AGRICULTURAL AND FOOD CHEMISTRY

Article

Subscriber access provided by UNIVERSITY OF CONNECTICUT

Comparison of aroma character impact volatiles of Thummong leaves (Litsea petiolata Hook. f.), Mangdana water beetle (Lethocerus indicus) and a commercial product as flavoring agents in Thai traditional cooking

Kanjana Mahattanatawee, Torsak Luanphaisarnnont, and Russell Rouseff

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.7b01499 • Publication Date (Web): 06 Jul 2017 Downloaded from http://pubs.acs.org on July 7, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society.

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Comparison of aroma character impact volatiles of Thummong leaves (*Litsea petiolata* Hook. f.), Mangdana water beetle (*Lethocerus indicus*) and a commercial product as flavoring agents in Thai traditional cooking

Kanjana Mahattanatawee¹*, Torsak Luanphaisarnnont² and Russell Rouseff³

¹Department of Food Technology, Faculty of Science, Siam University, 38 Petchkasem Road, Phasicharoen, Bangkok 10160, Thailand; ²Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand; ³ Citrus Research Institute of Southwest University , Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Xiema, Beibei, Chongqing, China

*AUTHOR EMAIL ADDRESS kanjana@siam.edu Tel/Fax 662 867 8026

TITLE RUNNING HEAD : Character impact volatiles in Thummong and Mangdana

2 Comparison of aroma character impact volatiles of Thummong leaves (Litsea petiolata

Hook. f.), Mangdana water beetle (*Lethocerus indicus*) and a commercial product as
flavoring agents in Thai traditional cooking

5 ABSTRACT

6 Thummong (*Litsea petiolata* Hook, f.) is a tree native to southern Thailand. The leaves of this tree are 7 highly aromatic and used to flavor Thai dishes in place of the traditional water beetle Mangdana 8 (Lethocerus indicus) for religious and cultural reasons. Total and aroma active volatiles from both 9 flavoring materials were compared using GC-O and GC-MS. The volatiles from Thummong leaves and 10 the Mangdana water beetle were collected and concentrated using headspace SPME. Twenty-three and twenty-five aroma active volatiles, were identified in Thummong leaves and Mangdana respectively. 11 12 The major aroma active volatiles in Thummong leaves consisted of seven aldehydes, five ketones, and 13 three esters. In contrast, the aroma active volatiles in the water beetle consisted of 11 aldehydes and 14 three esters, and two ketones. Both had (E)-2-nonenal as the most intense aroma active volatile. The 15 water beetle character impact volatile (*E*)-2-hexenyl acetate was absent in the leaves, but its aroma 16 character was mimicked by 11-dodecen-2-one in the leaves which was absent in the beetle. In addition, 17 a commercial Mangdana flavoring was examined using GC-O and GC-MS and found to contain only a 18 single aroma active volatile, hexyl acetate. All three flavoring sources exhibited similar aroma 19 characteristics but produced from profoundly different aroma active volatiles.

- 20 KEYWORDS: Thai food flavoring, plant volatiles, insect volatiles
- 21
- 22
- 23

24 INTRODUCTION

One of the natural flavoring sources in traditional Thai foods comes from the volatile compounds of a water beetle Mangdana (*Lethocerus indicus*). This edible insect is used for both flavoring and a source of protein. In Thailand, villagers in the rural northeast and north, use a local water beetle as both a food and a flavoring¹. Only the male water beetle produces the desired aroma. The aroma from this beetle is an important flavoring material in Thai cuisine, especially in "nam prig" or chili sauce dishes.

30 Previously (*E*)-2-hexenyl acetate was reported as the character impact compound in Mangdana water

31 beetle². This was subsequently confirmed by omission studies using an aroma reconstitution model³.

