- Parveen S, Khan MOF, Austin SE, Croft SL, Yardley V, Rock P, Douglas KT (2005) J Med Chem 48:8087
- Cross ED, Shehzad UA, Lloy SM, Brown ARC, Mercer TD, Foster DR, McLellan BL, Murray AR, English MA, Bierenstiel M (2011) Synthesis 2:303
- Prabhakaran R, Geetha A, Thilagavathi M, Karvembu R, Krishnan V, Bertagnolli H, Natarajan K (2004) J Inorg Biochem 98:2131
- 28. Gok Y, Karabiicek S, Misir MN (1996) Transit Met Chem 21:331
- 29. Kaur S, Kumar S (2004) Tetrahedron Lett 45:5081
- 30. Kaur S, Kumar S (2002) J Chem Soc Chem Commun 31:2840
- 31. Kumar S, Singh P, Kaur S (2007) Tetrahedron 63:11724
- 32. Singh P, Kumar S (2007) J Incl Phenom Macrocycl Chem 58:89
- 33. Singh P, Kumar S (2007) J Incl Phenom Macrocycl Chem 59:155
- 34. Van der Made AW, Van der Made RH (1993) J Org Chem 58:1262
- 35. Wilhelm W (1952) J Org Chem 17:523
- 36. Osby JO, Ganem B (1985) Tetrahedron Lett 26:6413
- McKennon MJ, Meyers AI, Drauz K, Schwarm M (1993) J Org Chem 58:3568
- Moore SS, Tarnowski TL, Newcomb M, Cram DJ (1977) J Am Chem Soc 99:6398
- Koeing KE, Lehn JM, Stuckler P, Kaneda T, Cram DJ (1979) J Am Chem Soc 101:3553
- Edward D, Shehzad UA, Lloy SM, Brown ARC, Mercer TD, Foster DR, McLellan BL, Murray AR, English MA, Bierenstiel M (2011) Synthesis 43:303
- 41. Singh N, Kaur N, Callan JF (2009) J Fluoresc 19:649
- 42. Kaur N, Singh N, Cairns D, Callan JF (2009) Org Lett 11:2229
- 43. Abbas AA, Elwahy AHM (2009) Arkivoc 10:65

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.