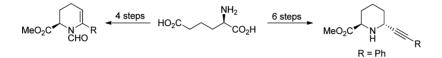
6-Alkynyl- and 6-Aryl-Substituted (*R*)-Pipecolic Acid Derivatives


Amina Sadiq and Norbert Sewald*

Department of Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany

norbert.sewald@uni-bielefeld.de

Received April 18, 2013

ABSTRACT

(R)- α -Aminoadipic acid is a readily available enantiomerically pure starting material for the synthesis of (R)-pipecolic acid and its derivatives. Sonogashira or Suzuki cross-coupling reactions of an *N*-formyl pipecolate-derived vinyl bromide furnish 6-alkynyl or aryl derivatives. Reduction with sodium cyanoborohydride and subsequent *N*-deformylation provide 6-alkynyl substituted (*R*)-pipecolic acid derivatives, valuable building blocks for amino acid and peptide chemistry.

Amino acids are versatile chiral pool building blocks in peptide chemistry, organic synthesis, and organocatalysis.¹ D-Amino acids are not as abundant in Nature as the L-configured counterparts. However, D-amino acids significantly influence the conformation of e.g. cyclic peptides.² α -Aminoadipic acid, the homologue of glutamic acid, is a naturally occurring amino acid found in green plants and microorganisms.^{3,4} It is an intermediate in lysine metabolism.⁵ (*R*)- α -Aminoadipic acid 1 constitutes the acyl substituent present in penicillin N and cephalosporin C. It is cleaved in the semisynthesis of β -lactam antibiotics to give 7-aminocephalosporanic acid (7-ACA), which is subsequently acylated in order to introduce different side chains. Only recently, an enzymatic process was developed, which provides (R)- α -aminoadipic acid in large quantities by cleavage from the fermentation product cephalosporin C using cephalosporin acylase.⁶

(*R*)- α -Aminoadipic acid has been proven to be a convenient chiral pool starting material for the synthesis of (*R*)-pipecolic acid and its derivatives.⁷ Pipecolic acid, also known as homoproline or piperidine-2-carboxylic acid, is a component of several secondary metabolites in plants and fungi. (*S*)-Pipecolic acid occurs in many natural products with interesting biological activities, like the anticancer agent VX710,⁸ the antibiotic sandramycin,⁹ the immuno-suppressants FK 506¹⁰ and rapamycin,¹¹ the histone deacetylase (HDAC) inhibitors WF-3161 and Cyl-2,¹² and the ATPase inhibiting efrapeptins and neo-efrapeptins.¹³ (*R*)-Pipecolic acid is a constituent of the HDAC inhibitors trapoxin A and apicidin.¹⁴ Substituted derivatives of pipecolic acid are valuable building blocks for

ORGANIC LETTERS XXXX Vol. XX, No. XX 000-000

^{(1) (}a) Moloney, M. G. Synthons derived from aspartic and glutamic acid. In *Amino Acid Derivatives: A practical approach*; Barrett, G. C., Ed.; Oxford University Press: Oxford, 1999. (b) Xie, H.; Hayes, T.; Gathergood, N. Catalysis of Reactions by Amino Acids. In *Amino Acids, Peptides and Proteins in Organic Chemistry*; Hughes, A. B., Ed.; Wiley-VCH: Weinheim, 2009.

⁽²⁾ Royo Gracia, S.; Gaus, K.; Sewald, N. Future Med. Chem. 2009, 1, 1289–1310.

⁽³⁾ Barton, H. R. D.; Herve, Y.; Potier, P.; Thierry, J. *Tetrahedron* **1987**, 4297–4308.

⁽⁴⁾ Takano, S.; Kamikubo, T.; Moriya, M.; Ogasawara, K. Synthesis 1994, 601–604.

⁽⁵⁾ Zhu, X.; Tang, G.; Galili, G. Biochem. J. 2000, 351, 215-220.

⁽⁶⁾ Sonawane, V. C. Crit. Rev. Biotechnol. 2006, 26, 95–120.

⁽⁷⁾ Sadiq, A.; Sewald, N. ARKIVOC 2012, (v), 28-36.

⁽⁸⁾ Germann, U. A.; Shlyakhter, D.; Mason, V. S.; Zelle, R. E.; Duffy, J. P.; Galullo, V.; Armistead, D. M.; Saunders, J. O.; Boger, J.; Harding, M. W. Anticancer Drugs 1997, 8, 125–140.

⁽⁹⁾ Boger, D. L.; Chen, J.-H.; Saionz, K. W. J. Am. Chem. Soc. 1996, 118, 1629–1644.

⁽¹⁰⁾ Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Am. Chem. Soc. **1990**, 112, 5583–5601.

⁽¹¹⁾ Gatto, G. J., Jr.; Boyne, M.T., II; Kelleher, N. L.; Walsh, C. T. J. Am. Chem. Soc. **2006**, 128, 3838–3847.

⁽¹²⁾ Taunton, J.; Collins, J. L.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 10412-10422.