32 Thummong (*Litsea petiolata* Hook, f.) is a tree native to southern Thailand. The leaves of this tree are 33 highly aromatic and have been used in Thai cooking in place of the water beetle Mangdana as they have 34 a similar sensory character. There is also a cultural/religious reason for this substitution as the 35 population in southern Thailand is predominantly Muslim and insects are considered unclean. Both the 36 leaf and the insect are popular, natural flavoring agents in Thai traditional dishes but they have limited 37 availability in some areas and the beetle is only available during certain times of the year. A commercial 38 artificial Mangdana flavoring has been produced to replace the natural sources. Since all three sources of 39 flavoring are used for the same purpose in Thai traditional dishes there was a question if the similar 40 sensory characteristics were the result of the same character impact aroma active volatiles. The purpose 41 of this study was to compare and contrast the aroma active volatiles in these flavoring substances. The 42 resulting GC-olfactory profiles (based on the grouping of aroma active volatiles with similar character) 43 of both flavoring materials will be compared with each other as well as with the results from classical 44 sensory profiling (quantitative descriptive analysis).

45 MATERIALS AND METHODS

46 Chemicals

- 47 Hexanal, octanal, 1-octen-3-one, nonanal, methional, (*E*)-2-nonenal, (*Z*)-2-nonenal, octanol, (*E*,*E*)-2,4-
- 48 decadienal, decanal, (E,Z)-2,6-nonadienal, (E,E)-2,4-nonadienal, (E,Z)-2,4-decadienal, β -ionone, ethyl
- 49 2-methylbutanoate, (Z)-3-hexenal, ethyl pentanoate, (E)-2-hexenal, ethyl hexanoate, (E)-2-heptenal, 2-
- 50 methyl-3-furanthiol, cis-rose oxide, (*E*)-2-heptenyl acetate, 1-hexanol, dimethyl trisulfide, (*E*)-2-hexenol,
- 51 (Z)-3-hexen-1-ol, cis-linalool oxide, (E,E)-2,4-octadienal, butanoic acid, (E)-2-decenal, hexanoic acid,
- 52 2-hexenoic acid, and guaiacol were obtained from Sigma-Aldrich Co. LLC. R-(-)-carvone, β-
- 53 damascenone, and acetaldehyde were gifts from Huangshan Kehong Bio-flavors Co. Ltd. China. Acetic
- 54 acid was purchased from Fisher. 2-Acetyl-2-thiazoline, (*E*)-2-hexenyl acetate, (*E*)-2-hexenyl butyrate,
- and 2-undecanone were gifts from Givaudan (Thailand) Ltd. 11-Dodecen-2-one was not commercially
- 56 available and was synthesized in the lab.

57 Synthesis of 11-dodecen-2-one

58 To a solution of undec-10-enal (3.0 mL, 15 mmol) in THF (15 mL) at 0°C under inert nitrogen 59 atmosphere, was added dropwise a solution of 3M methylmagnesium bromide in THF (5.5 mL, 16.5 60 mmol, 1.1 equiv.). The reaction was allowed to warm to room temperature. After 12 h, methanol (2 mL) 61 was slowly added dropwise. Saturated aqueous NH_4Cl (20 mL) was added. The reaction was diluted 62 with EtOAc (20 mL) and poured into a separatory funnel. The layers were separated and the aqueous 63 layer was extracted with EtOAc (3×20 mL). The combined organic extracts were washed with brine (60 mL), dried over Na₂SO₄, and concentrated. The crude dodec-11-en-2-ol was used without further 64 65 purification. To a solution of chromium (VI) oxide, toxic! (1.5 g, 15 mmol, 1 equiv.) in 4 M sulfuric 66 acid (95 mL) at 0°C, was added a solution of crude dodec-11-en-2-ol in acetone (15 mL) dropwise over 67 15 min. The reaction mixture was allowed to warm to room temperature. After 6 h, the reaction 68 mixture was diluted with EtOAc (100 mL) and poured into a separatory funnel. The layers were

