

Contents lists available at ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

4,6-Di-O-Benzylidenyl group-directed preparation of 2-deoxy-2-azido-α-D-galactopyranosides promoted by 3-O-TBDPS

Xing-Yong Liang ^{a,*,1}, Jing Yang ^{a,1}, Zhong-Hao Qiu ^a, Lei Wang ^a, Todd L. Lowary ^b, Hua-Jun Shawn Fan ^{a,**}

^a School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China

^b Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2 Canada

26

ARTICLE INFO	A B S T R A C T		
<i>Keywords:</i> α-Galactosamine Stereoselective glycosylations Steric hindrance Synthesis of a pentasaccharide	In this study, we designed a method to prepare 2-deoxy-2-azido- α -D-galactopyranosidic bonds using 4,6-di-O- benzylidenyl-3-O-t-butyldiphenylsilyl protected 2-deoxy-2-azido-1-thio-D-galactopyranoside 5 as donors. The donor 5 gives a good to excellent α -selectivity in the glycosylation with secondary alcohols, which was found to be associated with the benzylidenyl on 4,6-di-O and TBDPS on 3-O of the donor 5 . Compared with results of the donor 6 and 7 , the 3-O-TBDPS could increase the activity of the thioglycoside, and the lone pairs on 4,6-di-O- benzylidenyl group enhanced the gg-cofnormation, which plays a role in improving the stereoselectivity. Finally, this method was demonstrated through the synthesis of a α -galactosamine -containing pentasaccharide		

1. Introduction

Galactosamine is a key constituent in many important oligosaccharides and glycoconjugates existing in biologically active natural products and clinical agents, including anthracyclines, angucyclines, aureolic acid antibiotics, etc. Galactosamine exists in either α -or β -linked form [1].

The study demonstrated that the synthesis of β -form of galactosamine could be reliably achieved through the neighboring C-2-amidegroup or carbamate-based protecting group. For the stereoselective preparation of α -form of galactosamine, on the contrary, the glycosyl donors with non-neighboring functionality on C-2, Such as 2-azido, have been extensively explored in order to maximize the anomeric effect, often with the aid of solvent effect or some cyclic protecting groups [2]. Recently, several research groups have reported alternative approaches to a galactosamine through these strategies. Among them, the corresponding 2-azido [3], 2,3-trans-oxazolidinone [4], 4,6-O-benzylidenyl [5], and 4,6-O-di-tert-butylsilylene [6] glycosamine derivatives are frequently used as essential building blocks.

In our previous study, we reported the preparation of 2-deoxy- α -deoxy- α -deoxy-deoxy- α -deoxy-deoxy- α -deoxy- α -deoxy-deo

https://doi.org/10.1016/j.carres.2021.108237

Received 9 October 2020; Received in revised form 15 January 2021; Accepted 15 January 2021 Available online 28 January 2021 0008-6215/© 2021 Elsevier Ltd. All rights reserved.

butyldiphenylsilyl protected 2-deoxy-1-thio-D-galactopyranoside as a donor [7]. The approach gave an excellent α -selectivity in glycosylations, which was found to be associated with the isopropylidene on 3,4-di-O and TBDPS on 6-O of the donor. Based on these findings, we will study the role of other 2-deoxysugar counterparts in such reactions, particularly in the preparation of 2-amino-2-deoxy- α -D-galactopyranosides.

2. Results and discussion

To avoid the participating functionalities on C-2, 2-deoxy-2-azido-1thio-galactosides are employed for the introduction of α -galactosamines. The azido moiety is a non-participating functionality and is stable under a wide variety of reaction conditions, also can readily be reduced to an amine with reagents such as phosphines and thiols, and by catalytic hydrogenation.

Following the design, this study begins with the synthesis with the preparation of the thioglycosides **3** and **5–7** as illustrated in Scheme **1**. All of the thioglycosides have a nonparticipating azido moiety at C-2 site [8] and a cyclic prototective group at O-3,4 or O-4,6, respectively. The synthesis of these thioglycosides starting from the known thioglycoside **1**, which can be prepared from D-galactose following the Mong's method

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: levesonk@163.com (X.-Y. Liang), Fan27713@yahoo.com (H.-J. Shawn Fan).

¹ These authors contributed equally.

Scheme 1. Preparation of Compound 3, 5, 6 and 7. Reagents and conditions: (a) $(CH_3)_2C(OMe)_2$, PPTs, acetone, r.t., 4 h, 71%; (b) TBDPS-Cl, Imidazole, DMF, 25 °C, 4 h, 79%; (c) PhCH(OMe)_2, PPTs, CH₃CN, r.t., 4 h; (d) for 5: TBDPS-Cl, Imidazole, DMF, 25 °C, 4 h, 81%; for 6: BzCl, Pyridine, 45 °C, 1 h, 95%; for 7: BnBr, NaH, DMF, 0–25 °C, 2 h, 92%.

[9]. Acetalization of thioglycoside **1** via 2,2-dimethoxy propane yield 71% of **2**, following by the reaction with TBDPS-Cl to form O-6 silicon ether **3** with a yield of 79%. On the other hand, acetalization of thioglycoside **1** via benzaldehyde dimethanol will result in **4** with a yield of 74%. Treatment with TBDPS-Cl, thioglycoside **4** can be converted into its derivatives **5** in a yield of 81% Alkylation of thioglycoside **4** with benzyl bromide and sodium hydride gave **6** in 92% yield; Finally,

reaction with benzoyl chloride in pyridine led to 7 in 95% yield (see Scheme 2).

To investigate the α and β stereoselectivity of glycosylation reaction, we first applied thioglycoside 3 as the donor for synthesizing 2-amino-2deoxy-α-D-galactopyranosides. The glycosylation was performed using the alcohol (8a-j, 1.0 equiv), thioglycoside 3 or 5 (1.2 equiv), NIS (1.5 equiv), and TfOH (0.1 equiv), at -30 to 0 °C in CH₂Cl₂. The product of the coupling between thioglycoside **3** and acceptor **8a** [10] show a mild α -selectivity (α : β , 3:1, entry 1, Table 1). The product stereochemistry was confirmed by ${}^{3}J_{H-1,H-2}$ in ${}^{1}H$ NMR in CDCl₃. For α -anomers, ${}^{3}J_{H-1,H-2}$ is 3–5 Hz, while for β -anomers ${}^{3}J_{H-1,H-2}$ is 9–10 Hz [11]. Besides, the chemical shift of the anomeric carbon in the $\alpha\text{-anomer}$ resonated at <100 ppm. In comparison, the chemical shift of the anomeric carbon in the β -anomer resonated at > 100 ppm. The selectivity of the glycosylation was not superior to existed methods. Next, we carried out the glycosylation reaction of 3 with a more hindered secondary acceptor 8b. The results are similar to the previous result (yield of 87%, α : β , 5:1, entry 2. Table 1).

As a comparison, we set out to survey the glycosylation of another thioglycoside **5** with the acceptors **8a** and **8b**. The results showed that stereoselectivity of glycosylation reaction between the thioglycoside **5** with **8a** is slightly improved over the selectivity of thioglycoside **3** with **6a** (yield of 90%, α : β , 5:1, entry **3**, Table **1**). However, the α -selectivity was significantly improved between the thioglycoside **5** and **8b** [12] (α : β , 10:1, entry **4**, Table **1**). To further investigate the steric hindrance of the acceptor, we surveyed the glycosylation of **5** with a variety of alcohols **8c-j** [13]. All the glycosylations were run under NIS and TfOH at -30 °C and CH₂Cl₂ as the solvent. As summarized in Table **1**, we can

Scheme 2. Synthesis of the pentasaccharide 26.

Table 1

Glycosylations of donors 3 or 5 with alcohol 8a-j.

3 or 5 + ROH
8a-j
$$\frac{\text{NIS, TfOH, 4A M.S.}}{\text{CH}_2\text{C}_2, -30 \text{ to } 0^{\circ}\text{C}, 1 \text{ h}} \xrightarrow{\text{Volume}}{\text{N}_3 \text{ OR}} \text{ or } \text{TBDPSO} \xrightarrow{\text{Ph}}{\text{N}_3 \text{ OR}} \text{ N}_3 \text{ OR}$$

87% (5:4) (continued on next page)

AI. LIUNG EL U	XY.	Liang	et	al
----------------	-----	-------	----	----

Table 1 (continued)

^aAll glycosylations were performed by employing the donor (1.2 equiv) and the acceptor (1.0 equiv) in the presence of NIS (1.5 equiv), catalytic TfOH (0.1 equiv), and 4 A molecular sieves (4A M.S.) in CH_2Cl_2, at -30 to 0 °C. $^b\,$ The total yield of isomers.

^c Determined on the basis of the 1H NM.

see that all acceptors surveyed demonstrated either mild α -selectivity (**10c-d**), highly α -selectivity (**10e-f**, **j**), or α -only (**10g-i**) glycoside products with 71–91% yields with the α -anomer as the dominant product.

Analysis of experimental results in Table 1, reactions with the primary alcohols **8a** and **8c-d** provided much lower α -selectivities than reactions with more hindered secondary alcohols **8b** and **8e-j** (entries 3, 5–6 vs entries 4, 7–12). Further illustrated that the steric hindrance from various acceptors would further enhance the α -selectivity behavior. Based on these results, we hypothesized that that benzylidenyl on 4,6-di-O and TBDPS on 3-O of the donor could control the nucleophile to attack the a-face of the donor. The X-ray diffraction analysis of the donor **5** (Fig. 1) also show that the β -face of the anomeric carbon of **5** is indeed of potential resistance.

The effect of 4,6-di-O-benzylidenyl group on the stereoselectivity of the glycosylation has been reported in literature [5]. To better understand the behavior of 3-O-TBDPS during the glycosylation reaction, the glycosylation of 3-O-Bz (6) or 3-O-Bn thioglycosides (7) (Table 2) were investigated.

Neither 6 nor 7 showed α -selectivity in the glycosylation with primary alcohol 8c. In particular, there are more β -product than α -product in the reaction of compound 7. Thioglycoside 6 could not react with the secondary hydroxyl 8h. The reaction with 8i could only be carried out at room temperature in a low yield and a mild α -selectivity (yield of 18%, α -only). The glycosylation between 7 and 8h could not work at low temperature, but could be carried out at room temperature providing a complex product 13 in a yield of 76%. It was difficult to identify the ratio of isomers 13 due to some impurities which could not be separated. The α -selectivity of the reaction between 7 and 8i was excellent at both low temperature and room temperature. With the increase of temperature, the yield of the reaction slightly increased, but the by-products increased at the same time.

Comparing the results of glycosylations of thioglycoside **5** in Table 1 with the results of glycosylations of thioglycosides **6–7** in Table 2, It displayed that 3-O-TBDPS could significantly improve the activity of the donor. This enabled thioglycoside **5** to react with various alcohols at a lower temperature, and the yield was significantly better than that of **6** or **7**. However, we also see that 3-O-TBDPS has a little effect on the stereoselectivity of the reaction. 3-O-TBDPS did not significantly affect the steric hindrance of the β -face of the anomeric carbon. The key to the stereoselectivity was 4,6-di-O-benzylidenyl group.

Finally, we targeted the preparation of a pentaccharide 26 [14]'

Fig. 1. X-ray of the donor 5.

Table 2

Glycosylations of Donors 6 or 7 with Alcohol 8a, h-i.

 $^{\rm a}$ All glycosylations were performed at -30 to 0 $^\circ \text{C}.$

^b All glycosylations were performed at 0–25 °C.

which contained 2-amino-2-deoxy- α -D-galactopyranosidic bonds by utilizing the developed approach. Treatment of 16 [13] and 17 [15] with NIS/TfOH yielded disaccharide 18 in 91% yield. Subsequent desilylation via TBAF in THF liberated the 3,5-OH of disaccharide 18, thus affording 19 in 86% yield. Then, the coupling between 19 and thioglycoside **20** [16] at -30 °C for 1 h produced the tetrasaccharide **21** in 71% yield. Subsequent deacylation of levulinoyl protecting group via Hydrazine acetate liberated the 2-OH of the middle arabino-moiety of the tetrasaccharide 22. Alcohol 22 underwent a facile NIS/TfOH promoted glycosylation with the thioglycoside 5, to afford exclusively α-linked product **23**(H-1: δ 5.17, $J_{1,2}$ = 3.6 Hz; C-1: δ 99.0, J_{H1-C1} [17] = 172.5 > 165.0), in 81% yield (Scheme2). Deprotection of 23 involving desilvlation via Pyridine hydrofluoride in pyridine generated the corresponding alcohol 24 in 83% yield. Then de-O-acetylation of Benzoyl ester and Troc afforded the polyol 25 in 89% yield. Finally, the reduction of azide and simultaneous hydrolysis of benzylidenyl group generated the target pentasaccharide 26 in 73% yield.

3. Conclusion

In summary, we reported a methodology for the synthesis of 2-azido-2-deoxy- α -galactopyranosides by using 4,6-di-O-benzylidenyl-3-O-*t*butyldiphenylsilyl protected 2-deoxy-2-azido-1-thio-D-galactopyranoside **5** as donor. Although the method only showed excellent stereoselectivity in the glycosylation with secondary alcohols, not so good with primary alcohols. Finally, the approach was successfully applied to the synthesis of a protected pentasaccharide derivative **26**. The exact mechanism is advancing by means of computational chemistry.

4. Experiment procedures

Experimental Details. Dry CH₂Cl₂ was taken from a solvent purification system after successive passage through alumina columns. Dry CH₃OH was obtained via storage in a sealed bottle with activated 4 Å M S. overnight at rt. Unless otherwise stated, all reactions were carried out under an argon atmosphere and were monitored by TLC on silica gel 60 F₂₅₄ (0.25 mm, Merck). Spots were visualized by UV light and/or by charring with 10% H₂SO₄ in EtOH. Column chromatography was performed on silica gel 60 (40–60 μ m. ¹H NMR spectra were recorded at 500 and 600 MHz; and chemical shifts were referenced to CHCl₃ (7.26 ppm, CDCl₃). ¹³C NMR spectra were recorded at 125 or 150 MHz, and chemical shifts were referenced to internal CDCl₃ (77.06 ppm, CDCl₃). Optical rotations were measured on a PerkinElmer 241 polarimeter at 22 \pm 2 °C in units of (degree·mL)/(dm·g). Electrospray ionization spectra were recorded on an Aligent Technologies 6220 TOF spectrometer with samples dissolved in CH₂Cl₂, CH₃OH, or H₂O.