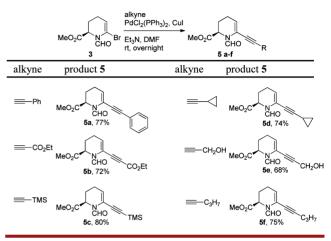
⁽¹³⁾ Weigelt, S.; Huber, T.; Hofmann, F.; Jost, M.; Ritzefeld, M.; Luy, B.; Freudenberger, C.; Majer, Z.; Vass, E.; Greie, J. C.; Panella, L.; Kaptein, B.; Broxterman, Q. B.; Kessler, H.; Altendorf, K.; Hollósi, M.; Sewald, N. *Chem.—Eur. J.* **2012**, *18*, 478–487.

⁽¹⁴⁾ Miller, T. A.; Witter, D. J.; Belvedere, S. J. Med. Chem. 2003, 46, 5097–5116.

structure–activity relationship studies. It is assumed that 6-substituted derivatives of pipecolic acid can act as mimics of *cis*-prolyl peptide bonds as compared to the 5-substituted proline derivatives.¹⁵ They exhibit potential bioactivity and also serve as starting material for the synthesis of biologically active piperidine alkaloids.¹⁶ However, only a few routes are available for the synthesis of 6-substituted pipecolic acid derivatives.¹⁷ Therefore, it was of interest to synthesize 6-substituted derivatives of pipecolic acid which could be further incorporated into peptides for conformational studies.

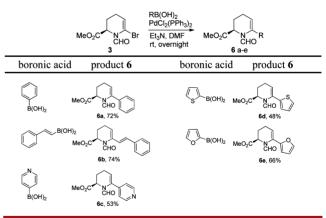
Methyl 6-oxopipecolate **2** was prepared from (R)- α aminoadipic acid by esterification and subsequent lactamization during Kugelrohr distillation in excellent yield according to a protocol published for (*S*)-6-oxopipecolic acid.¹⁸ Vilsmeier–Haack reaction of amides or lactams is reported to give compounds like the 5-formyl-6-halogenated derivative **4**.^{7,19} Treatment of **2** with DMF and POBr₃ under different conditions gave **3** (Scheme 1). Interestingly, similar compounds, e.g. triflates, are obtained in much more complicated procedures.^{22a} *N*-Formylated products have been reported²⁰ as intermediates that are deformylated upon addition of excess POCl₃. However, in our case the *N*-formyl compound **3** was formed as the only product as confirmed by DEPT and HSQC experiments.

Scheme 1. Bromo-*N*-formylation vs Vilsmeier–Haack Formylation of (*R*)-Methyl 6-Oxopipecolate


1 –	MeOH, SOCI ₂ Kugelrohr distillation		DMF, POC CHCl ₃ , reflu ref 7 , POBr ₃ , solven	ux ► MeO	4 ^H
	solvent	equiv POBr ₃	<i>t</i> (h)	temp (°C)	3 yield 3 (%)
1.	CH_2Cl_2	2	18	rt	70
2.	CH_2Cl_2	2.5	2	40	84
3.	CHCl ₃	3	18	rt	60
4.	CHCl ₃	2.5	3	70	74
5.	$C_2H_4Cl_2$	3	3	90	78

The vinyl bromide **3** turned out to be a favorable starting material for Sonogashira and Suzuki cross-coupling

- (16) Kadouri-Puchot, C.; Comesse, S. Amino Acids 2005, 29, 101-130.
- (17) Cant, A. A.; Sutherland, A. Synthesis 2012, 44, 1935–1950.

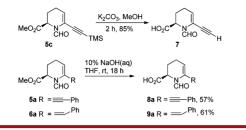

reactions (Schemes 2 and 3). Sonogashira cross-coupling combines, e.g., a vinyl bromide and a terminal alkyne. An array of alkyne substituted derivatives of (R)-pipecolic acid was prepared using catalytic amounts of PdCl₂(PPh₃)₂ and CuI in the presence of Et₃N as the base. The coupled products were obtained in good-to-high yields.

Scheme 2. Synthesis of (*R*)-Pipecolic Acid Derivatives by Sonogashira Cross-Coupling Reaction

The high enantiomeric purity (ee > 99%) of **5a** was verified by chiral HPLC (CHIRALPAK AD).

Scheme 3. Synthesis of (*R*)-Pipecolic Acid Derivatives via Suzuki Cross-Coupling Reactions

Application of Suzuki cross-coupling reactions with compound **3** and suitable boronic acids in the presence of PdCl₂(PPh₃)₂ as the catalyst gave an array of 6-aryl or 6-*trans-* β -styryl substituted derivatives of (*R*)-pipecolic acid under mild conditions in good yields (Scheme 3). Exemplarily, compound **6a** was shown to be enantiomerically pure (*ee* > 99%) by chiral HPLC (CHIRALPAK AD).