Page 5 of 19

Journal of Agricultural and Food Chemistry

separated and the aqueous layer was extracted with EtOAc (3×80 mL). The combined organic extracts 69 were washed with brine (200 mL), dried over Na₂SO₄, and concentrated. Flash column 70 71 chromatography (5% EtOAc in hexane) gave the desired product as colorless oil (1.85 g, 68% over two steps). The observed NMR spectra of the synthesized dodec-11-en-2-one consisted of: ¹H NMR (400 72 MHz, CDCl₃) δ 5.80 (dd, 1H, J = 10, 17 Hz); 4.90–5.00 (m, 2H); 2.41 (t, 2H, J = 7.5 Hz); 2.13 (s, 3H); 73 1.90-2.10 (m, 2H); 1.54-1.59 (m, 2H); 1.25-1.38 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 209.3, 74 75 139.2, 114.1, 43.8, 33.8, 29.8, 29.3, 29.2, 29.1, 29.0, 28.9, 23.8. The observed spectral data matched that of the published NMR spectra of dodec-11-en-2-one⁴. ¹H NMR (CDCl₃): d = 1.19-1.56 (m, 10 H), 76 1.95-2.42 (m, 7 H), 2.38 (t, 2 H, J = 7.3 Hz), 4.87-5.00 (m, 2 H), 5.67-5.87 (m, 1 H). ¹³C NMR 77 78 (CDCl₃): d = 23.8, 28.8, 29.0, 29.1, 29.2, 29.3, 29.8, 33.7, 43.7, 114.0, 139.0, 209.2.

79

80 Sample and Headspace Sampling

Thummong leaves were cut into 0.5 cm^2 small pieces within three days of being harvested. One gram of 81 cut leaves was placed into a 40 mL glass vial (La-Pha-Pack, Germany). The vial headspace was purged 82 83 with nitrogen before sealing with a Teflon-coated septum. The sample was equilibrated at 40 °C for 15 min in a water bath and a 2 cm 50/30 µm divinylbenzene/Carboxen/-polydimethylsiloxane 84 85 (DVB/Carboxen/PDMS) Stable Flex fiber (Supelco, Bellefonte, PA) was exposed to the leaf headspace 86 volatiles for 30 min. The sorbed leaf volatiles were introduced into the GC injector set at 200 °C. Fresh 87 frozen water beetle Mangdana was purchased from a local market. The sample preparation of the beetle 88 was the same as the leaf except using only five grams of the cut up water bug. A commercial liquid 89 Mangdana flavoring was purchased from a local supermarket in Bangkok, Thailand and a100 µL aliquot 90 analysed in the same manner as the leaf and bug.

91 Gas Chromatography-FID/Olfactometry

92 Volatiles were separated and evaluated using an Agilent GC 7890 equipped with a sniffing port. 93 Samples were run separately on both a polar (DB-wax, J&W Scientific, Folsom, CA; 30 m. × 0.32 mm. 94 i.d. \times 0.5 µm film thickness) and a 5% phenyl, 95% dimethyl-polysiloxane nonpolar column (Zebron 95 ZB-5, Phenomenex, Torrance, CA; 30 m. \times 0.32 mm. i.d. \times 0.5 µm film thickness.). Oven temperature 96 was programmed from 40 to 220 °C at 7 °C/min for both columns. Helium was used as carrier gas at a 97 flow rate of 1.5 mL/min. Injector and detector temperature were 200 °C and 250 °C, respectively. A 0.75 98 mm. injector liner was employed to improve peak shape and chromatographic efficiency. Injections 99 were splitless. The column effluent was split, 1/3rd of the flow was conducted to the FID and the other 100 2/3rds to the olfactory port for sniffing with previously mixed humid air. Two assessors, trained in a similar way to Dreher and coworkers⁵, evaluated each sample in triplicate on both ZB-5 and DB-Wax 101 102 columns. Odor descriptors and retention times were recorded for every sample. Assessors rated odor 103 intensity continuously throughout the chromatographic separation process using a linear potentiometer as previously described⁶. Intensities of all odor-active compounds of each GC-O run were normalized so 104 105 the highest intensity from each assessor was given a score of 10. The normalized intensities of all the 106 runs were then averaged. A peak was considered odor-active only if at least half of the panel responses 107 found a similar odor quality at the same retention time. Identification of volatiles was determined by 108 comparing standard Linear Retention Index (LRI) values from both FID and MS data from samples with 109 those from authentic standards. MS fragmentation patterns were also used to aid identification when 110 available. Identifications were confirmed by comparing odor quality of standards and unknowns at the 111 same retention time. Since the primary goal of this study was to determine character impact volatiles, the 112 aroma character of the unseparated SPME extract was compared to that of the initial samples. The 113 sorbed SPME volatiles were introduced to GC injection port and carried to the sniffer using a short (1 114 m.) fused silica column to confirm the similarity to the original sample.

