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ABSTRACT: C−P bonds are widely found in a great many bioactive
compounds and functional molecules. Transition-metal-catalyzed dehydrogen-
ative C−H/P−H cross-coupling plays a crucial part in C−P bond formation
since it requires no pretreatment of substrates. Herein, we reported a Mn-
catalyzed electrochemical intermolecular dehydrogenative cross-coupling be-
tween aryl C−H and diphenyl phosphine oxides. In undivided cells, a series of
phosphorylation or diphosphorylation products could be obtained separately by
adjusting the proportion of substrates. A catalytic amount of inexpensive Mn(II)
salt was used, and no external chemical oxidants were needed in this process. A kinetic isotope effect experiment suggested that the
C−H activation was not the rate-determining step.
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The phosphorylation of aromatic compounds has drawn
great attention from researchers in recent years since the

C(sp2)−P bond widely exists in many bioactive compounds,
pharmaceutical molecules, and functional materials.1−11

Transition-metal-catalyzed cross-coupling of C−H/P−H is
an important method to synthesize aryl phosphorus com-
pounds,12−15 and many achievements have been made via two
strategies. In 2006, Zhang’s group reported a MnIII promoted
C−H phosphonation of thiazole and furan by using MnIII to
generate the P radical.16 Afterward, several reports have been
published using a similar strategy.17−19 In addition to the Mn-
induced P radical method, AgI/peroxide, a classical radical
reaction catalysis system, has also been utilized widely in
C(sp2)−P bond formation reactions20−23 (Scheme 1a).
Additionally, a directed aryl C−H activation strategy could
also be used in C−P bond formation. For example, Yu24 and
Murakami25 reported Pd-catalyzed pyridine-directed benzene
phosphorylation using benzoquinone and AgOAc, respectively,
as oxidants (Scheme 1b). However, the above metioned
methods usually require stoichiometric metal, chemical
oxidant, or noble metal catalyst. In consideration of atom-
economy and environment-friendliness, it would be desirable
to develop an efficient approach to construct the C−P bond.
Electrochemistry has been a hot point in recent years

because electricity was found to be an ideal alternative to
chemical oxidants and reductants.26−34 Combining transition-
metal catalysis and electrolysis is a great idea to solve the atom-
economical problem and expand the application of electro-
synthesis.35−39 Recently, many electrochemical transition-
metal-catalyzed C−H functionalizations have been reported,
including Co,40−42 Cu,43,44 Mn,45,46 Pd,47,48 and Ru.49,50 By
combining electrochemistry with traditional directed C−H
activation to construct the C−P bond, Xu reported an

electrooxidative directed Rh-catalyzed aryl C−H phosphor-
ylation51 (Scheme 1c). The strategy of metal-induced P radical
is still waiting to be discovered via the electrochemical method.
Herein, we introduce a Mn-catalyzed electrooxidative C−H
phosphorylation between electron-rich aromatics and diphenyl
phosphine oxide under a mild condition with low-cost
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Scheme 1. Metal-Catalyzed Cross-Coupling between Aryl
C−H and P−H
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Mn(OAc)2·4H2O catalyst and no extra chemical oxidants
(Scheme 1d).
The cross-coupling between 2-methyl-thiophene (1a) and

diphenyl phosphine oxide (2a) was chosen as the model
reaction. Using nBu4NBF4 as electrolyte and Mn(OAc)2·4H2O
as catalyst, the target product (3a) could be obtained in 24%
yield under 7.5 mA constant current for 4 h in acetic acid
solvent (Table 1, entry 1). Other strong polar solvents such as

