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Cyclization-activated prodrugs. Synthesis, reactivity and
toxicity of dipeptide esters of paracetamol
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Abstract—Dipeptide esters of paracetamol were prepared in high yields. These compounds are quantitatively hydrolyzed to para-
cetamol and corresponding 2,5-diketopiperazines at pH 7.4 and 37 �C. The reactivity is increased in sarcosine and proline peptides
and decreased by bulky side chains at both the N- and C-terminal residues of the dipeptide carrier. Moreover, dipeptide esters of
paracetamol did not affect the levels of hepatic glutathione. Thus, dipeptides seem promising candidates as carriers for cyclization-
activated prodrugs.
� 2005 Elsevier Ltd. All rights reserved.
Phenol drugs are attractive targets for prodrug design
due to their extensive first-pass metabolism.1 In the case
of paracetamol, 1 (Scheme 1), the metabolism can lead
to serious hepatic and renal toxic effects.2 These toxic
side-effects have been ascribed to the formation of a
N-acetylquinone imine,3 which is detoxified by reaction
with glutathione leading to glutathione depletion and
cell death.3,4

Esterification of paracetamol with amino acids was re-
ported as a means to obviate the severe hepatotoxicity
of the drug at high doses5 as well as to increase aqueous
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Scheme 1.
solubility.6 We now report that dipeptides may also be
used as carriers for hydroxyl-containing drugs. Dipep-
tide esters and amides (2, X = O or NH, Scheme 1)
can deliver the parent drug through enzyme-indepen-
dent processes such as the intramolecular cyclization
to form the corresponding diketopiperazines (3, DKPs,
Scheme 1).7,8 The major drawback of using dipeptides
as carrier candidates for prodrugs is their susceptibility
to non-specific peptidases. However, enzymatically sta-
ble dipeptides (e.g., containing 2-aminoisobutyric acid
or N-methylglycine as carriers) have been used success-
fully to improve physico-chemical properties of cytara-
bine9 and cyclosporine.10 Despite the potential of
dipeptides as carriers for cyclization-activated prodrugs,
there is a lack of systematic information concerning the
effect of the peptide structure on the rate of drug release
under physiological conditions. Herein we report the
synthesis and the chemical reactivity of dipeptide esters
of paracetamol, 4, encompassing a wide range of amino
acid residues to evaluate the suitability of dipeptide es-
ters as potential cyclization-activated prodrugs of para-
cetamol. In addition, the potential hepatotoxicity of
several paracetamol derivatives was studied by evalua-
ting the effect on the hepatic levels of glutathione in
mice.

Paracetamol esterification was based on the
O-(benzotriazol-1-yl)-N,N,N 0,N 0-tetramethyluronium
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Figure 1. First-order rate constants for the formation of diketopiper-

azine from dipeptide esters of paracetamol 4a,g–i, as a function of

Charton steric parameter m, at pH 7.4 and 37 �C.
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tetrafluoroborate (TBTU) coupling reagent usually
employed in peptide synthesis. Na-Boc-protected amino
acids were coupled to paracetamol and the Na-protect-
ing group subsequently removed by acidolysis with tri-
fluoroacetic acid to form the unprotected esters 5
(Scheme 2).11 This procedure led to higher overall yields
(ca. 70%) than those previously achieved by the mixed
anhydride method (ca. 35%).5 The esters, 5, thus
obtained were easily reacted with a second Na-Boc-pro-
tected amino acid, again via TBTU-coupling. The final
products, 11 dipeptide esters of paracetamol, 4a–k, were
also obtained as trifluoroacetates (Scheme 2).