115 Mass Spectrometry

116 GC-MS was employed to confirm the identities of the odor-active volatiles identified in the GC-O 117 experiments. Headspace SPME volatiles were separated and analyzed using an Agilent GC 7890 118 guadrupole mass spectrometer and a DB-Wax capillary column (30 m. \times 0.25 mm. i.d. \times 0.50 µm film 119 thickness). The carrier gas was helium in the constant flow mode of 2 mL/min. The source was set at 120 200 °C, the transfer line was maintained at 260 °C, and the injector was at 200 °C. The oven 121 temperature program consisted of a linear gradient from 40 to 220 °C at 7 °C/min with a 2 min final 122 hold. Electron ionization in the positive ion mode was used (70 eV), either scanning a mass range from 123 m/z 25 to 300 or acquiring data in the selected ion mode. Mass spectra matches were made by 124 comparison with NIST 2005 version 2.0 standard spectra (NIST, Gaithersburg, MD). Only those 125 compounds with spectral fit values ≥ 800 were considered positive identifications. Authentic standards 126 were also used to confirm identifications whenever available.

127 Sensory Aroma Profile Analysis

The aroma attributes for Thommong leaf and Mangdana beetle were evaluated using panels from 128 129 Thailand who have had life-long experiences with both samples. One gram of chopped leaf and 3 grams 130 of Mangdana beetle were separately presented to the panel in 40 ml screw cap glass vials at room 131 temperature. The panel consisted of fifteen experienced panelists (age 22-50 years, 13 females and 2 132 males) and employed consensus sensory description. The eight consensus attributes consisted of: "sweet 133 herbaceous", "metallic", "green", "sweet", "cheesy", "creamy", "cooked" and "savory". Eight reference 134 solutions for each of the aroma attributes were prepared at 50-fold greater than their odor thresholds in 135 water: 2-hexenyl acetate (sweet herbaceous), (E)-2-nonenal (metallic), hexenal (green), vanillin (sweet), 136 butanoic acid (cheesy), cream milk powder (creamy), methional (cooked) and chicken stock (savory). 137 The panelists were asked to rate the intensity of eight attributes in each sample on a scale from 0 to 5 (0 138 stands for not perceivable and 5 for very high intensity).

RESULTS AND DISCUSSION

140 GC-O Aroma Active Volatiles

As shown in Table 1, a total of 23 aroma active volatiles were observed in Thummong leaves and 25 aroma volatiles in the Mangdana water beetle using GC-Olfactometry, GC-O. Although a total of 43 aroma active volatiles were observed from both samples, only five volatiles were common to both samples. Aldehydes constituted the major aroma active functional group (17) listed in Table 1, followed by equal numbers of esters, alcohols, and ketones (six each).