^{(15) (}a) Maison, W.; Lützen, A.; Kosten, M.; Schlemminger, I.; Westerhoff, O.; Saak, W.; Martens, J. J. Chem. Soc., Perkin Trans. 1 **2000**, 1867–1871. (b) Maison, W. Synthesis and application of proline and pipecolic acid derivatives: Tools for stabilization of peptide secondary structure. In *Highlights in Bioorganic Chemistry, Methods and Applications*; Schmuck, C., Wennemers, H., Eds.; Wiley-VCH: Weinheim, 2004; pp 18–29.

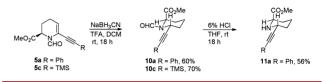
⁽¹⁸⁾ Huang, S.-B.; Nelson, J. S.; Weller, D. D. Synth. Commun. 1989, 19, 3485–3496.

⁽¹⁹⁾ Tabart, M.; Picaut, G.; Franc, J.; Desconclois, O.; Malen, D. S.; Huet, Y.; Berthaud, N. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 919–921.

⁽²⁰⁾ Andreani, A.; Bellini, S.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Zini, M.; Stefanelli, C.; Masotti, L.; Shoemaker, H. R. J. Med. Chem. **2010**, *53*, 5567–5575.

Scheme 4. Desilylation of 5c and Ester Hydrolysis of 5a and 6a

Desilylation of **5c** was performed under basic conditions using K_2CO_3 in MeOH to give **7** in 85% yield. Cleavage of the methyl ester²¹ was carried out exemplarily on compounds **5a** and **6a** using 10% aq NaOH in THF to give the free carboxylic acids **8a** and **9a** (Scheme 4).


N-Acyl substituted 2,3-dehydropiperidines can be reduced with NaCNBH₃ in the presence of TFA according to Toyooka et al.²² The acyliminium salt initially formed by protonation is attacked by the hydride. Likewise, the 6-alkynyl substituted *N*-formyl enamines of type **5** can be reduced in the presence of 8 equiv of TFA and 4 equiv of NaCNBH₃ at ambient temperature to stereoselectively give the 2,6-*trans*-disubstituted pipecolic acid derivatives **10** in 60–70% yield. Noteworthy, the reduction requires higher TFA concentrations and reaction temperatures than similar conversions described.²²

The assignment of the NMR signals was achieved using COSY and HMBC experiments, while the (2R,6R)-configuration of **10** was established on the basis of ¹H NMR coupling constants and supported by NOESY experiments. H-2 gives rise to a dd with very similar coupling constants (**10a**: 5.9 Hz, 2.2 Hz; **11a**: 4.0 Hz, 4.0 Hz, whereas H-6 resonates as a dd with largely different coupling constants (**10a**: 11.8 Hz, 3.2 Hz; **11a**: 11.8 Hz, 3.2 Hz). This supports an equatorial–axial and an equatorial–equatorial relationship for H-2 and an axial–axial relationship together with an axial–equatorial one for H-6, which establishes the *trans*-configuration for the two protons and substituents, respectively (Scheme 5).

(22) (a) Toyooka, N.; Nemoto, H.; Kawasaki, M.; Martin Garraffo, H.; Spandec, T. F.; Daly, J. W. *Tetrahedron* **2005**, *61*, 1187–1198. (b) Toyooka, N.; Nemoto, H. *Heterocycles* **2005**, *66*, 549–555. The de was determined by ¹H NMR to be >98%, while the enantiomeric purity was complete according to chiral HPLC (CHIRALPAK AD).

Cleavage of the *N*-formyl group in **10a** was investigated under both acidic²³ and basic²⁴ conditions. The *N*-formyl group resisted basic conditions but was smoothly cleaved under acidic conditions. Treatment with 6% HCl solution in the presence of MeOH as solvent gave the target (2R,6R)-pipecolic acid derivative **11a** in 56% yield (Scheme 5).

Scheme 5. Reduction of the *N*-Formyl Enamine and *N*-Deformylation

In conclusion, we have developed an efficient protocol for the synthesis of 6-substituted (2R,6R)-pipecolic acid derivatives starting from (R)- α -aminoadipic acid by Sonogashira and Suzuki cross-coupling reactions, respectively, followed by diastereoselective *N*-formyl iminium reduction with NaCNBH₃ and *N*-deformylation.

Acknowledgment. The authors acknowledge the German Academic Exchange Service (DAAD) for the award of a PhD fellowship to Amina Sadiq. Sandoz GmbH, Kundl, Austria, and Trend Materials GmbH, Linz, Austria, provided the starting material (R)- α -aminoadipic acid.

Supporting Information Available. Experimental procedures and full spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽²¹⁾ Mapelli, C.; Elrod, F. L.; Hott, M. E.; Stammer, H. C. Tetrahedron 1989, 45, 4377–4382.

⁽²³⁾ Somei, M.; Yamada, F.; Kurauchi, T.; Nagahama, Y.; Hasegawa, M.; Yamada, K.; Teranishi, S.; Sato, H.; Kaneko, C. *Chem. Pharm. Bull.* **2001**, *49*, 87–96.

⁽²⁴⁾ Nakayama, K.; Thompson, J. W. J. Am. Chem. Soc. 1990, 112, 6936–6942.

The authors declare no competing financial interest.