4.1. Toluene 3,4-di-O-isopropylidene-6-O-tert-butyldiphenylsilyl-1-thio-2-azido-2-deoxy-β-p-galactopyranoside (3)

To a solution of 1 (618 mg, 2.00 mmol) in dry acetone (20 mL) was added 2,2-Dimethoxypropane (0.37 ml, 3.00 mmol) and PTSA (38.2 mg, 0.20 mmol). The reaction mixture was stirred at rt for 4 h. The resulting mixture was added H2O and extracted with CH2Cl2. The organic layer was washed with saturated aqueous NaHCO3 and brine, dried over Na₂SO₄, filtered and concentrated. The residue 2, imidazole (0.47 g, 6.9 mmol) and tert-Butyldiphenylchlorosilane (0.72 mL, 2.8 mmol) were dissolved in dry CH₂Cl₂ (7.2 mL). The reaction stirred under N₂ for 2 h, then quenched with MeOH. The resulting mixture was added H₂O and CH₂Cl₂. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography (10:1, Petroleum ether-EtOAc) to afford compound 3 as a white semisolid (836 mg, 71%). $R_f 0.5$ (6:1, petroleum ether–EtOAc); $[\alpha]_D 33.1$ (*c* 0.9, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.71–7.68 (m, 4H), 7.46–7.36 (m, 8H), 7.09 (d, J =8.0 Hz, 2H), 4.33 (d, J = 10.5 Hz, 1H), 4.24 (dd, J = 5.0, 2.0 Hz, 1H),

4.07 (dd, J = 7.5, 5.0 Hz, 1H), 3.97–3.91 (m, 2H)), 3.85 (td, J = 6.5, 2.5 Hz, 1H), 3.38 (dd, J = 10.5, 7.5 Hz, 1H), 2.31 (s, 3H), 1.40 (s, 3H), 1.34 (s, 3H), 1.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 138.3, 135.6, 135.6, 133.4, 133.3, 129.8, 129.7, 128.0, 127.7, 127.7, 110.4, 86.1, 78.4, 77.2, 76.9, 72.5, 63.9, 62.8, 28.2, 26.8, 26.3, 21.2, 19.2; HRMS–ESI–TOF calcd for [M+Na]⁺ C₃₂H₃₉N₃NaO₄SSi: 612.2323. Found: 612.2324.

4.2. Toluene 4,6-di-O-benzylidenyl-3-O-tert-butyldiphenylsilyl-1-thio-2azido-2-deoxy- β -D-galactopyranoside (5)

To a solution of 1 (627 mg, 2.00 mmol) in dry CH₃CN (10 mL) was added Benzaldehyde dimethyl acetal (0.44 mL, 2.90 mmol) and PTSA (31.3 mg, 0.164 mmol). The reaction mixture was stirred at rt for 4 h. The resulting mixture was added H₂O and extracted with CH₂Cl₂. The organic layer was washed with saturated aq NaHCO₃ and brine, dried over Na₂SO₄, filtered and concentrated. The organic layer was washed with saturated aqueous NaHCO3 and brine, dried over Na2SO4, filtered and concentrated. The residue 4, imidazole (0.47 g, 6.9 mmol) and tert-Butyldiphenylchlorosilane (0.72 mL, 2.8 mmol) were dissolved in dry CH₂Cl₂ (7.2 mL). The reaction stirred under N₂ for 2 h, then guenched with MeOH. The resulting mixture was added H₂O and CH₂Cl₂. The organic layer was washed with saturated aqueous NaHCO₃ and brine. dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography (15:1, Petroleum ether-EtOAc) to afford compound 5 as a white semisolid (771 mg, 65%). R_f 0.3 (10:1, petroleum ether–EtOAc); [α]_D 40.4 (*c* 0.6, CHCl₃); ¹H NMR (500 MHz, $CDCl_3$): δ 7.75–7.70 (m, 4H), 7.60 (d, J = 8.0 Hz, 2H), 7.47–7.38 (m, 9H), 7.27 (t, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 5.11 (s, 1H), 4.30 (d, *J* = 9.5 Hz, 1H), 4.22 (dd, *J* = 7.5, 2.0 Hz, 1H), 3.79 (t, *J* = 9.5 Hz, 1H), 3.70 (dd, J = 12.0, 2.0 Hz, 1H), 3.64 (dd, J = 9.5, 3.0 Hz, 1H), 3.45 (d, *J* = 2.5 Hz, 1H), 3.10 (d, *J* = 1.0 Hz, 1H), 2.34 (s, 3H), 1.03 (s, 9H); 13 C NMR (125 MHz, CDCl₃): δ 138.3, 138.0, 135.9, 135.8, 134.3, 134.0, 132.4, 130.0, 129.8, 129.7, 129.0, 128.1, 127.9, 127.6, 126.8, 126.4, 100.6, 85.8, 77.2. 74.7, 74.5, 69.6, 69.2, 62.2, 26.7, 21.3, 19.3; HRMS-ESI-TOF calcd for [M+Na]⁺ C₃₆H₃₉N₃NaO₄SSi: 660.2328. Found: 660.2333.

4.3. Toluene 4,6-di-O-benzylidenyl-3-O-benzyl-1-thio-2-azido-2-deoxy- β -p-galactopyranoside (6)

To a solution of 4 (438 mg, 1.10 mmol) in pyridine (5.5 mL) was added benzoyl chloride (253 µL, 2.20 mmol). After being stirred for 1 h at 50 °C, the reaction was quenched with methanol, diluted with CH₂Cl₂, and then the mixture was washed with aq 1 N HCl, saturated aqueous NaHCO₃ and brine. The organic layer was separated and dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography (7:1, petroleum ether-EtOAc) to afford compound 6 as a White solid (522 mg, 94.5%). Rf 0.35 (4:1, petroleum ether–EtOAc). ¹H NMR (600 MHz, CDCl₃): δ 8.03 (dd, J = 8.4, 1.2 Hz, 2H), 7.66 (d, J = 7.8 Hz, 2H), 7.57 (t, J = 7.8 Hz, 1H), 7.43–7.34 (m, 7H), 7.08 (d, *J* = 8.4 Hz, 2H), 5.49 (s, 1H), 5.05 (dd, *J* = 10.8, 3.6 Hz, 1H), 4.55 (d, J = 9.6 Hz, 1H), 4.48 (d, J = 3.0 Hz, 1H) 4.42 (dd, J = 12.6, 1.2 Hz, 1H), 4.06 (dd, J = 12.6, 1.8 Hz, 1H), 4.00 (t, J = 10.2 Hz, 1H), 3.64 (d, J = 1.8 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (150 MHz, CDCl3): δ 165.97, 138.7, 137.6, 134.65, 133.55, 129.99, 129.16, 129.11, 128.48, 128.09, 126.43, 126.22, 100.8, 85.5, 77.25, 77.04, 76.8, 74.7, 72.8, 69.69, 69.24, 58.7, 29.7, 21.3; HRMS-ESI-TOF calcd for [M+Na]⁺ C₃₆H₃₉N₃NaO₄SSi: 660.2328. Found: 660.2333.

4.4. Toluene 4,6-di-O-benzylidenyl-3-O-benzyl-1-thio-2-azido-2-deoxy- β -D-galactopyranoside (7)

To a solution of 4 (484 mg, 1.21 mmol) in dry DMF (6 mL) was added benzyl bromide (288 μ L, 2.42 mmol). After being stirred for 0.5 h at 0 $^\circ$ C, then sodium hydridethe (116 mg, 4.84 mmoL) was added, the reation mixture was gradually warmed to rt and was stirred for 1 h at the same

temperature, The mixture was diluted with CH₂Cl₂, and then the mixture was washed with aq 1 N HCl, saturated aqueous NaHCO₃ and brine. The organic layer was separated and dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography (7:1, petroleum ether-EtOAc) to afford compound 6 as a White solid (543 mg, 91.6%). R_f 0.35 (4:1, petroleum ether–EtOAc). ¹H NMR (600 MHz, CDCl₃): *δ* 7.76 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.73 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.48-7.39 (m, 9H), 7.29 (d, J = 15 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 5.12 (s, 1H), 4.31 (d, J = 9.5 Hz, 1H), 4.23 (dd, *J* = 12.5, 2.0 Hz, 1H), 3.80 (t, *J* = 10 Hz, 1H), 3.71 (dd, *J* = 12.5, 2.0 Hz, 1H), 3.65 (dd, *J* = 10, 3.5 Hz, 1H), 3.47 (dd, *J* = 3.5, 1.0 Hz, 1H), 3.12 (d, J = 1.0 Hz, 1H), 2.36 (s, 3H) 1.55 (s, 1H) 1.04 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 138.3, 138.0, 135.9, 135.8, 134.3, 134.0, 132.4, 130.0, 129.8, 129.7, 128.9, 128.1, 127.9, 127.6, 126.8, 126.4, 100.6, 85.75, 77.3, 77.0, 76.8, 74.65, 69.6, 69.2, 26.7, 21.3, 19.3; HRMS-ESI-TOF calcd for [M+Na]⁺ C₃₆H₃₉N₃NaO₄SSi: 660.2328. Found: 660.2333.

4.5. General procedure for the glycosylation of 3 or 5

A mixture of donor **3** or **5** (1.2 equiv), acceptor (1.0 equiv), and freshly activated 4 Å molecular sieves in dry CH_2Cl_2 (to a 0.1 N solvent) was cooled to -30 °C. The suspension was stirred for 15 min, then NIS (1.5 equiv), TfOH (0.1 equiv) was added. The reaction mixture was stirred for 1–2 h at the same temperature. The reaction mixture was gradually warmed to 0 °C and quenched with Et_3N . The mixture was diluted with CH_2Cl_2 and added $Na_2S_2O_3$, filtered through celite and concentrated in vacuo. The crude material was quickly purified by column chromatography to give the product. The ratio of the isomers was detected by NMR in all cases.

4.6. Methyl 3,4-di-O-isopropylidene-6-O-tert-butyldiphenylsilyl-2-azido-2-deoxy- α , β -D-galactopyranosyl- $(1 \rightarrow 6)$ -2,3,4-tri-O-benzoyl- α -D-mannopyranoside (**9a**)

Prepared from 3 (212 mg, 0.360 mmol) and 8a (152 mg, 0.300 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether-EtOAc, 8:1) to afford compound **9a** as a light syrup (270 mg, yield of 92.7%, α : β = 3:1). *R*_f 0.3 (5:1, petroleum ether–EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 8.13 (d, J = 7.0Hz, 2H), 8.10 (d, J = 7.0 Hz, 0.7H), 7.96 (d, J = 7.0 Hz, 2H), 7.92 (d, J = 7.5 Hz, 0.7H), 7.82 (d, J = 7.0 Hz, 2.7H), 7.67-7.23 (m, 25H), 5.97 (t, J = 10.0 Hz, 1.4H), 5.88 (dd, J = 10.0, 3.0 Hz, 1.4H), 5.82 (t, J = 10.0 Hz, 0.7H), 5.68 (q, J = 1.5 Hz, 1H), 5.64 (q, J = 1.5 Hz, 0.4H), 4.99 (d, J = 1.5 Hz, 1.4H), 4.89 (d, J = 3.0 Hz, 1H), 4.47 (dd, J = 8.5, 5.0 Hz, 1H), 4.31–4.26 (m, 2.7H), 4.21 (dd, J = 5.0, 1.5 Hz, 0.4H), 4.16–3.74 (m, 7.4H), 3.67 (dd, J = 8.5, 3.5 Hz, 1H), 3.52 (s, 3H), 3.39 (dd, J = 8.5, 3.5 Hz, 1.4H), 1.50 (s, 1H), 1.50 (s, 2.5H), 1.36 (s, 2.5H), 1.50 (s, 1H), 1.01 (s, 3H), 0.98 (s, 7.5H); 13 C NMR (125 MHz, CDCl₃): δ 165.6, 165.5, 165.4, 135.6, 135.5, 135.5, 133.5, 133.4, 133.1, 130.0, 129.8, 129.7, 129.3, 129.1, 129.0, 110.3, 109.6, 102.1, 98.7, 98.5, 97.9, 77.2. 73.9, 73.4, 72.8, 72.3, 70.6, 70.5, 70.2, 70.0, 69.9, 69.6, 68.4, 67.4, 67.0, 66.8, 65.7, 62.7, 62.4, 61.7, 55.5, 55.4, 28.4, 28.3, 26.7, 26.3, 26.2, 19.1, 14.2; HRMS-ESI-TOF calcd for [M+Na]⁺ C₅₅H₅₇N₃NaO₁₃Si: 994.3558. Found: 994.3552.