acetonitrile and dimethylformamide were screened, but
decreased yields were obtained (Table 1, entries 2 and 3).
Then MnII and MnIII salts with different coordination anion
were tried; nonetheless, only Mn(OAc)3·2H2O had similar
reactivity with Mn(OAc)2·4H2O (Table 1, entries 4 and 5).
Besides Mn, other transition-metal catalysts such as CuII and
AgI were examined, but both of them had bad reactivity for this
transformation (Table 1, entries 6 and 7; see Supporting
Information, Scheme S1 for the detailed catalyst screen).
Interestingly, the addition of sodium acetate greatly increased
the yield (Table 1, entry 8), which inspired us to screen
different inorganic and organic bases (Table 1, entries 9−12).
To our delight, an 81% yield was obtained with the addition of
phenanthroline (Table 1, entry 13). After optimization, control
experiments were conducted, and only a trace amount of
product could be obtained without electrolysis (Table 1, entry
14), while no reaction took place without Mn catalyst either
(Table 1, entry 15). In consideration of a high loading of
catalyst, we made attempts to lower the amount of Mn(OAc)2·
4H2O and recycle the catalyst and electrolyte (see Supporting
Information, Scheme S2).
Then the scope of this Mn-catalyzed electrooxidative

C(sp2)−H/P−H cross-coupling was explored under standard
conditions (Scheme 2). First, thiophene and different ortho-
substituted thiophenes were applied to this reaction (3a−3h).
Thiophene only gave a medium yield (3b) while the
difunctional byproduct was detected, and a good yield could
be obtained with phenyl group (3c). Thiophenes bearing a
halogen group and a strong electro-withdrawing acetyl or
aldehyde group simply gave a medium yield; however, by

increasing the amount of thiophene substrate and Mn catalyst,
a good yield could be obtained for these substrates bearing
electron-withdrawing groups (3d−3g). In addition, thiophene
with a TMS group, which could be transferred into other
functional groups, gave a rather good yield (3h). For
disubstituted thiophenes, both 2-chloride-3-methylthiophene
and 4-bromo-2-methylthiophene gave good yields (3i and 3j);
3,4-dimethylthiophene had a moderate yield (3k), and 2,3-
dihydrothieno[3,4-b][1,4]dioxine also had a medium yield by
increasing the amount of the thiophene substrate and Mn
catalyst (3l). When 3-ethylthiophene was applied as the
substrate, both ortho-positions had reactivity, and two different
phosphorylation products were obtained with the ratio of 1:1.2
according to NMR results (3m). In addition to thiophene,
furan-type substrates also showed good reactivity in this
reaction. Different sorts of furan were tried, and furan bearing
no group, alkyl group, halogen group, and electro-withdrawing
acetyl group obtained yields ranging from moderate to good
(3n−3q). Benzofuran was tried, and 2-phosphorylation
product was obtained with good yield (3r). However, N-
heterocycles such as indole and pyrrole could not produce the
corresponding products, which may be due to their active N−
H and electron-rich character. By trial and error, we found that
N-methyl-2-acetylpyrrole, which has a methyl protecting group
for N−H and an acetyl group to lower electron density of
pyrrole ring, could produce the target product with a good
yield (3s). Besides heteroaromatics, a moderate amount of α-
phosphorylation product was obtained by using naphthalene as
substrate (3t).
The scope of phosphine oxides was explored likewise under

standard conditions (Scheme 3). Diphenyl phosphine oxides
bearing diverse functional groups on benzene rings were
synthesized and tested. A methyl group showed no harm to the
reactivity, and both para-monomethyl substituted substrate
and meta-dimethyl substituted substrate showed good yields
(3u and 3v). Halogen-substituted diphenyl phosphine oxides
also exhibited good reactivity, and good yields could be

Table 1. Effects of Reaction Parametersa

entry catalyst additive solvent yieldb

1 Mn(OAc)2·4H2O none HOAc 24%
2 Mn(OAc)2·4H2O none MeCN 11%
3 Mn(OAc)2·4H2O none DMF 8%
4 MnBr2·4H2O none HOAc trace
5 Mn(OAc)3·2H2O none HOAc 25%
6 Cu(OAc)2 none HOAc n.d.
7 AgOAc none HOAc trace
8 Mn(OAc)2·4H2O NaOAc HOAc 51%
9 Mn(OAc)2·4H2O Na2CO3 HOAc 54%
10 Mn(OAc)2·4H2O DBU HOAc 56%
11 Mn(OAc)2·4H2O pyridine HOAc 59%
12 Mn(OAc)2·4H2O 2,2′-bypyridine HOAc 75%
13 Mn(OAc)2·4H2O 1,10-phen·H2O HOAc 81%
14c Mn(OAc)2·4H2O 1,10-phen·H2O HOAc trace
15 none 1,10-phen·H2O HOAc n.d.

aReaction conditions: undivided cell, 1a (1 mmol), 2a (0.5 mmol),
N2.

bIsolated yield. cWithout electricity.