146 The overall intense, sweet, herbaceous character of both samples was due to completely different 147 volatiles. In the case of Thummong leaves the intense herbaceous aroma was due to 11-dodecen-2-one, 148 but in the case of the Mangdana water beetle, the same aroma character was produced by (E)-2-hexenyl 149 acetate. Both of these character impact volatiles were confirmed by matching sensory descriptors using 150 GC-O as well as matching retention times of standards as well as corresponding MS spectral matches. A commercial source of (*E*)-2-hexenyl acetate was used as a standard but 11-dodecen-2-one had to be 151 synthesised⁴ as no commercial source was available. Both compounds were described as intensely 152 153 sweet herbaceous which is surprising as they differ profoundly in terms of general structure and 154 functional group (ester versus a ketone). The character impact volatile in Mangdana water beetle has been previously reported as (E)-2-hexenyl acetate² and was later confirmed as the only character impact 155 volatile in omission studies of an aroma reconstitute model³. This volatile also occurs naturally in many 156 fruits such as strawberry, and yellow passion fruit 7,8 . 157

158 The five aroma volatiles common to both samples consisted of (*Z*)-3-hexenal, methional, (*E*)-2-nonenal,

159 guaiacol, and β -ionone. Both samples had a strong metallic/fatty aroma component due to (*E*)-2-

160 nonenal. The lower molecular weight (Z)-3-hexenal produced a stronger (8 versus 2 intensity) green

161 aroma in the water beetle than the leaf. The remaining three common aroma volatiles, methional,

162 guaiacol and β -ionone where all about twice as intense in the water beetle as in the leaf. In fact, the

Page 9 of 19

Journal of Agricultural and Food Chemistry

sum of all the aroma active intensities in the water beetle were almost twice as high as the total

164 intensities from the leaves (176 versus 97).

As seen in Table 1, the functional group composition was somewhat different between the leaf and the beetle. The leaves were characterized by fewer aldehydes (seven versus eleven) and more ketones (five versus two). Both samples contained the same number of alcohols and esters (three and three). The water beetle contained three volatile acids whereas the leaf contained none.

169 In an attempt to compare the overall aroma impressions of the Thummong leaf and the Mangdana water 170 bug using GC-O data, the individual aroma attributes and their corresponding aroma intensities were 171 classified into eight categories. Those aroma volatiles with similar sensory descriptors were placed in 172 the same group. The categories consisted of: fatty/waxy, metallic, green, sweet/herbaceous, cheesy, 173 fruity/floral, cooked, and meaty/sulfur. These aroma quality groupings were chosen to match as closely 174 as possible to the consensus aroma descriptors developed in a parallel sensory study which will be 175 discussed later. These GC-O category results are shown in the radar or spider web graphics in Figure 176 2A.

177 Both samples were characterized by having strong fatty/waxy, metallic, green, and fruity/floral 178 characteristics as determined by summing the aroma intensities in each category. Both character impact 179 compounds were major contributors to the sweet herbaceous category and accordingly rated either 9 or 180 10. However, the relative contribution of the character impact compound was greater in the leaf because 181 it contained less aroma active volatiles in other categories. Both samples contained similar total aroma 182 intensities in the metallic, green, and cooked aroma categories. The water beetle exhibited greater 183 fatty/waxy and cheesy total intensities compared to the leaf. On the other hand the leaf had stronger 184 fruity/floral and meaty/sulfur relative intensities. Overall, the summarized aroma category profiles were 185 reasonably similar for both products.