4.7. 8-Azidooctyl 3,4-di-O-isopropylidene-6-O-tert-butyldiphenylsilyl-2azido-2-deoxy- α , β -D-galactopyranosyl- $(1 \rightarrow 2)$ -3,5-di-O-benzyl- α -Darabinofuanosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuanosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuanoside (**9b**)

Prepared from **3** (76 mg, 0.129 mmol) and **8b** (120 mg, 0.108 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether–EtOAc, 5:1) to afford compound **9b** as a light syrup (148 mg, yield of 87.1%, $\alpha:\beta = 5:1$). For $\alpha: R_f$ 0.2 (5:1, petroleum ether–EtOAc); [α]_D 78.0 (*c* 0.7, CHCl₃); ¹H NMR (500 MHz,

CDCl₃): δ 7.72–7.66 (m, 4H), 7.42–7.19 (m, 36H), 5.18 (s, 1H), 5.11 (d, J = 1.0 Hz, 1H), 4.98 (d, J = 1.0 Hz, 1 H), 4.79 (d, J = 3.5 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.55-4.43 (m, 10H), 4.41 (d, J = 12.0 Hz, 1H),4.20-4.00 (m, 11H), 3.91-3.78 (m, 5H), 3.71-3.55 (m, 5H), 3.38-3.34 (m, 1H), 3.27 (dd, J = 8.5, 3.5 Hz, 1H), 3.25 (t, J = 7.0 Hz, 2H), 1.61-1.54 (m, 8H), 1.49 (s, 3H), 1.34 (s, 3H), 1.38-1.26 (m, 8H), 1.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): *δ* 138.2, 138.2, 138.1, 137.8, 137.7, 137.7, 135.7, 135.5, 133.3, 133.3, 129.7, 129.7, 128.4, 128.3, 127.9, 127.8, 127.8, 127.7, 127.6, 127.6, 127.5, 109.5, 106.4, 106.1, 105.8, 97.7, 88.7, 88.3, 87.3, 83.7, 83.2, 81.6, 80.2, 80.1, 77.2. 73.4, 73.2, 72.4, 72.3, 72.3, 72.0, 72.0, 71.8, 69.8, 68.6, 67.6, 65.9, 65.4, 62.4, 61.4, 51.5, 29.7, 29.5, 29.3, 29.1, 28.8, 28.4, 26.8, 26.7, 26.2, 26.1, 19.2; For β: *R_f* 0.18 (5:1, petroleum ether–EtOAc); [α]_D 80.0 (*c* 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃): *δ* 7.71–7.64 (m, 4H), 7.43–7.20 (m, 32H), 7.13 (s, 4H), 5.22 (s, 1H), 5.17 (d, J = 1.5 Hz, 1H), 5.01 (d, J = 1.5 Hz, 1 H), 4.58–4.44 (m, 10H), 4.42–4.38 (m, 2H), 4.29 (d, J = 9.0 Hz, 1 H), 4.20-4.02 (m, 9H), 3.94-3.68 (m, 10H), 3.59-3.53 (m, 2H), 3.40-3.37 (m, 1H), 3.32 (t, J = 8.5 Hz, 1H), 3.25 (t, J = 7.0 Hz, 2H), 1.61-1.54 (m, 8H), 1.54 (s, 3H), 1.33 (s, 3H), 1.38-1.26 (m, 8H), 1.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 138.2, 138.0, 138.0, 137.9, 137.7, 137.7, 135.6, 135.5, 133.2, 133.1, 129.8, 129.7, 128.4, 128.3, 127.9, 127.8, 127.8, 127.7, 127.6, 127.6, 127.5, 127.5, 110.2, 106.8, 106.5, 106.1, 101.3, 88.7, 87.2, 83.8, 83.3, 83.0, 81.4, 80.2, 80.1, 77.2, 73.3, 73.1, 72.4, 72.3, 72.1, 72.0, 69.9, 67.6, 66.1, 65.4, 65.1, 62.1, 51.5, 29.5, 29.3, 29.1, 28.8, 28.4, 26.8, 26.8, 26.7, 26.2, 26.1, 19.2; HRMS-ESI-TOF calcd for [M+Na]⁺ C₉₀H₁₀₈N₆NaO₁₇Si: 1595.7438. Found: 1595.7443.

4.8. Methyl 4,6-di-O-benzylidenyl-3-O-tert-butyldiphenylsilyl-2-azido-2deoxy- α , β -p-galactopyranosyl- $(1 \rightarrow 6)$ -2,3,4-tri-O-benzoyl- α -p-mannopyranoside (**10a**)

Prepared from 5 (142 mg, 0.223 mmol) and 8a (94 mg, 0.186 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether-EtOAc, 4:1 to 6:1) to afford compound **10a** as a light syrup (169 mg, yield of 89.5%, α : β = 3:1). For α : R_f 0.25 (3:1, petroleum ether–EtOAc); [α]_D 28.7 (c 0.9, CHCl₃); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: δ 8.11 (dd, J = 7.5, 1.0 Hz, 2H), 7.91 (dd, J = 7.5, 1.0 Hz, 2H), 7.83 (dd, *J* = 7.5, 1.0 Hz, 2H), 7.78 (dd, *J* = 7.5, 1.0 Hz, 2H), 7.73 (dd, *J* = 7.5, 1.0 Hz, 2H), 7.60–7.34 (m, 17H), 7.28–7.23 (m, 3H), 5.85 (dd, J = 10.0, 3.5 Hz, 1H), 5.77 (t, J = 10.0 Hz, 1H), 5.64 (q, J = 1.5 Hz, 1H), 5.04 (d, J = 3.5 Hz, 1H), 5.01 (s, 1H), 4.87 (d, J = 1.5 Hz, 1H), 4.38 (dd, J = 10.0, 3.5 Hz, 1H), 4.28–4.23 (m, 1H), 3.98 (dd, J = 12.0, 1.5 Hz, 1H), 3.94 (dd, J = 10.5, 3.5 Hz, 1H), 3.88 (dd, J = 11.0, 7.0 Hz, 1H), 3.62 (dd, *J* = 11.0, 2.0 Hz, 1H), 3.56 (dd, *J* = 12.0, 1.5 Hz, 1H), 3.47 (d, J = 3.5 Hz, 1H), 3.36 (s, 1H), 3.32 (s, 3H), 1.09 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 165.6, 165.4, 165.4, 137.8, 135.9, 135.9, 134.4, 133.5, 133.5, 133.1, 133.0, 129.9, 129.9, 129.8, 129.7, 129.3, 129.2, 129.0, 128.8, 128.6, 128.5, 128.3, 128.1, 127.8, 127.5, 126.1, 100.4, 98.7, 98.4, 77.2. 75.3, 70.6, 70.0, 69.6, 69.4, 69.0, 67.2, 66.8, 62.8, 61.0, 55.2, 26.9, 26.3, 19.4; For β: *R*_f 0.25 (3:1, petroleum ether–EtOAc); $[\alpha]_{\rm D}$ –83.1 (c 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.10 (dd, J = 7.5, 1.0 Hz, 2H), 7.94 (dd, J = 7.5, 1.0 Hz, 2H), 7.81 (dd, J = 7.5, 1.0 Hz, 2H), 7.77 (dd, J = 7.5, 1.0 Hz, 2H), 7.75 (dd, J = 7.5, 1.0 Hz, 2H), 7.61–7.22 (m, 20H), 5.89 (dd, J = 10.0, 3.5 Hz, 1H), 5.72 (t, J = 10.5 Hz, 1H), 5.65 (q, J = 1.5 Hz, 1H), 5.14 (s, 1H), 4.98 (d, J = 1.5 Hz, 1H), 4.38-4.34 (m, 1H), 4.25 (d, J = 8.0 Hz, 1H), 4.11-4.08 (m, 2H), 3.83–3.76 (m, 2H), 3.72 (dd, *J* = 12.0, 1.5 Hz, 1H), 3.57 (dd, *J* = 10.0, 3.5 Hz, 1H), 3.55 (s, 3H), 3.43 (d, J = 3.5 Hz, 1H), 3.02 (s, 1H), 1.07 (s, 9H); $^{13}\mathrm{C}$ NMR (125 MHz, CDCl_3): δ 165.9, 165.6, 165.4, 137.8, 136.0, 135.8, 134.1, 133.4, 133.1, 132.6, 133.0, 129.9, 129.8, 129.7, 129.4, 129.2, 129.0, 128.8, 128.5, 128.2, 128.1, 127.8, 127.6, 126.1, 102.6, 100.6, 98.3, 77.2. 74.6, 72.7, 70.7, 70.0, 69.9, 69.2, 68.9, 67.6, 62.3, 64.4, 55.5, 26.9, 26.8, 19.4; HRMS-ESI-TOF calcd for [M + NH₄]⁺ C₅₇H₆₁N₄O₁₃Si: 1037.3999. Found: 1037.3988.

4.9. 8-Azidooctyl 4,6-di-O-benzylidenyl-3-O-tert-butyldiphenylsilyl-2azido-2-deoxy- α , β -D-galactopyranosyl- $(1 \rightarrow 2)$ -3,5-di-O-benzyl- α -Darabinofuanosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuanosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuanoside (**10b**)

Prepared from 5 (67 mg, 0.105 mmol) and 8b (97 mg, 0.088 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether-EtOAc, 7:2) to afford compound 10b as a light syrup (114 mg, yield of 80.6%, α : β = 10:1). R_f 0.35 (2:1, petroleum ether-EtOAc); $[\alpha]_D$ 69.0 (c 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.76–7.73 (m, 4H), 7.53–7.49 (m, 2H), 7.44–7.21 (m, 39H), 5.12 (s, 1H), 5.02 (s, 1H), 5.01 (s, 1H), 4.99 (s, 1H), 4.98 (d, *J* = 3.5 Hz, 1H), 4.65 (d, J = 12.0 Hz, 1H), 4.55–4.44 (m, 10H), 4.41 (d, J = 12.0 Hz, 1H), 4.17-4.01 (m, 11H), 3.87-3.80 (m, 4H), 3.72-3.66 (m, 2H), 3.59–3.53 (m, 3H), 3.50 (dd, *J* = 10.5, 5.5 Hz, 1H), 3.43 (d, *J* = 3.5 Hz, 1H), 3.38–3.33 (m, 1H), 3.32 (s, 1H), 3.25 (d, J = 7.0 Hz, 2H), 1.61–1.53 (m, 8H), 1.38–1.26 (m, 8H), 1.09 (s, 9H); 13 C NMR (125 MHz, CDCl₃): δ 138.1, 138.1, 137.8, 137.8, 137.7, 135.9, 135.8, 134.2, 132.8, 130.0, 129.9, 128.8, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.8, 127.7, 127.6, 127.6, 127.5, 126.2, 126.1, 106.3, 106.1, 106.1, 100.3, 98.8, 88.7, 88.2, 87.2, 83.6, 83.3, 83.2, 81.0, 80.4, 80.1, 77.2, 75.2, 73.3, 72.3, 72.3, 72.1, 72.0, 71.9, 69.7, 69.5, 69.0, 67.6, 66.0, 65.8, 63.3, 61.0, 51.5, 29.5, 29.3, 29.1, 28.8, 26.8, 26.8, 26.7, 26.1, 19.3; HRMS-ESI-TOF calcd for $[M + NH_4]^+$ C₉₄H₁₁₂N₇O₁₇Si: 1638.7884. Found: 1638.7878.

4.10. Methyl 4,6-di-O-benzylidenyl-3-O-tert-butyldiphenylsilyl-2-azido-2-deoxy- α , β -D-galactopyranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl- α -D-arabinofuranoside (10c)

Prepared from 5 (95 mg, 0.149 mmol) and 8c (46 mg, 0.124 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether-EtOAc, 8:1 to 4:1) to afford compound **10c** as a light syrup (101 mg, yield of 91.0%, α : β = 2:1). For α : *R*_f 0.3 (5:1, petroleum ether–EtOAc); $[\alpha]_D$ 94.1 (*c* 1.1, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 8.07 (d, J = 7.2 Hz, 2H), 8.04 (d, J = 7.8 Hz, 2H), 7.74 (t, J = 6.6 Hz, 4H), 7.61–7.55 (m, 4H), 7.50–7.31 (m, 16H), 7.24 (t, *J* = 7.8 Hz, 2H), 5.48 (d, *J* = 1.8 Hz, 1H), 5.39 (dd, *J* = 6.0, 1.8 Hz, 1H), 5.15 (d, J = 3.0 Hz, 1H), 5.06 (s, 2H), 4.38–4.35 (m, 1H), 4.35 (dd, J = 10.8, 3.6 Hz, 1H), 4.07 (d, J = 12.6 Hz, 1H), 3.95 (dd, J = 10.8, 3.6 Hz, 1H), 3.92–3.87 (m, 2H), 3.71 (d, J = 12.0 Hz, 1H), 3.54 (d, J = 1.8 Hz, 2H), 3.41 (s, 3H), 1.06 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 165.6, 137.8, 135.9, 135.9, 134.3, 133.5, 133.5, 132.9, 130.9, 129.9, 129.9, 129.7, 129.2, 129.2, 128.9, 128.5, 128.5, 128.1, 127.8, 127.5, 126.1, 106.7, 100.5, 99.1, 82.3, 80.6, 77.2, 77.0, 76.8, 75.5, 69.5, 69.2, 67.2, 65.6, 63.0, 61.0, 54.9, 30.6, 29.7, 26.8, 19.4, 19.2, 13.7, 1.0; For β: R_f 0.25 (5:1, petroleum ether–EtOAc); $[\alpha]_D$ 14.3 (c 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 8.07 (q, J = 7.8 Hz, 4H), 7.76 (d, J = 7.8 Hz, 4H), 7.59–7.53 (m, 4H), 7.46–7.36 (m, 12H), 7.30 (t, J = 7.8 Hz, 2H), 5.48 (d, *J* = 1.8 Hz, 1H), 5.47 (d, *J* = 6.0 Hz, 1H), 5.15 (d, *J* = 10.8 Hz, 2H), 4.48 (td, J = 6.6, 3.0 Hz, 1H), 4.36-4.32 (m, 2H), 4.17 (d, J = 12.0 Hz, 1H),3.90–3.86 (m, 2H), 3.75 (d, J = 12.0 Hz, 1H), 3.61 (dd, J = 10.2, 3.6 Hz, 1H), 3.47 (s, 3H), 3.44 (d, J = 3.6 Hz, 1H), 3.07 (s, 1H), 1.05 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 165.9, 165.5, 137.8, 136.0, 135.9, 134.1, 133.4, 133.4, 132.7, 130.0, 129.9, 129.9, 129.8, 129.3, 129.3, 128.9, 128.5, 128.4, 128.1, 127.8, 127.6, 126.2, 106.8, 102.5, 100.7, 82.2, 81.2, 77.6, 77.3, 77.0, 76.8, 74.7, 72.8, 69.3, 68.9, 66.4, 64.0, 54.9, 31.9, 29.7, 29.4, 26.8, 22.7, 19.4, 14.1, 1.0; HRMS-ESI-TOF calcd for [M+Na]⁺ C₄₉H₅₁N₃NaO₁₁Si: 908.3191. Found: 908.3199.

