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Abstract : A general strategy was developed to synthesize ¢o-methylthioalkyl glucosinolates through a 
coupling reaction between 1-thio-~-D-glucopyranose and a hydroximoyl halide obtained from the 
corresponding nitroalkyl methylsulfide precursor. Copyright © 1996 Elsevier Science Ltd 

Glucosinolates constitute a family of biologically-significant natural compounds, found in all cruciferous 
plants, whose physiological activity has been widely documented. 1 More than one third of the ca. 100 actually 
registered glucosinolate structures bear an external thio-function - namely sulfide, sulfoxide or sulfone - in their 
aglycon part, as represented in 1 : 
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Notwithstanding the wide distribution of compounds 1 in cruciferous vegetables and their marked 
biological activity, 2 they have been so far the less studied among glucosinolates : no specific analytical 
protocols, nor synthetic pathways are available to date, which hampers further exploration of this odd family of 
molecules - particularly with regard to the physiology of taste. 3 

We report here a synthesis of the three simplest representatives in the series of co-methylthioalkyl 
glucosinolates 1 (x = 0), namely glucoviorylin l a  (n = 2), glucoibervirin l b  (n = 3) and glucoerucin l c  (n = 4), 
which are in great part responsible for the specific flavour of horseradish, cauliflower and garden rocket, 
respectively. 4 

The key-step in glucosinolate synthesis generally consists of the stereospecific coupling of protected l- 
thio-I]-D-glucopyranose with the appropriate hydroximoyl chloride. 5 In this particular case however, the 
presence of a reactive methylsulfide function precludes the usual chlorine or NCS chlorination of the 
corresponding aldoxime precursor. 6 We had therefore to turn to the alternative nitronate methodology 7, which 
required prior elaboration of nitroalkyl methylsulfides 2. 

W e  expected such compounds to be a priori readily obtainable from the corresponding c0- 
bromochloroalkanes : actually, in addition to the known chemo-isomerism problem associated with the 
ambident character of the nitrite ion in the Komblum reaction 8, we had to face the unwanted formation of 3- 
nitro-2-isoxazoline 9 in the particular case of n = 2. Moreover, the reaction sequence in the case of n = 3 or 4 
could be disrupted through the formation of cyclic sulfonium salts.l° 
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Careful selection of  n-dependent  individualized reaction condit ions al lowed the preparation o f  substrates 
2 with overall  yields ranging f rom 40 to 65% from the starting bromochloroalkanes.  

i, iii 
Br --  (CH2)n~- I CI or IP CH3S --(CH2)n'~l NO2 

iii, ii, i 2 

OAc 
I. MeONa, MeOH / Et20 ? / 

o H 2. SOCI 2, CHCI 3 S (C 2)n - SCH 3 
~. Ac y 

3. l-~-thioglucosc .~cO OAc i l 

NEt3 ' CH2CI2 / Et20 3 H O / N  

i) NaNO 2 , DMSO, R.T. ii) Nal, acetone, reflux iii) CH3SNa, MeOH, reflux 

According to a well-tr ied protocol 7, the nitronate salts readily prepared f rom 2 were  t ransformed into 

hydroximoyl  chlorides,  which were immediately reacted with 2,3,4,6-tetra-O-acetyl-l- thio-13-D-glucopyranose 
to afford (in 32 to 40% yield f rom 2) the anomeric thiohydroximates  3 )  t 

Final O-sulfat ion (CISO3H, pyridine, dichloromethane,  0°C, 61 to 86% yield), then quantitative 

deprotect ion of  the sugar moiety  (MeOK, MeOH,  R.T.) gave after Sep-Pak chromatography and freeze-drying 

the expected  glucosinolates 1, whose  spectra and physical  constants ~2 were very close to those reported for 

authentic samples./3 Further synthetic work is currently under way in our laboratory with a view to elaborate 

sulfinyl- and sulfonyl-funct ional ized glucosinolates meant  for diverse biological studies. 
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