The dipeptide esters 4 were incubated in pH 7.4 phos-
phate buffer at 37 �C and reaction progress was moni-
tored by HPLC, using paracetamol and adequate
DKPs as standards for product identification.12 The
pseudo-first-order rate constants for the degradation
of derivatives 4 are presented in Table 1. Paracetamol
and DKPs were quantitatively released, as measured
by HPLC, which is consistent with an intramolecular
acyl transfer reaction (Scheme 2, X = O). The formation
of DKPs has also been reported as a major degradation
pathway for simple alkyl esters13–16,15 and 4-nitroaniline
Table 1. Rate constants for the release of paracetamol from dipeptide esters

Compound R1 X R2

4a H H H

4b Me H H

4c CHMe2 H H

4d CH2Ph H H

4e (CH2)3 H

4f H Me H

4g H H Me

4h H H CHMe2
4i H H CH2Ph

4j H H (CH2)3
4k H H H

aToo fast to be monitored at 37 �C.
amides7 of dipeptides. For compounds 4, which contain
a much better leaving group (the pKa for paracetamol is
9.717) cyclization remains the major degradation path-
way. The better leaving group ability of paracetamol,
when compared to aliphatic alcohols, leads to increased
reactivity. For example, the Gly-Phe ester 4d is ca. 80
times more reactive than its methyl ester counterpart,
at pH 7.4 and 37 �C.16

From the data presented in Table 1, the following observ-
ations can be made. First, the rate of paracetamol re-
lease at pH 7.4 depends on the size of the side chain of
the peptide carrier C-terminal residue: for the Gly-AA
series, the order of reactivity is Gly-Gly, 4a > Gly-Ala,
4b > Gly-Phe, 4d > Gly-Val, 4c. This suggests that in-
crease in steric hindrance close to the ester functionality
reduces the rate of cyclization. Second, the rate of para-
cetamol release also depends on the nature of the N-ter-
minal amino acid of the dipeptide carrier. Indeed, a
similar trend is observed for the AA-Gly series, that is,
Gly-Gly, 4a > Ala-Gly, 4g > Phe-Gly, 4i > Val-Gly, 4h.
Interestingly, a good correlation was observed between
log kobs for the AA-Gly series and the Charton steric
constants m18 with a negative slope of �1.72 (Fig. 1,
r2 = 0.95), which indicates that the reactivity decreases
with increasing size of the amino acid side chain. Third,
some of the derivatives of the Gly-AA series release par-
4 in phosphate buffer at pH 7.4 and 37 �C

Y kobs/s
�1 t1/2/min krelative

H 1.43 · 10�2 0.8 1

H 1.34 · 10�2 0.9 0.94

H 5.70 · 10�4 20 0.04

H 5.64 · 10�3 2 0.4

H NDa — —

H NDa — —

H 3.40 · 10�3 3 0.24

H 7.10 · 10�4 16 0.05

H 8.21 · 10�4 14 0.06

5.90 · 10�3 2 0.41

Me NDa — —
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acetamol faster than their AA-Gly counterparts. For
example, the Gly-Ala derivative 4b is ca. four times
more reactive than the Ala-Gly counterpart 4g, and
the Gly-Phe ester 4d is ca. seven times more reactive
than the Phe-Gly ester 4i. For the dipeptide derivatives
containing proline, it was only possible to monitor the
reaction for the Pro-Gly derivative 4j, while the Gly-
Pro counterpart 4e decomposed too fast to be moni-
tored at 37 �C. Taken together, these results are consis-
tent with a cyclization mechanism for the release of
paracetamol from dipeptide esters 4. Indeed, a bulky
N-terminal amino acid (e.g., a bulky R2 group in 2,
Scheme 1) turns the amino group into a sterically hin-
dered nucleophile and, thus, would be expected to re-
duce the rate of cyclization. In contrast, if paracetamol
release was occurring via a nucleophilic attack of water
to the ester carbonyl, that is, the general mechanism for
ester hydrolysis, then the nature of the N-terminal ami-
no acid would have a negligible effect on reactivity.

Further support for an intramolecular pathway comes
from the observation that the sarcosine dipeptides 4f
and 4k, as well as the proline derivative 4e, decompose
too fast to be monitored at 37 �C. This behaviour is
consistent with DKP formation underlying paraceta-
mol release, since DKPs are readily formed from
dipeptides containing amino acids that can easily drive
the peptide bond to adopt the cis configuration (e.g.,
proline, glycine, N-alkyl amino acids).13,19 Thus,
dipeptides such as Pro-Gly, Gly-Pro, Sar-Gly and
Gly-Sar are quite prone to suffer intramolecular cycli-
zation to DKPs, which fully explains the relative rates
observed.