4.11. N-tert-Butyloxycarbonyl-3-O-(4,6-di-O-benzylidenyl-3-O-tertbutyldiphenylsilyl-2-azido-2-deoxy- α -D-galactopyranosyl)-D-Threonine allyl ester (**10d**)

Prepared from **5** (86 mg, 0.135 mmol) and **8d** (28 mg, 0.114 mmol) following the general Procedure. The residue was purified by column

chromatography (Petroleum ether-EtOAc, 2:1) to afford compound 10d as a light syrup (75 mg, yield of 86.6%, α : β = 5:4. For α : R_f 0.25 (3:1, petroleum ether–EtOAc); [α]_D 157.3 (*c* 1.1, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.77 (t, J = 6.6 Hz, 4H), 7.51–7.36 (m, 9H), 7.29 (t, J = 7.8 Hz, 2H), 5.92–5.85 (m, 1H), 5.34 (t, J = 7.8 Hz, 1H), 5.22 (d, J = 10.2 Hz, 1H), 5.11 (s, 1H), 4.97 (d, J = 3.0 Hz, 1H), 4.65–4.58 (m, 2H), 4.41 (d, J = 7.8 Hz, 1H), 4.13–4.09 (m, 2H), 4.06 (dd, J = 10.8, 3.0 Hz, 1H), 3.87–3.83 (m, 2H), 3.74 (dd, J = 12.6, 1.8 Hz, 1H), 3.54 (d, J = 3.0 Hz, 1H), 3.35 (s, 1H), 1.43 (s, 9H), 1.08 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 169.7, 155.3, 137.7, 135.95, 135.83, 134.1, 132.6, 131.5, 130.1, 129.9, 128.92, 128.18, 127.90, 127.56, 126.1, 118.8, 100.48, 100.22, 80.1, 77.24, 77.03, 76.8, 75.4, 69.71, 69.12, 69.05, 66.3, 63.3, 60.6, 54.2, 31.9, 29.72, 29.38, 26.8, 22.7, 19.3, 14.1. For p: Rf 0.15 (3:1, petroleum ether–EtOAc); $[\alpha]_D$ 80.1 (c 0.9, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.77–7.74 (m, 5H), 7.54 (dd, *J* = 7.8, 1.8 Hz, 2H), 7.47–7.45 (m, 1H), 7.43–7.38 (m, 7H), 7.30 (t, *J* = 7.8 Hz, 2H), 5.92–5.86 (m, 1H), 5.33 (dd, *J* = 17.4, 1.8Hz, 1H), 5.19 (d, *J* = 10.2 Hz, 1H), 5.14 (s, 1H), 4.71 (dd, J = 13.8, 6.0 Hz, 1H), 4.64 (dd, J = 13.2, 6.0 Hz, 1H), 4.48 (d, J = 8.4 Hz, 1H), 4.33 (dd, J = 10.2, 3.0 Hz, 1H), 4.17 (d, J = 8.4 Hz, 1H), 4.14 (dd, J = 12.0, 1.2 Hz, 1H), 3.85–3.81 (m, 2H), 3.74 (dd, J = 12.6, 1.8 Hz, 1H), 3.56 (dd, J = 10.2, 3.6 Hz, 1H), 3.43 (d, J = 3.0 Hz, 1H), 3.02 (d, J = 0.6 Hz, 1H), 1.45 (s, 9H), 1.06 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 169.8, 137.8, 135.98, 135.93, 135.87, 135.83, 134.0, 132.6, 131.6, 129.99,129.88, 128.91, 128.16, 127.82, 127.61, 126.2, 118.5, 102.3, 100.6, 79.9, 77.2, 77.0, 76.8, 74.5, 72.7, 69.5, 68.8, 66.32, 66.18, 64.0, 54.0, 28.3, 26.8, 19.4. HRMS-ESI-TOF calcd for [M+Na]⁺ C40H50N4NaO9Si: 781.3245. Found: 781.3231.

4.12. (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4,6-di-O-benzylidenyl-3-O-tert-butyldiphenylsilyl-2-azido-2-deoxy- α , β -D-galactopyranoside (10e)

Prepared from 5 (105 mg, 0.165 mmol) and 8e (22 mg, 0.141 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether-EtOAc, 15:1) to afford compound **10e** as a light syrup (82 mg, yield of 86.9%, α : β = 15:1). R_f 0.6 (5:1, petroleum ether-EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.77-7.74 (m, 4H), 7.55 (d, J = 6.6 Hz, 2H), 7.47–7.37 (m, 8H), 7.76 (t, J = 7.8 Hz, 2H), 5.13 (s, 1H), 4.27 (d, J = 8.4 Hz, 1H), 4.09 (d, J = 12.0 Hz, 1H), 3.82 (q, J = 10.2 Hz, 1H), 3.73 (dd, J = 12.0, 1.2 Hz, 1H), 3.55 (dd, J = 10.2, 3.6 Hz, 1H), 3.47-3.42 (m, 2H), 2.98 (s, 1H), 2.38-2.33 (m, 1H), 2.06 (d, J = 12.6 Hz, 1H), 1.64 (d, J = 10.8 Hz, 2H), 1.32–1.26 (m, 4H), 1.05 (s, 9H), 0.93 (d, J = 6.6 Hz, 3H), 0.90 (d, J = 6.6 Hz, 3H), 0.77 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 138.2, 136.0, 135.9, 134.3, 132.9, 129.9, 129.7, 128.9, 128.2, 127.8, 127.5, 126.4, 100.8, 99.3, 77.9, 77.2, 77.0, 74.8, 73.0, 69.1, 65.9, 64.2, 47.9, 40.3, 34.4, 31.6, 29.7, 26.8, 25.3, 23.4, 22.3, 20.9, 19.4, 16.0; HRMS-ESI-TOF calcd for [M+Na]⁺ C₃₉H₅₁N₃NaO₅Si: 692.3496. Found: 692.3488.

4.13. Methyl 4,6-di-O-benzylidenyl-3-O-tert-butyldiphenylsilyl-2-azido-2-deoxy- α , β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2,3,6-tri-O-benzyl- α -D-glucopyranoside (**10f**)

Prepared from **5** (86 mg, 0.135 mmol) and **8f** (52 mg, 0.112 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether–EtOAc, 15:1 to 12:1) to afford compound **10f** as a light syrup (93 mg, yield of 84.9%, α:β = 13:1). For α: R_f 0.35 (8:1, petroleum ether–EtOAc); [α]_D 61.5 (c 1.1, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.80–7.75 (m, 4H), 7.49–7.16 (m, 26H), 5.77 (d, J = 4.0 Hz, 1H), 5.08 (d, J = 10.5 Hz, 1H), 4.97 (s, 1H), 4.89 (d, J = 11.0 Hz, 1H), 4.74 (d, J = 12.0 Hz, 1H), 4.60 (d, J = 12.0 Hz, 1H), 4.58 (d, J = 4.0 Hz, 1H), 4.43 (d, J = 12.0 Hz, 1H), 4.27 (d, J = 12.0 Hz, 1H), 4.36 (dd, J = 11.0, 3.5 Hz, 1H), 3.71 (d, J = 12.5, 1.0 Hz, 1H), 3.65 (ddd, J = 10.0, 4.0, 1.5 Hz, 1H), 3.55 (dd, J = 10.0, 4.0 Hz, 1H), 3.24 (dd, J =

= 12.0, 1.5 Hz, 1H), 3.11 (s, 1H), 1.08 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): *δ* 138.6, 138.0, 137.9, 137.8, 136.0, 135.9, 134.2, 132.9, 130.0, 129.8, 128.8, 128.5, 128.4, 128.4, 128.1, 128.1, 128.0, 127.9, 127.6, 127.5, 127.4, 127.0, 126.1, 100.4, 98.4, 97.9, 81.9, 80.5, 77.2, 75.6, 74.9, 73.3, 73.2, 72.4, 69.5, 69.4, 69.0, 69.0, 63.0, 60.6, 55.4, 26.8, 19.3; For β: *R*_f 0.2 (8:1, petroleum ether–EtOAc); [α]_D 8.2 (*c* 0.6, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.80–7.76 (m, 4H), 7.53–7.15 (m, 26H), 5.11 (t, J = 5.0 Hz, 2H), 4.82 (d, J = 12.5 Hz, 1H), 4.75 (d, J = 11.0 Hz, 1H), 4.64 (dd, J = 12.0, 5.0 Hz, 2H), 4.59 (d, J = 4.0 Hz, 1H), 4.34 (d, J = 11.5 Hz, 1H), 4.13 (d, J = 12.5 Hz, 1H), 4.05 (dd, J = 12.0, 1.5 Hz, 1H), 3.99 (dd, J = 11.0, 3.0 Hz, 1H), 3.95–3.89 (m, 2H), 3.82–3.75 (m, 3H), 3.55–3.49 (m, 2H), 3.40 (dd, *J* = 10.0, 3.5 Hz, 1H), 3.39 (s, 3H), 3.29 (d, J = 3.5 Hz, 1H), 2.50 (s, 1H), 1.08 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): *δ* 139.2, 138.5, 138.1, 138.1, 136.0, 135.9, 134.1, 132.9, 130.0, 129.9, 128.8, 128.5, 128.4, 128.3, 128.1, 127.8, 127.8, 127.7, 127.6, 127.5, 127.2, 126.3, 101.5, 100.6, 98.3, 80.4, 79.3, 77.4, 77.2, 75.9, 74.5, 73.6, 73.2, 73.2, 69.7, 68.6, 66.1, 65.0, 55.4, 26.8, 19.4; HRMS-ESI-TOF calcd for $[M+Na]^+$ C₅₇H₆₃N₃NaO₁₀Si: 1000.4180. Found: 1000.4179.

4.14. (2-Trimethylsilyl)-ethyl 4,6-di-O-benzylidenyl-3-O-tertbutyldiphenylsilyl-2-azido-2-deoxy- α , β -p-galactopyranosyl-(1 \rightarrow 3)-4,6di-O-benzylidenyl-2-azido-2-deoxy- β -p-glucopyranoside (**10g**)

Prepared from 5 (84 mg, 0.132 mmol) and 8g (43 mg, 0.109 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether-EtOAc, 12:1) to afford compound **10g** as a light syrup (70 mg, yield of 70.7%, α -only). R_f 0.3 (8:1, petroleum ether-EtOAc); [a]_D 77.7 (c 1.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.79–7.75 (m, 4H), 7.53–7.36 (m, 14H), 7.29 (t, J = 8.0 Hz, 2H), 5.61 (d, J = 3.5 Hz, 1H), 5.58 (s, 1H), 5.15 (s, 1H), 4.40 (d, J = 8.0 Hz, 1H), 4.35 (q, J = 5.0 Hz, 1H), 4.24 (dd, J = 10.5, 3.5 Hz, 1H), 4.12 (dd, J = 12.5, 1.0 Hz, 1H), 3.83 (dd, J = 10.5, 3.5 Hz, 1H), 3.80-3.61 (m, 7H), 3.39 (td, *J* = 10.0, 5.0 Hz, 1H), 3.25 (dd, *J* = 10.0, 8.0 Hz, 1H), 1.10 (s, 9H), 1.06–1.02 (m, 2H), 0.05 (s, 9H); 13 C NMR (125 MHz, CDCl₃): δ 137.8, 136.8, 136.0, 135.8, 134.3, 132.7, 130.1, 129.8, 128.8, 128.3, 128.1, 127.8, 127.5126.1, 125.9, 102.1, 101.4, 100.4, 98.8, 81.7, 77.2. 75.7, 74.2, 69.2, 68.9, 68.5, 68.3, 65.9, 65.2, 63.2, 60.1, 26.8, 19.3, 18.3, -1.4; HRMS-ESI-TOF calcd for [M+Na]⁺ C₄₇H₅₈N₆NaO₉Si₂: 929.3702. Found: 929.3696.

4.15. 4,6-Di-O-benzylidenyl-3-O-tert-butyldiphenylsilyl-2-azido-2-deoxy- α -D-galactopyranosyl- $(1 \rightarrow 2)$ -1,3,4-tri-O-benzoyl- α -D-ribofuranose (**10h**)

Prepared from 5 (84 mg, 0.132 mmol) and 8h (52 mg, 0.113 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether-EtOAc, 8:1) to afford compound 10h as a light syrup (87 mg, yield of 79.8%, α -only). $R_f 0.2$ (8:1, petroleum ether–EtOAc); $[\alpha]_D$ 147.0 (c 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 8.22 (dd, J = 8.4, 1.2 Hz, 2H), 8.05 (dd, J = 8.4, 1.2 Hz, 2H), 8.02 (dd, J = 8.4, 1.8 Hz, 2H), 7.65 (t, J = 7.8 Hz, 1H), 7.59–7.53 (m, 4H), 7.49 (d, *J* = 6.6 Hz, 2H), 7.47 (td, *J* = 8.4, 3.6 Hz, 4H), 7.39 (dd, *J* = 7.2, 3.6 Hz, 2H), 7.34–7.27 (m, 7H), 7.17 (t, J = 7.8 Hz, 2H), 7.12 (t, J = 7.8 Hz, 2H), 6.82 (d, J = 4.2 Hz, 1H), 5.60 (dd, J = 6.6, 1.8 Hz, 1H), 5.21 (d, J = 3.6 Hz, 1H), 4.86 (s, 1H), 4.80 (q, *J* = 5.4 Hz, 1H), 4.66 (q, *J* = 6.6 Hz, 1H), 4.60 (t, J = 3.0 Hz, 2H), 4.09 (dd, J = 10.2, 3.0 Hz, 1H), 3.89 (dd, J = 10.2, 3.6 Hz, 1H), 3.87 (dd, J = 12.6, 1.2 Hz, 1H), 3.50 (dd, J = 12.6, 1.2 Hz, 1H), 3.44 (s, 1H), 3.17 (d, J = 2.4 Hz, 1H), 0.9 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 166.1, 165.98, 165.6, 137.6, 135.6, 135.5, 134.1, 133.6, 133.5, 133.3, 133.2, 130.1, 129.95, 129.82, 129.80, 129.75, 129.56, 129.24, 128.8, 128.7, 128.5, 128.3, 128.1, 127.6, 127.5, 126.1, 100.4, 98.5, 94.0, 82.5, 77.25, 77.0, 76.8, 74.8, 74.2, 71.4, 69.4, 68.9, 64.1, 63.5, 60.7, 26.8, 19.3; HRMS-ESI-TOF calcd for [M+Na]⁺ C₅₅H₅₃N₃NaO₁₂Si: 998.3296. Found: 998.3305.