186 Sensory Panel Aroma Descriptive Analysis

187 Average sensory panel descriptive analysis scores for the eight consensus attributes are shown in Figure 188 2B. There were similar panel scores for only two attributes, sweet herbaceous and sweet. The similar 189 intense sweet herbaceous scores were probably due to the respective character impact volatiles observed 190 in the GC-O studies. The panel indicated that the leaf contained strong green, sweet herbaceous, and 191 metallic aroma attributes. However, the leaf exhibited very weak creamy, cooked, and savory scores. In 192 contrast, the water beetle possessed strong aroma intensities in these same categories, namely; cooked, savory, creamy, and cheesy attributes. These scores on the left hand side of the spider web diagram are 193 194 so profoundly different between the two samples, suggesting that the panel found these two flavor 195 sources to be different even though the major character sensory attribute was very strong in both cases. 196 In comparing the GC-O patterns with the sensory patterns (Figures 2A and 2B), it is important to keep in 197 mind that the aroma values are evaluated in very different ways. In GC-O, aromas are evaluated 198 individually whereas sensory analysis evaluates mixtures of aroma compounds. It is probably the reason 199 why some of the sensory panel aroma attributes such as "creamy" or "savory" were not observed in the 200 GC-O study. These attributes were probably not due to a single volatile, but rather combinations of 201 aroma volatiles. Therefore, where there is agreement of GC-O summary data with such sensory 202 attributes as "green", "metallic", and "sweet herbaceous", it is because these sensory attributes are 203 largely due to single components rather than mixtures.

204 GC-MS Chromatograms

GC-MS was carried out to evaluate all of the major volatiles in the three samples and to confirm the identities of the character impact compounds in the three samples tentatively identified in the GC-O studies. The total ion chromatograms, TIC, of the three samples are shown in Figure 3 with major peaks identified in the figure caption. It can be seen from the relative peak heights that the character impact volatiles for both Thummong leaves (11-dodecen-2-one) and Mangdana water beetle (E-2-hexenyl

Page 11 of 19

Journal of Agricultural and Food Chemistry

acetate) were also the dominant peaks. They represent a rare example where the character impact volatile is also the single largest peak in the chromatogram (Fig. 3). The fragmentation patterns of the character impact volatile from Mangdana (A), (*E*)-2-hexenyl acetate, Thummong leaf (B) matched both those in the spectral library and standards, thus confirming their identifications. They have similar smells but are produced from totally different chemical compounds. There are limited reports of the aroma active volatile, 11-dodecen-2-one, but it has been reported as a specific ketone volatile in Changyu XO (a Chinese brandy) comparable to Hennessy XO (a well-known French liquor)⁹.

217 Commercial Mangdana flavoring

218 A commercial Mangdana flavoring was also evaluated using GC-O and GC-MS. In the case of GC-O, 219 only a single aroma active peak was observed at a retention time different than either of the other two 220 character impact volatiles. The TIC chromatogram shown in Figure 3C is also very simple, consisting 221 of essentially one peak. The fragmentation pattern of this peak matched almost perfectly with hexenyl 222 acetate. Standard hexenyl acetate produced the same GC-O retention time and sensory response. Thus 223 the commercial product is not natural nor nature identical. From a chemical point of view it is 224 interesting in that it uses a chemical analogue of the water beetle character impact volatile, (E)-2-225 hexenyl acetate, without the double bond which is probably a more stable and/or a less expensive 226 material.

227 ACKNOWLEDGMENT

We are grateful to Givaudan (Thailand) Ltd., and Huangshan Kehong Bio-flavors Co. Ltd. China for the generous gift of authentic aroma standards. We also express our sincere thanks to the panelists from the laboratory Department of Food Technology, Siam University. The work has been financially supported from Siam University.