The pH-rate profile for the degradation of compound 4b
determined at 25 �C is presented in Figure 2. As with
other dipeptide esters16 and amides7 cyclization of 4 to
DKP is subject to general-base catalysis (data not
shown) and the intercepts of plots of kobs versus buffer
concentration were used to build the pH-rate profile.
The sigmoid shape of this pH-rate profile can be as-
cribed to the ionization of the amino group to form
the corresponding conjugate acid. The solid line in Fig-
ure 2 was achieved using Eq. 1
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Figure 2. pH-rate profile for the degradation of compound 4b at 25 �C;
ionic strength kept at 0.5 M with NaClO4.
kobs ¼ ðk�OHKw½Hþ� þ k�0
OHKaKwÞ=fðKa þ ½Hþ�Þ½Hþ�g

ð1Þ
where Ka is the apparent dissociation constant of the
protonated amino group in 4b, and k�OH and k�0

OH are
the second-order rate constant for the base-catalyzed
reaction of the protonated and free base of the substrate,
respectively. The best computer fit to the experimental
data for 4b was obtained by using k�OH ¼ 2500 M�1 s�1,
k�0
OH ¼ 62 M�1 s�1 and Ka = 1.58 · 10�8 M. The calcu-
lated pKa value of 7.80 is within the range of pKa values
reported for other dipeptide esters, that is, 7.6–8.0,
which also present pH-rate profiles similar to that of
4b.12,15,16 These results indicate that 4b is more stable
for acidic pH values, that is, when pH < pKa reflecting
the predominance of the protonated form of
substrate.16,15

The effect of prodrugs 4d, 4h and 4i, as well as that of the
parent paracetamol, on the hepatic levels of glutathione
was determined as a measure of hepatotoxicity.20 As ex-
pected, the group of mice treated ip with 3.3 mmol/kg
paracetamol displayed significantly (P < 0.01) lower
levels of glutathione when compared with the control
group, with a depletion of 61% (Table 2). In contrast,
all the groups of mice treated with derivatives 4d, 4h
and 4i showed levels of reduced glutathione comparable
to that of the control group (P > 0.05; Table 2). These
results suggest that hepatotoxicity can be efficiently re-
duced by attachment of the paracetamol hydroxyl group
to a dipeptide. A similar effect was observed with the
(S)-pyroglutamic acid ester of paracetamol, which led
to glutathione hepatic levels in mice superimposable to
those of controls.5

In conclusion, dipeptide carriers can be used to design
intramolecular cyclization-activated prodrugs of phe-
nol-containing drugs such as paracetamol. The results
herein described positively show that dipeptide esters
are quantitatively hydrolyzed to paracetamol and corre-
sponding diketopiperazines at pH 7.4 and 37 �C. The
reactivity is decreased by bulky side chains at both the
N- and C-terminal residues of the dipeptide carrier.
Although most of dipeptide derivatives of paracetamol
4 are too reactive to be considered as prodrugs, three
of them display half-lives ranging from 14 to 20 min at
pH 7.4 and 37 �C. Thomsen and Bundgaard have sug-
gested that practically useful half-lives of conversion
for cyclization-activated prodrugs of phenols should
range from 10 to 60 min under those conditions.21 Com-
pounds 4 also display higher stability at pH values lower
Table 2. Effect of dipeptide esters 4 and paracetamol on glutathione

levels in mice

Glutathione (lmol/g tissue)

Control 3.87 ± 0.79

Paracetamol 1.52 ± 0.20a

4d 3.74 ± 1.37b

4h 3.87 ± 1.24b

4i 2.68 ± 0.77b

aP < 0.01 compared with control.
bP > 0.05 compared with control.
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than 7.4. Quite importantly, the in vivo results suggest
that hepatotoxicity of paracetamol can be efficiently re-
duced by an appropriate choice of the dipeptide carrier.
The selection of the dipeptide carrier must take in
account the potential side-effects of the corresponding
DKP formed during the cyclization.
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