4.16. Methyl 4,6-di-O-benzylidenyl-3-O-tert-butyldiphenylsilyl-2-azido-2-deoxy- α -*D*-galactopyranosyl- $(1 \rightarrow 3)$ -2,5-di-O-benzoyl- α -*D*arabinofuranoside (**10**i)

Prepared from 5 (108 mg, 0.170 mmol) and 8i (52 mg, 0.140 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether-EtOAc, 8:1) to afford compound 10i as a light syrup (92 mg, yield of 74.4%, α -only). $R_f 0.3$ (6:1, petroleum ether–EtOAc); $[\alpha]_D$ 102.4 (*c* 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.97 (t, J = 8.4 Hz, 4H), 7.90 (d, J = 6.6 Hz, 2H), 7.76 (d, J = 6.6 Hz, 2H), 7.59 (t, J = 7.8 Hz, 1H), 7.53–7.35 (m, 14H), 7.30 (q, J = 15.6 Hz, 1H), 5.36 (d, J = 4.2 Hz, 2H), 5.09 (s, 1H), 5.01 (s, 1H), 4.55 (dd, J = 12.0, 2.4 Hz, 1H), 4.44–4.42 (m, 1H), 4.27 (s, 2H), 4.25 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.96 (d, J = 12.6 Hz, 1H), 3.92 (dd, J = 10.8, 3.6 Hz, 1H), 3.59 (d, J = 12.0 Hz, 1H), 3.49 (d, J = 3.0 Hz, 1H), 3.45 (s, 3H), 3.32 (s, 1H), 1.08 (s, 9H); 13 C NMR (150 MHz, CDCl₃): δ 166.2, 165.4, 137.7, 13.98.0, 135.89, 134.2, 133.5, 133.3, 132.8, 129.97, 129.86, 129.82, 129.64, 129.44, 129.14, 128.87, 128.51, 128.44, 128.12, 127.86, 127.57, 126.1, 106.9, 100.5, 98.6, 82.3, 81.5, 79.9, 77.3, 77.1, 76.8, 75.3, 69.3, 69.0, 63.5, 63.1, 60.3, 54.8, 26.8, 19.3; HRMS-ESI-TOF calcd for [M+Na]⁺ C₄₉H₅₁N₃NaO₁₁Si: 908.3191. Found 908.3188.

4.17. Methyl 4,6-di-O-benzylidenyl-3-O-tert-butyldiphenylsilyl-2-azido-2-deoxy- α -b-galactopyranosyl- $(1 \rightarrow 4)$ -2:3-O-isopropylidene- α -L-rhamnopyranoside (**10***j*)

Prepared from 5 (105 mg, 0.165 mmol) and 8i (30 mg, 0.138 mmol) following the general Procedure. The residue was purified by column chromatography (Petroleum ether-EtOAc, 8:1) to afford compound 10j as a light syrup (87 mg, yield of 86.4%, α : β = 7:1). For α : R_f 0.3 (6:1, petroleum ether–EtOAc); $[\alpha]_D$ 100.1 (*c* 0.7, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.76 (t, J = 7.2 Hz, 4H), 7.49–7.46 (m, 3H), 7.42–7.35 (m, 7H), 7.27 (t, J = 7.8 Hz, 1H), 5.13 (d, J = 3.0 Hz, 1H), 5.01 (s, 1H), 4.83 (s, 1H), 4.28 (dd, J = 10.8, 3.6 Hz, 1H), 4.05 (s, 1H), 4.04 (d, J = 6.6 Hz, 1H), 3.92–3.90 (m, 2H), 3.76 (s, 1H), 3.72 (d, J = 12.0 Hz, 1H), 3.69 (q, *J* = 10.2 Hz, 1H), 3.51 (d, *J* = 3.0 Hz, 1H), 3.37 (t, *J* = 4.8 Hz, 4H), 1.44 (s, 3H), 1.36 (d, J = 6.6 Hz, 3H), 1.26 (s, 3H), 1.08 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 137.8, 135.9, 135.89, 134.3, 132.9, 130.0, 129.8, 128.8, 128.1, 127.8, 127.5, 126.1, 109.0, 100.4, 99.3, 97.7, 79.9, 77.2, 77.0, 76.9, 76.8, 76.1, 75.3, 69.6, 69.1, 65.0, 62.7, 61.3, 54.9, 31.9, 29.7, 28.1, 26.9, 26.4, 22.7, 19.3, 17.5, 14.1; For β: Rf 0.25 (6:1, petroleum ether–EtOAc); $[\alpha]_D$ 11.3 (c 0.7, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.78 (qd, J = 7.8 1.2 Hz, 4H), 7.54 (dd, J = 8.4, 1.8 Hz, 2H), 7.48–7.45 (m, 1H), 7.43–7.38 (m, 7H), 7.29 (t, J = 7.8 Hz, 2H), 5.10 (s, 1H), 4.85 (s, 1H), 4.68 (d, J = 8.4 Hz, 1H), 4.27 (t, J = 6.6 Hz, 1H), 4.11–4.09 (m, 2H), 3.80 (q, J = 10.2 Hz, 1H), 3.74 (dd, J = 12.0, 1.8 Hz, 1H), 3.68 (q, J = 6.6 Hz, 2H), 3.64 (dd, J = 10.2, 3.6 Hz, 1H), 3.38 (s, 1H), 3.37 (s, 3H), 3.01 (s, 1H), 1.44 (s, 3H), 1.32 (d, J = 5.4 Hz, 6H), 1.06 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 138.0, 136.1135.9, 134.2, 132.8, 129.89, 129.80, 128.9, 128.2, 127.8, 127.6, 126.2, 109.1, 100.7, 100.0, 99.8, 97.9, 78.1, 77.8, 77.2, 77.0, 76.8, 76.1, 74.6, 72.8, 69.0, 66.2, 64.5, 64.2, 54.8, 31.9, 29.7, 29.4, 27.8, 26.8, 26.4, 22.7, 19.4, 17.7, 14.1, 1.0; HRMS-ESI-TOF calcd for [M+Na]⁺ C₃₉H₄₉N₃NaO₉Si: 754.3136. Found: 754.3136.

4.18. Methyl 4,6-di-O-benzylidenyl-3-O-benzoyl-2-azido-2-deoxy- α,β -p-galactopyranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl- α -p-arabinofuranoside (11)

A mixture of **6** (73 mg, 0.145 mmol), **8c** (44 mg, 0.120 mmol) and freshly activated 4 Å molecular sieves (117 mg) in dry CH_2Cl_2 (1.5 mL) was cooled to 0 °C. The suspension was stirred for 15 min, then NIS (49 mg, 0.217 mmol) and TfOH (1.3 µL, 015 mmol) were added. The reaction mixture was stirred for 5 min at the same temperature. The reaction mixture was gradually warmed to rt and was stirred for 1–2 h at the same temperature. The mixture was quenched with Et₃N and was diluted with CH_2Cl_2 and added $Na_2S_2O_3$, filtered through celite and concentrated in vacuo. The crude material was quickly purified by column chromatography (4:1, petroleum ether-EtOAc) to afford compound **11** as a colorless syrup (80 mg, yield of 89.8%, α : β = 1:1). For α : R_f 0.45 (3:1, petroleum ether–EtOAc), ¹H NMR (600 MHz, CDCl₃): δ 8.09–8.06 (m, 6H), 7.61-7.58 (m, 2H), 7.48-7.45 (m, 7H), 7.41-7.38 (m, 2H), 7.35–7.33 (m, 3H), 5.57–5.55 (m, 1H), 5.54 (s, 1H), 5.53 (d, J = 1.8 Hz, 1H), 5.52–5.50 (m, 1H), 5.26 (d, J = 3.6 Hz, 1H), 5.15 (s, 1H), 4.66 (d, J = 3.6 Hz, 1H), 4.45–4.43 (m, 1H), 4.33 (dd, J = 6.6, 1.8 Hz, 1H) 4.20–4.17 (m, 1H), 4.16 (dd, *J* = 11.4, 5.4 Hz, 1H), 4.11–4.04 (m, 2H), 4.01–3.99 (m, 1H), 3.49 (s, 3H), 13 C NMR (150 MHz, CDCl₃): δ 165.9, 165.8, 165.6, 137.6, 133.6, 133.48, 133.46, 129.97, 129.96, 129.94, 129.4, 129.11, 129.05, 129.95, 128.52, 128.49, 128.1, 126.0, 106.8, 100.6, 98.7, 82.3, 81.2, 77.5, 77.3, 77.1, 76.8, 73.5, 70.4, 69.2, 67.6, 62.8, 57.8, 55.0. For β : R_f 0.20 (3:1, petroleum ether–EtOAc), ¹H NMR (600 MHz, CDCl₃): 8 8.08-8.07 (m, 6H), 7.60-7.54 (m, 3H), 7.48-7.42 (m, 8H), 7.36-7.33 (m, 3H), 5.52 (s, 1H), 5.50-4.49 (m, 2H), 5.16 (s, 1H), 5.01 (dd, *J* = 10.8, 3.6 Hz, 1H), 4.67 (d, *J* = 7.8 Hz, 1H), 4.52–4.50 (m, 1H), 4.49 (d, J = 3.6 Hz, 1H), 4.44-4.44 (m, 1H), 4.37 (d, J = 1.2 Hz,1H), 4.14 (dd, *J* = 10.8, 8.4 Hz, 1H), 4.10–4.07 (m, 1H), 4.00–3.97 (m, 1H), 3.59 (s, 1H), 3.48 (s, 3H), 13 C NMR (150 MHz, CDCl₃): δ 160.0, 165.9, 165.5, 137.5, 133.54, 133.47, 133.46, 130.0, 129.9, 129.3, 129.2, 129.0, 128.51, 128.50, 128.47, 128.1, 126.2, 106.8, 102.5, 100.8, 82.3, 81.2, 77.6, 77.3, 77.0, 76.8, 72.82, 72.76, 69.4, 68.9, 66.5, 60.5, 54.9, 32.0, 31.5, 30.2, 29.7, 29.4, 22.7, 14.2; HRMS-ESI-TOF calcd for [M+Na]⁺ C₄₀H₃₇N₃NaO₁₂: 774.2275. Found: 774.2286.

4.19. Methyl 4,6-di-O-benzylidenyl-3-O-benzyl-2-azido-2-deoxy- α,β -D-galactopyranosyl-(1 \rightarrow 5)-2,3-di-O-benzoyl- α -D-arabinofuranoside (12)

A mixture of 7 (98 mg, 0.200 mmol), 8c (62 mg, 0.167 mmol) and freshly activated 4 Å molecular sieves (160 mg) in dry CH₂Cl₂ (2 mL) was cooled to -20 °C. The suspension was stirred for 15 min, then NIS (68 mg, 0.300 mmol) and TfOH (1.8 μL , 020 mmol) were added. The reaction mixture was stirred for 5 min at the same temperature. The reaction mixture was gradually warmed to 0 °C and was stirred for 1-2 h at the same temperature. The mixture was quenched with Et₃N and was diluted with CH2Cl2 and added Na2S2O3, filtered through celite and concentrated in vacuo. The crude material was quickly purified by column chromatography (3:1, petroleum ether-EtOAc) to afford compound **12** as a colorless syrup (105 mg, yield of 85.5%, α : β = 2:3). For α : *R*_f 0.65 (2:1, petroleum ether–EtOAc), ¹H NMR (600 MHz, $CDCl_3$): δ 8.11 (dd, J = 8.4, 1.2 Hz, 2H), 8.08 (dd, J = 7.8, 1.2 Hz, 2H), 7.62–7.59 (m, 1H), 7.55-7.52 (m, 1H), 7.51-7.43 (m, 6H), 7.37-7.28 (m, 8H), 5.50-5.49 (m, 2H), 5.44 (s, 1H), 5.16 (s, 1H), 5.14 (d, J = 3.6 Hz, 1H), 4.58 (dd, J = 21, 12 Hz, 2H), 4.43–4.40 (m, 1H), 4.26 (dd, J = 12, 1.2 Hz, 1H), 4.20 (d, *J* = 3.0 Hz, 1H), 4.06 (dd, *J* = 10.8, 5.4 Hz, 1H), 4.02–3.97 (m, 3H), 3.96 (dd, J = 12, 3.0 Hz, 1H), 3.84 (s, 1H), 3.47 (s, 3H), ¹³C NMR (150 MHz, CDCl₃): δ 165.8, 165.5, 138.0, 137.6, 133.62, 133.57, 129.94, 129.89, 129.2, 129.1, 129.0, 128.6, 128.5, 128.8, 128.2, 127.7, 127.6, 126.2, 106.8, 100.9, 98.7, 82.3, 81.1, 77.4, 77.2, 77.0, 76.8, 74.9, 73.0, 71.2, 69.4, 67.1, 63.0, 58.8, 54.9, 31.4, 30.2, 1.03. For β: R_f 0.35 (2:1, petroleum ether-EtOAc), ¹H NMR (600 MHz, CDCl₃): δ 8.07-8.06 (m, 4H), 7.59–7.52 (m, 4H), 7.46–7.29 (m, 12H), 5.51 (dd, J = 6, 1.8 Hz, 1H), 5.49 (d, J = 1.8 Hz, 1H), 5.47 (s, 1H), 5.45 (s, 1H), 4.75 (dd, J = 14.4, 12.6 Hz, 2H), 4.88 (dd, J = 6.0, 3.0 Hz, 1H), 4.46 (d, J = 8.4 Hz, 1H), 4.39 (dd, J = 13.2, 3.0 Hz, 1H), 4.30 (dd, J = 12.6, 1.2 Hz, 1H), 4.07 (d, J = 3.0 Hz, 1H), 4.00 (dd, J = 12.0, 1.8 Hz, 1H), 3.94–3.90 (m, 2H), 3.47 (s, 3H), 3.42 (dd, J = 10.2, 3.6 Hz, 1H), 3.33 (s, 1H), ¹³C NMR (150 MHz, CDCl₃): δ 165.9, 165.5, 137.7, 137.6, 133.4, 129.95, 129.88, 129.21, 129.17, 129.0, 128.5, 128.44, 128.43, 128.2, 127.9, 127.8, 126.4, 106.7, 102.5, 101.1, 82.4, 81.2, 77.8, 77.5, 77.2, 77.0, 76.8, 72.4, 71.6, 69.2, 69.1, 66.6, 61.9, 54.9; HRMS-ESI-TOF calcd for [M+Na]+ C40H39N3NaO11: 760.2482. Found: 760.2488.