233 **REFERENCES**

234	(1) Pemberton, R. W. The use of the Thai giant waterbug, lethocerus-indicus (hemiptera,
235	belostomatidae), as human food in California, Pan-Pacific Entomol. 1988, 64, 81-82.
236	(2) Mahattanatawee, K.; Rouseff, R. L. Character impact volatiles of Thai water bugs "Mangda"
237	(Lethocerus indicus). In: Proceedings of the 9 th Wartburg symposium on flavour chemisty and
238	biology: Advances and challenges in flavor chemistry and biology. Freising, Germany 2010,
239	394-397.
240	(3) Kiatbenjakul, P.; Intarapichet, K.; Cadwallader, K.R. Characterization of potent odorants in male
241	giant water beetle (Lethocerus inducus Lep. And Serv.), an important edible insect of Southeast
242	Asia. Food Chem. 2015, 168, 639-647.
243	(4) Schulze, A.; Giannix, A. Oxidation of alcohols with catalytic amounts of IBX. <i>Synthesis</i> 2006 , <i>2</i> ,
244	257–260.
245	(5) Dreher, J. G.; Rouseff, R. L.; Naim, M. GC-olfactometric characterization of aroma volatiles
246	from the thermal degradation of thiamine in model orange juice. J. Agric. Food Chem. 2003, 51,
247	3097-3102.
248	(6) Bazemore, R.; Goodner, K.; Rouseff, R. Volatiles from unpasteurized and excessively heated
249	orange juice analysed with solid phase microextraction and GC-Olfactometry. J. Food Sci. 1999,
250	64, 800-803.
251	(7) Schieberle, P.; Hofmann, T. Evaluation of the character impact odorants in fresh strawberry
252	juice by quantitative measurements and sensory studies on model mixtures. J. Agric. Food
253	Chem. 1997, 45, 227–232.

Page 13 of 19

Journal of Agricultural and Food Chemistry

254	(8) Werkhoff, P.; Guntert, M.; Krammer, G.; Sommer, H.; Kaulen, J. Vacuum headspace method in
255	aroma research: flavor chemistry of yellow passion fruits. J. Agric. Food Chem. 1998, 46, 1076-
256	1093.
257	(9) Zhao, Y.P.; Wang, L.; Li, J.M.; Pei, G.R.; Liu, Q.S. Comparison of volatile compounds in two
258	brandies using HS-SPME coupled with GC-O, GC-MS and sensory evaluation. S. Afr. J. Enol.
259	<i>Vitic.</i> 2011 , <i>32</i> , 9-20.
260	
261	
262	
263	
264	
265	
266	
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	
277	
278	13

2	7	Q
4	1	2

280 FIGURE CAPTIONS

- 281 Figure 1 Synthesis of 11-dodecen-2-one
- Figure 2 (A) Spider graph of GC-O aroma active compounds from Table 1 which have been grouped
- according to similar odor. The group values are graphed as percent of total intensity from each product
- for each category. Mangdana beetle (---) and Thummong leaves (---) (B) Average sensory panel
- 285 Quantitative Descriptive values comparing scores from Mangdana beetle (---) and Thummong leaves (-).
- **Figure 3** Comparison of the character impact volatile from Mangdana beetle (A), Thummong leaves (B)
- and commercial Mangdana flavoring (C). a = hexanal, b = (E)-2-hexenal, c = (E)-2-hexenyl acetate, d = (E)-2-hexenyl
- 288 (E)-2-hexenol, e = (E)-2-hexenyl butyrate, f = 2-hexenoic acid, g = (E)-2-heptenal, h = cis-rose oxide, i
- 289 = nonanal, j = (E)-2-nonenal, k = 2-undecanone, l = 11-dodecen-2-one, m = carvone, n = (E,Z)-2,4-
- 290 decadienal, o = hexyl acetate
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303

Journal of Agricultural and Food Chemistry

Table 1 A	Aroma active	volatiles in	Mangdana	water beetle	and Thummong leaves
-----------	--------------	--------------	----------	--------------	---------------------