4.20. 4,6-Di-O-benzylidenyl-3-O-benzyl-2-azido-2-deoxy- α , β -D-galactopyranosyl-(1 \rightarrow 2)-1,3,4-tri-O-benzoyl- α -D-ribofuranose (13)

A mixture of 7 (120 mg, 0.245 mmol), 8h (94 mg, 0.204 mmol) and freshly activated 4 Å molecular sieves (214 mg) in dry CH₂Cl₂ (2.5 mL) was cooled to -20 °C. The suspension was stirred for 15 min, then NIS (83 mg, 0.368 mmol) and TfOH (2.2 µL, 025 mmol) were added. The reaction mixture was stirred for 5 min at the same temperature. The reaction mixture was gradually warmed to 0 °C and was stirred for 2 h at the same temperature. The mixture was quenched with Et₃N and was diluted with CH2Cl2 and added Na2S2O3, filtered through celite and concentrated in vacuo. The crude material was quickly purified by column chromatography (5:1, petroleum ether-EtOAc) to afford compound 13 as a colorless syrup (128 mg, yield of 76.2%, a complex product). R_f 0.40 (4:1, petroleum ether–EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 8.23 (dd, *J* = 8.4, 1.2 Hz, 2H), 8.15 (dd, *J* = 7.8, 1.2 Hz, 2H), 8.09–8.01 (m, 7H), 7.96 (dd, J = 7.8, 1.2 Hz, 1H), 7.90 (dd, J = 8.4, 1.2 Hz, 1H), 7.62–7.32 (m, 28H), 7.23–7.21 (m, 3H), 7.17–7.15 (m, 2H), 6.84 (d, J = 4.2 Hz, 1H), 5.82 (td, *J* = 8.4, 4.2 Hz, 1H), 5.78 (dd, *J* = 7.2, 2.4 Hz, 1H), 5.38 (s, 1H), 5.17 (d, J = 3.0 Hz, 1H), 4.93 (dd, J = 6.0, 3.6 Hz, 1H), 4.74 (dd, J = 4.2, 3.0 Hz, 1H), 4.73 (d, J = 3.0 Hz, 1H), 4.63 (d, J = 3.6 Hz, 10.0 Hz)2H), 4.25 (s, 2H), 4.08 (dd, J = 12.6, 1.2 Hz, 2H), 3.95 (dd, J = 12.6, 1.8 Hz, 1H), 3.84 (dd, J = 10.8, 3.6 Hz, 1H), 3.79 (s, 1H), 3.60 (dd, J = 10.8, 3.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 166.6, 166.5, 166.2, 166.0, 165.62, 165.58, 165.47, 165.37, 165.26, 137.71, 137.48, 133.78, 133.66, 133.65, 133.58, 133.53, 133.45, 133.39, 133.36, 133.23, 130.1, 130.0, 129.84, 129.80, 129.79, 129.76, 129.75, 129.6, 129.39, 129.32, 129.19, 129.0, 128.9, 129.7, 128.6, 128.59, 128.56, 128.51, 128.50, 128.44, 128.41, 128.33, 128.29, 128.21, 127.8, 127.6, 126.2, 100.9, 100.5, 97.7, 95.8, 94.1, 81.7, 79.6, 79.3, 77.3, 77.0, 76.9, 76.2, 74.7, 73.1, 72.96, 72.4, 71.9, 71.8, 71.5, 69.1, 65.2, 64.18, 64.14, 63.8, 58.1, 31.96, 31.5, 30.2, 29.73, 29.69, 29.4, 26.9, 22.7, 14.2.

4.21. Methyl 4,6-di-O-benzylidenyl-3-O-benzoyl-2-azido-2-deoxy- α -D-galactopyranosyl- $(1 \rightarrow 3)$ -2,5-di-O-benzoyl- α -D-arabinofuranoside (14)

A mixture of 6 (80 mg, 0.159 mmol), 8i (49 mg, 0.133 mmol) and freshly activated 4 Å molecular sieves (129 mg) in dry CH₂Cl₂ (1.6 mL) was cooled to 0 °C. The suspension was stirred for 15 min, then NIS (53 mg, 0.238 mmol) and TfOH (1.4 µL, 016 mmol) were added. The reaction mixture was stirred for 5 min at the same temperature. The reaction mixture was gradually warmed to r.t. and was stirred for 2 h at the same temperature. The mixture was quenched with Et₃N and was diluted with CH₂Cl₂ and added Na₂S₂O₃, filtered through celite and concentrated in vacuo. The crude material was quickly purified by column chromatography (5:1, petroleum ether-EtOAc) to afford compound 14 as a colorless syrup (18 mg, yield of 18.2%, α-only). Rf 0.35 (3:1, petroleum ether–EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 8.11 (dd, J = 7.8, 1.2 Hz, 2H), 8.03 (dd, J = 8.4, 1.2 Hz, 2H), 7.99 (dd, J = 8.4, 1.2 Hz, 2H), 7.61-7.58 (m, 2H), 7.55-7.52 (m, 1H), 7.48-7.40 (m, 6H), 7.34-7.31 (m, 5H), 5.58–5.55 (m, 2H), 5.50 (s, 1 H), 5.38 (d, J = 0.6 Hz, 1H), 5.16 (s, 1 H), 4.65 (d, J = 3.6 Hz, 2H), 4.61 (d, J = 3.0 Hz, 1H), 4.51–4.49 (s, 1H), 4.38 (d, *J* = 6.0 Hz, 1H), 4.20–4.16 (m, 2H), 3.97 (dd, *J* = 12.6, 1.2 Hz, 1H), 3.87 (s, 1H), 3.47 (s, 3H), ¹³C NMR (150 MHz, CDCl₃): δ 166.3, 166.1, 165.4, 137.4, 133.5, 133.3, 130.0, 129.8, 129.7, 129.4, 129.3, 129.1, 129.0, 128.52, 128.48, 128.1, 126.0, 106.9, 100.6, 98.1, 82.3, 81.8, 80.2, 77.2, 77.0, 76.8, 73.4, 69.9, 69.0, 63.3, 63.1, 57.1, 54.9, 31.5, 29.8. HRMS-ESI-TOF calcd for $[M+Na]^+$ C₄₀H₃₇N₃NaO₁₂: 774.2275. Found: 774.2277.

4.22. Methyl 4,6-di-O-benzylidenyl-3-O-benzyl-2-azido-2-deoxy- α -D-galactopyranosyl-(1 \rightarrow 3)-2,5-di-O-benzoyl- α -D-arabinofuranoside (15)

A mixture of **7** (88 mg, 0.180 mmol), **8i** (56 mg, 0.50 mmol) and freshly activated 4 Å molecular sieves (144 mg) in dry CH_2Cl_2 (1.8 mL) was cooled to -20 °C. The suspension was stirred for 15 min, then NIS

(61 mg, 0.270 mmol) and TfOH (1.6 µL, 0.018 mmol) were added. The reaction mixture was stirred for 5 min at the same temperature. The reaction mixture was gradually warmed to 0 °C and was stirred for 1-2 h at the same temperature. The mixture was quenched with Et₃N and was diluted with CH₂Cl₂ and added Na₂S₂O₃, filtered through celite and concentrated in vacuo. The crude material was quickly purified by column chromatography (3:1, petroleum ether-EtOAc) to afford compound 15 as a colorless syrup (53 mg, yield of 47.8%, α -only). R_f 0.35(2:1, petroleum ether–EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 8.02 (dd, J = 7.8, 1.2 Hz, 2H), 7.99 (dd, J = 8.4, 1.2 Hz, 2H), 7.60–7.57 (m, 1H), 7.55–7.53 (m, 1H), 7.49 (dd, J = 7.8, 1.8 Hz, 2H), 7.43–7.40 (m, 4H), 7.36–7.29 (m, 8H), 5.43 (s, 1H), 5.39 (d, *J* = 3.0 Hz, 2H), 5.13 (s, 1H), 4.78 (dd, J = 28.2, 11.4 Hz, 2H), 4.64 (dd, J = 12.0, 3.0 Hz, 1H), 4.59 (dd, *J* = 12.6, 4.8 Hz, 1H), 4.45–4.43 (m, 1H), 4.35 (d, *J* = 6.0 Hz, 1H), 4.21 (d, J = 3.0 Hz, 1H), 4.15 (dd, J = 12.6, 1.2 Hz, 1H), 4.04 (dd, J = 10.8, 3.6 Hz, 1H), 3.97 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.92 (dd, *J* = 12.6, 1.2 Hz, 1H), 3.67 (s, 1H), 3.47 (s, 3H), ¹³C NMR (150 MHz, CDCl₃): δ 166.3, 165.4, 137.9, 137.5, 133.5, 133.4, 129.8, 129.7, 129.4, 129.1, 129.0, 128.51, 128.47, 128.43, 128.2, 127.9, 127.7, 126.2, 107.0, 100.9, 99.3, 82.3, 81.8, 80.0, 77.2, 77.0, 74.4, 72.9, 71.3, 69.2, 63.5, 63.2, 58.2, 55.0, 31.5, 30.2; HRMS-ESI-TOF calcd for [M+Na]⁺ C₄₀H₃₉N₃NaO₁₁: 760.2482. Found: 760.2471.

4.23. 8-Azidooctyl 3,5-O-(di-tert-butylsilylene)-2-O-levulinoyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzoyl- α -D-arabinofuranoside (18)

A mixture of thioglycoside 16 (1.151 g, 2.330 mmol) and acceptor 17 (990 mg, 1.937 mmol), and freshly activated 4 Å molecular sieves (2.150 g) in dry CH_2Cl_2 (23 mL) was cooled to -30 °C. The suspension was stirred for 15 min, then NIS (678 mg, 3.01 mmol), TfOH (10 µL, 0.113 mmol) was added. The reaction mixture was stirred for 1 h -30 °C. The reaction mixture was gradually warmed to 0 °C and quenched with Et₃N. The mixture was diluted with CH₂Cl₂ and added Na₂S₂O₃, filtered through celite and concentrated in vacuo. The crude material was quickly purified by column chromatography (Petroleum ether-EtOAc, 5:1) to give the product 18 (1.555 g, yield of 91.2%) as a vellow syrup. For α : R_f 0.25 (4:1, petroleum ether–EtOAc); $[\alpha]_D$ 11.8 (c 1.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.09–8.06 (m, 4H), 7.60–7.50 (m, 2H), 7.48 (dd, J = 15.5, 8.0 Hz, 4H), 5.46 (s, 1H), 5.46 (d, J = 4.0 Hz, 1H), 5.21 (s, 1H), 5.16 (dd, *J* = 6.5, 2.0 Hz, 1H), 5.00 (d, *J* = 2.0 Hz, 1H), 4.46 (dd, J = 9.5, 4.5 Hz, 1H), 4.35–4.32 (m, 1H), 4.12–4.06 (m, 2H), 4.04 (dd, *J* = 11.0, 5.5 Hz, 1H), 3.93–3.90 (m, 1H), 3.89 (dd, *J* = 11.0, 4.0 Hz, 1H), 3.79 (dt, J = 9.5, 7.0 Hz, 1H), 3.54 (dt, J = 9.5, 6.0 Hz, 1H), 3.24 (t, J = 7.0 Hz, 2H), 3.20 (t, J = 6.5 Hz, 2H), 2.76-2.73 (m, 2H), 2.58-2.55 (m, 2H), 2.18 (s, 3H), 2.04 (dd, J = 7.5, 5.5 Hz, 2H), 1.67–1.54 (m, 4H), 1.42–1.26 (m, 8H); $^{13}{\rm C}$ NMR (125 MHz, CDCl₃): δ 206.2, 171.8, 165.6, 165.5, 133.4, 133.3, 129.9, 129.9, 129.5, 129.3, 128.5, 128.4, 106.6, 105.7, 82.9, 81.9, 81.4, 80.4, 77.6, 77.2, 73.6, 67.8, 67.5, 67.4, 51.5, 37.9, 29.8, 29.5, 29.3, 29.1, 28.8, 27.9, 27.4, 27.0, 26.7, 26.1, 22.6, 20.0; HRMS-ESI-TOF calcd for [M+Na]+ C45H63N3NaO13Si: 904.4028. Found: 904.4034.

4.24. 8-Azidooctyl 2-O-levulinoyl- α -p-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl- α -p-arabinofuranoside (19)

To a solution of **18** (1.350 g, 1.53 mmol) in THF (12 mL) was added TBAF (3.0 mL, 1.0 M in THF, mmol) at 0 °C under N₂. The reaction mixture was gradually warmed to rt and stirred 1h. The mixture was concentrated in vacuo and extracted with CH₂Cl₂ and H₂O. The organic layer was washed with 1 N aq NH₄Cl, H₂O and brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography (Petroleum ether–EtOAc, 1:3) to give the product **19** (981 mg, yield of 85.8%) as a yellow syrup. R_f 0.25 (1:3, petroleum ether–EtOAc); [α]_D 33.7 (*c* 1.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.07 (dd, J = 8.0, 1.5 Hz, 4H), 7.61–7.57 (m, 2H), 7.48 (td, J = 8.0, 2.5 Hz, 4H), 5.49 (d, J = 3.5 Hz, 1H), 5.49 (s, 1H), 5.23 (s, 1H), 5.21 (s, 1H),

4.94 (d, J = 2.0 Hz, 1H), 4.39 (dd, J = 8.5, 5.0 Hz, 1H), 4.25–4.22 (m, 1H), 4.13 (dd, J = 11.0, 5.0 Hz, 1H), 4.02 (td, J = 6.0, 2.5 Hz, 1H), 3.90–3.86 (m, 2H), 3.78–3.71 (m, 2H), 3.53 (dt, J = 9.5, 6.5 Hz, 1H), 3.24 (t, J = 7.0 Hz, 2H), 2.76–2.73 (m, 2H), 2.64–2.60 (m, 2H), 2.14 (s, 3H), 1.67–1.54 (m, 4H), 1.43–1.28 (m, 8H), 1.03 (s, 9H), 0.91 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 206.3, 172.9, 165.9, 165.4, 133.5, 130.0, 129.9, 129.2, 129.2, 128.6, 128.5, 105.6, 105.0, 85.4, 84.7, 81.9, 81.6, 77.4, 77.2, 76.4, 67.6, 65.8, 62.2, 51.4, 37.9, 29.7, 29.5, 29.3, 29.1, 28.8, 27.8, 26.7, 26.1; HRMS–ESI–TOF calcd for $[M+Na]^+$ C₃₇H₄₃N₃NaO₁₃Si: 764.3007. Found: 764.3003.