Identification		LRI		MS		Intensity		Aroma
		Wax	DB-5	Ident.	Odor Descriptors	Bug	Lea f	Group
1	1 Acetaldehyde		539	TIC	solvent like		2	
2	ethyl 2-methylbutanoate	1063	847	TIC	fruity		2	F
3	Hexanal	1076	795	TIC	green	6		С
4	(Z)-3-hexenal	1128	795	EIC	green	8	2	С
5	ethyl pentanoate	1142	899	TIC	fruity		1	F
6	(E)-2-hexenal	1215	855	EIC	green, metallic, sweet	9		С
7	ethyl hexanoate	1244	998	TIC	fruity		2	F
8	Octanal	1279	982	EIC	citrusy	8		F
9	(E)-2-heptenal	1284	954	TIC	green		2	С
10	1-octen-3-one	1292	977	EIC	mushroom	6		В
11	(<i>E</i>)-2-hexenyl acetate	1323	1020	TIC	sweet herbaceous	9		D
12	2-methyl-3-furanthiol*	1326	861	*	cooked, meaty		4	G
13	cis-rose oxide	1363	1157	TIC	floral		3	F
14	(E)-2-heptenyl acetate	1366		TIC	green, fatty	8		С
15	1-hexanol	1393	865	TIC	green, leaf		7	С
16	dimethy trisulfide*	1400	985	*	sulfury, cabbage-like		10	Н
17	(E)-2-hexen-1-ol	1403	880	TIC	green, leafy	6		С
18	(Z)-3-hexen-1-ol	1407	847	TIC	fresh, green, grassy		3	С
19	nonanal	1410	1100	TIC	green, soapy		1	С
20	acetic acid	1439	680	TIC	vinegar	10		Е
21	methional*	1442	909	*	cooked potato	8	4	G
22	cis-linalool oxide	1467	1214	TIC	floral, green		4	F
23	(<i>E</i>)-2-hexenyl butanoate	1471	1193	TIC	floral	5		F
24	Decanal	1501	1201	TIC	fresh mint, citrusy	5		С
25	(Z)-2-nonenal	1519	1149	EIC	fatty, metallic, geranium	9		А
26	(<i>E</i>)-2-nonenal	1529	1161	TIC	metallic, fatty	10	10	В
27	1-octanol	1578	1078	EIC	fatty	7		А
28	(E,Z)-2,6-nonadienal	1594	1161	TIC	green, metallic		5	С
29	(E,E)-2,4-octadienal	1607	1110	EIC	fatty	4		А
30	butanoic acid	1617	1609	TIC	cheesy, sweaty	8		Е
31	2-undecanone	1618	1300	TIC	waxy, fatty sweet		9	А
32	(E)-2-decenal	1665	1250	EIC	green, fatty	5		С
33	11-dodecen-2-one	1676	1287	TIC	sweet herbaceous		10	D
34	(E,E)-2,4-nonadienal	1710	1220	EIC	fatty	5		А
35	R-(-)-carvone	1745	1245	TIC	minty		2	С
36	2-acetyl-2-thiazoline*	1750	1109	*	cooked jasmine rice	6		G
37	(E,Z)-2,4-decadienal	1796	1313	TIC	fatty, green		4	А
38	(E,E)-2,4-decadienal	1806	1284	EIC	fatty, cooked grain	4		А
39	hexanoic acid	1837	1085	TIC	sweaty, cheesy	9		Е
40	Guaiacol	1851	1091	EIC	smoke, medicine	4	2	G
41	β -damascenone	1855	1395	EIC	sweet honey		3	D
42	β -ionone	1934	1496	EIC	raspberry, floral	9	5	F
43	2-hexenoic acid	1958	1614	EIC	musty, fatty, sweaty	8		А

Journal of Agricultural and Food Chemistry

- 304 Volatile compounds identified by matching: retention characteristics on both wax and DB-5 columns,
- 305 their sensory aroma characteristics, and their MS spectra with those of authentic standards.
- 306 TIC = full spectrum identification match, EIC = extraction ion chromatograms retention time match
- 307 using a single base ion. * Tentatively identified on the basis of aroma descriptors and retention time
- 308 matches with literature values. Aroma group categories: A = fatty/waxy, B = metallic, C = green, D =
- 309 sweet/herbaceous, E = cheesy, F = fruity/floral, G = cooked, H = meaty/sulfur.

Figure 1.

Page 19 of 19

337 TOC graphic

338

Thai Magdana flavored Chili Sauce

339

340