4.25. Toluene 5-O-(2,2,2-trichloroethoxy)-carbonyl-2,3-di-O-benzoyl- α -b-arabinofuranoside (20)

To a solution of 2,3-di-O-benzoyl-1-thio- α -D-arabinofuranoside ^[20] (1.53 g, 3.30 mmol) in dry CH₂Cl₂ (6.6 mL) was added pyridine (0.37 mL, 3.00 mmol) and Troc-Cl (0.55 mL, 3.96 mmol). The reaction mixture was stirred at 0 °C for 1 h. The resulting mixture was added H₂O and extracted with CH₂Cl₂. The organic layer was washed with 1 N HCl, saturated aqueous NaHCO3 and brine, dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified by column chromatography (6:1, petroleum ether–EtOAc) to afford compound **20** as a vellow syrup (1.99 g, 88%). R_f 0.4 (4:1, petroleum ether–EtOAc); $[\alpha]_D$ 79.6 (c 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.13 (dd, J = 8.5, 1.0Hz, 2H), 8.09 (dd, J = 8.5, 1.0 Hz, 2H), 7.64–7.44 (m, 8H), 7.15 (d, J = 8.0 Hz, 2H), 5.73 (t, J = 1.5 Hz, 1H), 5.52 (dt, J = 4.5, 1.0 Hz, 1H), 4.80 (d, J = 12.0 Hz, 1H), 4.76 (d, J = 12.0 Hz, 1H), 4.76–4.70 (m, 2H), 4.70 (dd, J = 12.0, 5.0 Hz, 1H), 2.34 (s, 3H), 1.40 (s, 3H), 1.34 (s, 3H), 1.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 165.7, 165.3, 153.9, 138.2, 133.7, 133.6, 132.9, 130.1, 130.0, 129.9, 129.9, 129.8, 129.6, 94.3, 92.0, 81.9, 81.1, 77.9, 77.2, 77.0, 76.4, 67.4, 21.2; HRMS-ESI-TOF calcd for [M + NH₄]⁺ C₂₉H₂₉Cl₃NO₈S: 656.0679. Found: 656.0672.

4.26. 8-Azidooctyl 3,5-di-O-[5-O-(2,2,2-trichloroethoxy)-carbonyl-2,3di-O-benzoyl- α -p-arabinofuranosyl]-2-O-levulinoyl- α -p-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzoyl- α -p-arabinofuranoside (21)

A mixture of thioglycoside 20 (795 mg, 1.246 mmol) and acceptor 19 (438 mg, 0.591 mmol), and freshly activated 4 Å molecular sieves (1.240 g) in dry CH_2Cl_2 (13 mL) was cooled to -30 °C. The suspension was stirred for 15 min, then NIS (351 mg, 1.560 mmol), TfOH (6 $\mu L,$ 0.068 mmol) was added. The reaction mixture was stirred for 1 h -30 °C. The reaction mixture was gradually warmed to 0 °C and quenched with Et₃N. The mixture was diluted with CH₂Cl₂ and added Na₂S₂O₃, filtered through celite and concentrated in vacuo. The crude material was quickly purified by column chromatography (Petroleum ether-EtOAc, 5:2) to give the product 21 (745 mg, yield of 71.3%) as a yellow syrup. For α : $R_f 0.3$ (2:1, petroleum ether–EtOAc); $[\alpha]_D$ 18.5 (c 0.9, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.05–7.96 (m, 12H), 7.60–7.26 (m, 18H), 5.58 (d, J = 1.0 Hz, 1H), 5.56 (dd, J = 5.0, 1.0 Hz, 1H), 5.43 (dd, J = 6.0, 1.0 Hz, 2H), 5.40 (s, 1H), 5.39 (d, J = 4.5 Hz, 1H), 5.37 (s, 1H), 5.30 (dd, J = 5.0, 1.0 Hz, 1H), 5.26 (d, J = 2.0 Hz, 1H), 5.19 (s, 2H), 4.79–4.71 (m, 3H), 4.67 (d, *J* = 1.5 Hz, 2H), 4.65–4.53 (m, 4H), 4.49–4.42 (m, 2H), 4.36–4.32 (m, 2H), 4.11 (dd, *J* = 11.0, 4.0 Hz, 1H), 3.99 (dd, J = 11.5, 4.0 Hz, 1H), 3.90 (dd, J = 12.0, 2.5 Hz, 1H), 3.84 (dd, J = 11.0, 3.0 Hz, 1H), 3.76 (dt, J = 9.5, 6.5 Hz, 1H), 3.51 (dt, J = 9.5, 6.5 Hz, 1H), 3.23 (t, J = 7.0 Hz, 2H), 2.65–2.62 (m, 2H), 2.50 (t, J = 6.5 Hz, 2H), 2.06 (s, 3H), 1.65–1.52 (m, 4H), 1.41–1.24 (m, 8H), 1.03 (s, 9H), 0.91 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 206.0, 171.8, 165.8, 165.7, 165.5, 165.5, 165.1, 164.8, 154.0, 153.8, 133.5, 133.4, 133.3, 130.1, 130.0, 129.9, 129.9, 129.8, 129.3, 129.1, 129.0, 128.8, 128.5, 128.4, 128.4, 105.7, 105.6, 105.5, 105.5, 94.3, 94.3, 82.7, 81.9, 81.3, 81.2, 81.2, 81.0, 77.7, 77.6, 77.2, 77.2, 76.9, 76.8, 67.8, 67.6, 67.4, 65.8, 65.3, 51.4, 37.8, 29.6, 29.5, 29.3, 29.1, 28.8, 28.2, 27.9, 26.8, 26.7, 26.1; HRMS-ESI-TOF calcd for $[M + NH_4]^+$ $C_{81}H_{85}Cl_6N_4O_{29}$: 1787.3431. Found: 1787.3417.

4.27. 8-Azidooctyl 3,5-di-O-[5-O-(2,2,2-trichloroethoxy)-carbonyl-2,3-di-O-benzoyl- α -p-arabinofuranosyl]- α -p-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzoyl- α -p-arabinofuranoside (22)

To a solution of 21 (670 mg, 0.379 mmol) in CH₂Cl₂ (4.0 mL) and MeOH (0.4 mL) was added NH₂NH₂.AcOH (45 mg, 0.492 mmol). The reaction mixture was stirred at rt for 2 h. The resulting mixture was added H₂O and extracted with CH₂Cl₂. The organic layer was washed with 0.5 N HCl, saturated aqueous NaHCO3 and brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography (5:2, petroleum ether-EtOAc) to afford compound 22 as a yellow syrup (533 mg, 84.3%). Rf 0.3 (2:1, petroleum ether–EtOAc); $[\alpha]_D$ 19.9 (c 0.9, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.08–7.90 (m, 12H), 7.63–7.26 (m, 18H), 5.59 (dd, *J* = 5.0, 1.0 Hz, 1H), 5.54 (d, J = 1.0 Hz, 1H), 5.43 (d, J = 4.5 Hz, 1H), 5.41 (d, J = 1.0 Hz, 1H), 5.40 (s, 1H), 5.38 (d, *J* = 1.5 Hz, 1H), 5.34 (dd, *J* = 5.0, 1.0 Hz, 1H), 5.22 (s, 1H), 5.16 (s, 1H), 5.13 (d, *J* = 1.5 Hz, 1H), 4.79–4.71 (m, 5H), 4.66 (dd, J = 11.5, 5.0 Hz, 1H), 4.65 (dd, J = 11.5, 3.5 Hz, 1H), 4.57–4.48 (m, 3H), 4.38–4.31 (m, 4H), 4.11 (dd, *J* = 11.0, 4.5 Hz, 1H), 3.99 (dd, *J* = 11.5, 2.5 Hz, 1H), 3.86 (dd, *J* = 11.5, 1.5 Hz, 1H), 3.84 (dd, J = 11.0, 4.0 Hz, 1H), 3.77 (dt, J = 9.5, 6.5 Hz, 1H), 3.52 (dt, J = 9.5, 6.5 Hz, 1H), 3.23 (t, J = 7.0 Hz, 2H), 3.19 (d, J = 7.5 Hz, 1H), 1.67-1.53 (m, 4H), 1.41–1.25 (m, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 165.9, 165.7, 165.6, 165.5, 165.4, 165.3, 154.0, 153.9, 133.7, 133.5, 133.5, 133.4, 130.0, 129.8, 129.8, 129.3, 129.2, 128.9, 128.8, 128.6, 128.5, 128.4, 108.1, 106.1, 105.8, 105.5, 94.3, 82.8, 82.0, 81.9, 81.6, 81.4, 81.1, 81.0, 80.9, 77.5, 76.9, 67.8, 67.5, 67.4, 66.5, 64.9, 51.4, 29.4, 29.3, 29.1, 28.8, 26.7, 26.1; HRMS-ESI-TOF calcd for [M + NH₄]⁺ C₇₆H₇₉Cl₆N₄O₂₇: 1689.3063. Found: 1689.3070.

4.28. 8-Azidooctyl 3,5-di-O-[5-O-(2,2,2-trichloroethoxy)carbonyl-2,3-di-O-benzoyl- α -D-arabinofuranosyl]-2-O-(4,6-di-O-benzylidenyl-3-O-tert-butyldiphenylsilyl-2-azido-2-deoxy- α -D-galactopyranosyl)- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzoyl- α -D-arabinofuranoside (23)

A mixture of thioglycoside 5 (443 mg, 0.695 mmol) and acceptor 22 (775 mg, 0.464 mmol), and freshly activated 4 Å molecular sieves (1.150 g) in dry CH_2Cl_2 (13 mL) was cooled to -30 °C. The suspension was stirred for 15 min, then NIS (196 mg, 0.867 mmol), TfOH (3 $\mu L,$ 0.035 mmol) was added. The reaction mixture was stirred for 1 h -30 °C. The reaction mixture was gradually warmed to 0 °C and quenched with Et₃N. The mixture was diluted with CH₂Cl₂ and added Na₂S₂O₃, filtered through celite and concentrated in vacuo. The crude material was quickly purified by column chromatography (Petroleum ether-EtOAc, 4:1) to give the product 23 (816 mg, yield of 80.5%) as a vellow syrup. For α : $R_f 0.35$ (5:2, petroleum ether–EtOAc); $[\alpha]_D 30.2$ (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.06–7.91 (m, 12H), 7.71–7.67 (m, 4H), 7.58–7.30 (m, 27H), 7.25 (t, J = 8.0 Hz, 2H), 5.50 (s, 1H), 5.47–5.45 (m, 3H), 5.41 (t, J = 4.5 Hz, 2H), 5.37 (d, J = 1.0 Hz, 1H), 5.31 (s, 1H), 5.20 (s, 1H), 5.18 (d, *J* = 3.5 Hz, 1H), 5.05 (d, *J* = 1.5 Hz, 1H), 4.98 (s, 1H), 4.79–4.65 (m, 6H), 4.62 (td, J = 12.0, 5.0 Hz, 2H), 4.54–4.50 (m, 2H), 4.34–4.22 (m, 5H), 4.04 (dd, *J* = 10.5, 4.0 Hz, 2H), 3.91 (dd, J = 11.5, 5.0 Hz, 1H), 3.86 (dd, J = 7.5, 3.0 Hz, 1H), 3.84 (dd, *J* = 8.5, 3.0 Hz, 1H), 3.74 (dd, *J* = 8.5, 3.0 Hz, 1H), 3.72 (dd, *J* = 10.0, 6.5 Hz, 1H), 3.62 (d, J = 11.0 Hz, 2H), 3.49–3.43 (m, 3H), 3.22 (t, J = 7.0 Hz, 2H), 1.64–1.52 (m, 4H), 1.40–1.22 (m, 8H), 1.01 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 165.8, 165.7, 165.5, 165.4, 165.1, 165.1, 154.0, 153.9, 137.8, 135.8, 134.3, 133.5, 133.3, 132.8, 130.0, 129.9, 129.9, 129.8, 129.3, 129.2, 129.1, 129.0, 128.9, 128.8, 128.5, 128.5, 128.4, 128.1, 127.8, 127.5, 126.1, 105.7 ($J_{\text{H1-C1}} = 179.1$), 105.7 ($J_{\text{H1-C1}}$ = 179.5), 105.6 ($J_{\text{H1-C1}}$ = 175.6), 105.5 ($J_{\text{H1-C1}}$ = 174.7), 100.3, 99.0 $(J_{\text{H1-C1}} = 172.5), 94.4, 94.3, 88.1, 82.0, 81.9, 81.6, 81.4, 81.2, 81.1,$ 80.8, 79.2, 77.5, 77.4, 77.4, 77.2, 77.0, 76.9, 75.2, 69.7, 69.0, 67.8, 67.6, 67.4, 66.6, 66.0, 63.4, 61.1, 60.4, 51.4, 29.5, 29.3, 29.1, 28.8, 26.8, 26.7, 26.1, 21.1, 19.3, 14.2; HRMS-ESI-TOF calcd for [M+Na]⁺ C105H106Cl6N6NaO31Si: 2207.4695. Found: 2207.4686.

4.29. 8-Azidooctyl 3,5-di-O-[5-O-(2,2,2-trichloroethoxy)carbonyl-2,3-di-O-benzoyl- α -*D*-arabinofuranosyl]-2-O-(4,6-di-O-benzylidenyl-2-azido-2-deoxy- α -*D*-galactopyranosyl)- α -*D*-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzoyl- α -*D*-arabinofuranoside (24)

To a solution of 23 (680 mg, 0.311 mmol) in THF (8.0 mL) and Pyridine (8.0 mL) was added HF.Pyridine (1.6 mL, 70% HF) at 0 °C under $N_2(g)$. The reaction mixture was gradually warmed to rt and stirred 12h. The mixture was concentrated in vacuo and extracted with CH₂Cl₂. The organic layer was washed with 1 N aq HCl, saturated aqueous NaHCO3 and brine, dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography (Petroleum ether-EtOAc, 2:1) to give the product 24 (502 mg, yield of 82.9%) as a yellow syrup. R_f 0.25 (1:1, petroleum ether–EtOAc); $[\alpha]_D$ 44.1 (c 1.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 8.08–7.94 (m, 12H), 7.62–7.34 (m, 23H), 5.57 (d, J = 1.0 Hz, 1H), 5.52 (s, 1H), 5.52 (dd, J = 6.0, 0.5 Hz, 1H)1H), 5.50 (s, 1H), 5.49 (d, *J* = 1.5 Hz, 1H), 5.42 (d, *J* = 6.0 Hz, 2H), 5.41 (dd, J = 6.0, 1.0 Hz, 1H), 5.33 (s, 1H), 5.26 (s, 1H), 5.23 (d, J = 2.0 Hz)1H), 5.18 (d, J = 3.5 Hz, 1H), 4.81–4.65 (m, 6H), 4.65 (dd, J = 11.5, 5.0 Hz, 2H), 4.60–4.56 (m, 2H), 4.52–4.50 (m, 1H), 4.43 (dd, J = 7.0, 3.5 Hz, 2H), 4.39 (dd, J = 4.0, 1.5 Hz, 1H), 4.38 (dd, J = 8.5, 5.0 Hz, 1H), 4.33–4.31 (m, 1H), 4.27 (dd, J = 12.0, 1.0 Hz, 1H), 4.09 (dd, J = 11.5, 5.0 Hz, 1H), 4.07 (dd, J = 10.5, 3.5 Hz, 1H), 4.03–4.00 (m, 1H), 4.00 (dd, J = 12.0, 4.0 Hz, 1H), 3.87–3.82 (m, 3H), 3.79 (dt, J = 9.5, 6.5 Hz, 1H), 3.56 (dd, J = 10.5, 3.5 Hz, 2H), 3.53 (dt, J = 9.5, 6.5 Hz, 1H), 2.40 (d, J = 10.5 Hz, 1H), 1.67–1.53 (m, 4H), 1.44–1.26 (m, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 165.9, 165.7, 165.6, 165.4, 165.3, 165.2, 154.0, 153.8, 137.4, 133.6, 133.4, 130.0, 129.9, 129.9, 129.8, 129.7, 129.3, 129.2, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 126.2, 106.1, 105.8, 105.6, 105.5, 101.2, 98.7, 94.3, 94.3, 88.4, 82.1, 81.6, 81.3, 81.1, 80.7, 79.5, 77.6, 77.5, 77.4, 77.2, 77.0, 76.9, 76.9, 75.3, 69.2, 67.8, 67.7, 67.5, 67.5, 66.8, 65.6, 63.4, 61.0, 51.4, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1; HRMS-ESI-TOF calcd for $[M + NH_4]^+ C_{89}H_{88}Cl_6N_6NaO_{31}$: 1964.3969. Found: 1964.3962.

4.30. 8-Azidooctyl 3,5-di-O-[α -D-arabinofuranosyl]-2-O-(4,6-di-O-benzylidenyl-2-azido-2-deoxy- α -D-galactopyranosyl)- α -D-arabinofuranosyl-(1 \rightarrow 5)- α -D-arabinofuranoside (25)

To a solution of 24 (470 mg, 0.242 mmol) in MeOH (12.0 mL) was added CH₃ONa (47 mg). The reaction mixture was stirred 12h, then concentrated in vacuo. The residue was purified by column chromatography (CH₂Cl₂-MeOH, 1:3) to give the product 25 (209 mg, yield of 88.8%) as a white syrup. *R*_f 0.2 (1:3, CH₂Cl₂–MeOH); [α]_D 160.8 (c 1.9, MeOH); ¹H NMR (500 MHz, CD₃OD): δ 7.56–7.53 (m, 2H), 7.39–7.34 (m, 3H), 5.64 (s, 1H), 5.24 (d, J = 3.5 Hz, 1H), 5.20 (d, J = 1.0 Hz, 1H),5.11 (d, J = 1.5 Hz, 1H), 4.99 (d, J = 1.5 Hz, 1H), 4.32 (d, J = 3.0 Hz, 1H), 4.30 (dd, J = 2.5, 1.5 Hz, 1H), 4.26–4.20 (m, 3H), 4.16 (dd, J = 12.5, 1.5 Hz, 1H), 4.15 (dd, *J* = 10.5, 3.5 Hz, 1H), 4.05–3.94 (m, 8H), 3.87–3.83 (m, 4H), 3.80–3.69 (m, 6H), 3.68 (dd, *J* = 12.0, 5.0 Hz, 2H), 3.47 (dt, J = 9.5, 6.5 Hz, 1H), 3.29 (t, J = 7.0 Hz, 2H), 1.63–1.56 (m, 4H), 1.39–1.30 (m, 8H); 13 C NMR (125 MHz, CD₃OD): δ 139.7, 129.9, 129.1, 127.6, 109.5, 109.5, 109.1, 107.3, 102.3, 99.6, 87.5, 85.7, 85.6, 83.8, 83.6, 83.4, 83.4, 82.6, 82.3, 78.9, 78.8, 78.6, 77.6, 70.3, 69.0, 68.2, 67.7, 67.3, 65.2, 63.1, 63.0, 61.5, 52.5, 30.7, 30.4, 30.2, 29.9, 27.8, 27.2, 26.1; HRMS-ESI-TOF calcd for [M+Na]⁺ C₄₁H₆₂N₆NaO₂₁: 997.3860. Found: 997.3861.

4.31. 8-Aminooctyl 3,5-di-O- $[\alpha$ -D-arabinofuranosyl]-2-O-(2-amino-2-deoxy- α -D-galactopyranosyl)- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ - α -D-arabinofuranoside (**26**)

To a stirred solution of **25** (35 mg, 0.036 mmol) in THF–H₂O (2.1 mL, v:v = 1:1) was added 20% Pd(OH)₂/C (8 mg). After stirring overnight under an H₂ atmosphere, the reaction mixture was filtered through Celite and the filtrate was concentrated to give the product **26** (22 mg,

vield of 73.4%) as a vellow syrup. Rf 0.15 (3:3:3:4 EtOAc--CH₃OH–AcOH–H₂O); [α]_D 105.5 (*c* 0.5, H₂O); ¹H NMR (700 MHz, D₂O): δ 5.37 (s, 1H), 5.18 (s, 1H), 5.12 (s, 2H), 5.03 (s, 1H), 4.37–4.34 (m, 1H), 4.32 (s, 1H), 4.27 (d, J = 3.5 Hz, 1H), 4.19–3.71 (m, 30H), 3.62 (dt, J = 7.0, 3.5 Hz, 1H), 3.38 (t, J = 2.1 Hz, 0.2H), 3.04-3.02 (m, 1H), 3.38 (t, J = 2.1 Hz, 0.2H), 3.01 (d, J = 7.7 Hz, 0.2H), 1.69–1.63 (m, 3H), 1.37-1.26 (m, 10H), 0.91 ((t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, D₂O): δ 108.3, 108.2, 107.7, 106.7, 97.0, 86.2, 85.1, 85.1, 82.5, 82.3, 82.2, 82.0, 81.8, 81.3, 77.6, 77.6, 77.2, 73.0, 69.6, 69.1, 68.1, 67.1, 67.0, 62.7, 62.2, 62.1, 62.0, 51.5, 49.8, 40.5, 29.5, 29.1, 29.0, 27.6, 26.4, 26.0, 24.2, 21.5, 14.2; HRMS-ESI-TOF calcd for [M+Na]+ C34H62N2NaO21: 857.3740. Found 857.3737.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Thanks to the University of Alberta for providing sample analysis. Liang, X.-Y. thanks the National Natural Science Foundation of China (NSFC-21402131) and Zigong science and Technology Bureau project (LYJ4204), and Liang X.-Y. and Fan, H.-J. thank the Science Foundation of Sichuan University of Science & Engineering (2020RC02, 2020RC06).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.carres.2021.108237.

References

- [1] (a) R.A. Dwek, Chem. Rev. 96 (1996) 683-720;
 - (b) B.G. Davis, Chem. Rev. 102 (2002) 579-602;
 - (c) I. Capila, R.J. Linhardt, Angew. Chem. Int. Ed. 41 (2002) 390-412;
 - (d) T.J. Boltje, T. Buskas, G.J. Boons, Nat. Chem. 1 (2009) 611-622;
 - (e) N.C. Bamford, D.C. Sheppard, P.L. Howell, Nat. Commun. 11 (2020) 2450.

- [2] (a) D.K. Baeschlin, A.R. Chaperon, S.V. Ley, Chem. Eur J. 6 (2000) 172-186; (b) Y. Zhang, J. Jimenez-Barbero, J.D.C. Codee, Angew. Chem. Int. Ed. 41 (2002) 390-412;
 - (c) A.V. Demchenko, Curr. Org. Chem. 7 (2003) 35-49;
 - (d) A.V. Demchenko, Synlett 9 (2003) 1225-1240;
- (e) J.L. Stockdill, H.M. Nguyen, Chem. Sci. 10 (2019) 10475-10480. (a) H. Paulsen, C. Kolar, W. Stenzel, Chem. Ber. 111 (1978) 2358-2369;
- (b) R.U. Lemieux, R.M. Ratcliffe, Can. J. Chem. 57 (1979) 1244-1251; (c) T.S. Kärkkäinen, K.P. Kartha, D. MacMillan, R.A. Field, Carbohydr. Res. 343 (2008) 1830–1834; (d) J. Park, S. kawatkar, J.H. Kim, G.J. Boons, Org. Lett. 9 (2007) 1959-1962;
 - (e) V.L. Campo, I. Carvalho, S. Allman, B.G. Davis, R.A. Field, Org. Biomol. Chem. 5 (2007) 2645-2657.
- [4] (a) K. Benakli, C. Zha, R.J. Kerns, J. Am. Chem. Soc. 123 (2001) 9461-9462; (b) P. Wei, R.J. Kers, J. Org. Chem. 70 (2005) 4195-4198; (c) J. Kerns, C. Zha, K. Benakli, Y.Z. Liang, Tetrahedron Lett. 44 (2003) 8069-8072:
 - (d) S. Manabe, K. Ishii, Y. Ito, J. Am. Chem. Soc. 128 (2006) 10666-10667;
 - (e) Y. Geng, L.H. Zhang, X.S. Ye, Chem. Commun. (2008) 597-599; (f) Y. Geng, L.H. Zhang, X.S. Ye, Tetrahedron 64 (2008) 4949-4958.
- [5] J.E. Yule, T.C. Wong, S.S. Ganghi, D.X. Qiu, M.A. Riopel, R.R. Koganty, Tetrahedron Lett. 36 (1995) 6839-6842.
- [6] (a) A. Imamura, H. Ando, H. Ishida, M. Kiso, Tetrahedron Lett. 44 (2003) 6725-6728: (b) A. Imamura, H. Ando, H. Ishida, M. Kiso, Org. Lett. 7 (2005) 4415-4418;
 - (c) A. Imamura, N. Matsuzawa, H. Ishida, M. Kiso, J. Org. Chem. 81 (2016) 9086–9104;
- (d) Y.Z. Zhang, J.D.C. Codee, Angew. Chem. Int. Ed. 59 (2020) 12746-12750.
- [7] D.M. Yang, Y. Chen, X.Y. Liang, Org. Lett. 20 (2018) 2287-2290.
- [8] (a) G.J. Boons, Contemp. Org. Synth. 3 (1996) 173-200; (b) S.V.D. Vorm, J.D.C. Codee, J. Org. Chem. 82 (2017) 4793-4811.
- [9] A.B. Ingle, W.C. Hung, T.K.K. Mong, Org. Lett. 15 (2013) 5290-5293.
- [10] A. Lipták, J. Imre, A. Neszmélyi, Tetrahedron 38 (1982) 3721-3727.
- [11] D. Crich, S.X. Sun, J. Am. Chem. Soc. 119 (1997) 11217-11223.
- [12] L. Zhang, K. Shen, T.L. Lowary, J. Org. Chem. 83 (2018) 7659-7671.
- [13] Alcohols 6d, 6e and 6h are commercially available. 6g: see supporting documents for synthesis method; All others were prepared by reported methods. For 6c: X. Y. Liang, J. S. Yang, Tetrahedron., 2010, 66, 87-93. 6f: D. Falguni, A. Laurens Carbohydr. Res., 1990, 202, 239-255. 6i: X. Y. Liang, J. S. Yang, Org. Lett., 2013, 15, 2834-2837. 6j: G. J. Capozzi, Org. Chem 66 (2001) 8787-8792.
- [14] (a) X. Wang Wang, A.A. Ribeiro, Z. Guan, S.C. McGrath, R.J. Cotter, C.R.H. Raetz, Biochemistry 45 (2006) 14427–14440; (b) W.J. Peng, L. Zou, S. Bhamidi, T.L. Lowary, J. Org. Chem. 77 (2012) 9826-9832.
- [15] M. Joe, Y. Bai, R.C. Nacario, T.L. Lowary, J. Am. Chem. Soc. 129 (2007) 9885-9901.
- [16] See experiment procedure for synthesis method and data of compound 20.
- [17] (a) K. Boke, I. Lundt, C. Pedersen, Tetrahedron Lett. 13 (1973) 1037-1043; (b) P.K. Agrawal, Phytochemistry 31 (1992) 3307-3330;
 - (c) R.A.E. Edden, J. Keeler, J Magn Reson. 166 (2004) 53-68.