Scheme 2. Substrate Scope of Aromatics

a1.5 mmol of aromatics and 30 mol % Mn(OAc)2·4H2O were used.
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obtained with fluorine and chlorine (3w and 3x). However, an
electron-donating methoxy group substituted substrate only
gave a 25% yield (3y).
During the scope of the thiophene substrate, we found that

thiophene and furan bearing two α-C-H had a difunctional
byproduct. By increasing the amount of diphenyl phosphine
oxide and prolonging the reaction time, ortho-diphosphory-
lated thiophene could be obtained with a 53% yield (Scheme 4,

4a). 3-Ethylthiophene also had a good yield (4b), and for 3,4-
disubstituted thiophenes, corresponding products could be
obtained with moderate yields (4c to 4e). Besides thiophene,
difunctional furan could also be afforded with moderate yield
using furan as the substrate (4f). It is worth mentioning that
diphosphorylated structure such as 4a, 4e, and 4f has been
reported for the synthesis of optical active polymers,52,53 and
our convenient synthetic method for diphosphorylated
skeleton could assist in the research.
Then we evaluated the synthetic potential of this electro-

oxidative C−P bond formation by performing a 5 mmol-scale
reaction. By using 20 mA current, 1.25 g of 3a could be
synthesized with an 84% yield, and 1.33 g of diphosphorylated
product 4a could also be synthesized with a 55% yield
(Scheme 5). These amplification reaction results exhibited

good potential application prospects of this electrooxidative
C−H/P−H cross-coupling method.

To investigate the mechanism of Mn-catalyzed electro-
oxidative undirected C−H/P−H cross-coupling, a kinetic
isotope effect experiment was conducted, and 2-phenyl-
thiophene-5-d (1c′) was synthesized (Scheme 6). The ratio

of reaction yield between 1c and 1c′ was 1.1 under same
reaction conditions (KIE = 1.1). This result indicated that C−
H bond cleavage of thiophene might not be involved in the
rate-determining step.
Furthermore, cyclic voltammetry experiments were con-

ducted to study the redox potential of the substrates and
catalyst (Figure 1). Oxidative peaks of 2-methylthiophene (1a)
were obviously observed at 1.9 and 2.1 V, while diphenyl
phosphine oxide (2a) exhibited no clear oxidative peak from

Scheme 3. Substrate Scope of Diphenyl Phosphine Oxides

Scheme 4. Double C−P Formation

Scheme 5. Gram-Scale Synthesis

Scheme 6. Kinetic Isotope Effect Experiment

Figure 1. Cyclic voltammograms.
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−0.5 V to 2.5 V. The oxidation of MnII could be detected from
1.0 to 2.0 V, but the oxidative current is slight and only a small
peak at 1.9 V could be confirmed. However, when we mix MnII

acetate and phenanthroline together, the oxidative current
apparently amplified, and the oxidative peak could be found at
1.5 V. The additives we used in Table 1 were also tested, and
the results implied that phenanthroline and bipyridine might
affect the oxidation of MnII by coordination since NaOAc and
pyridine had different CV results with them (see Supporting
Information, Scheme S3). These results suggest that MnII

catalyst might be oxidized prior to 1a in the reaction system
and the addition of 1,10-phenanthroline promoted the
oxidation of MnII.
On the basis of the above-mentioned experiment results and

previous reports,16,46,54,55 we proposed a plausible mechanism
for this Mn-catalyzed electrooxidative C−H/P−H cross-
coupling reaction (Scheme 7). First, MnII coordinated by

phenanthroline is oxidized to MnIII on the carbon anode,
which could be proved by the CV. Then MnIII−P(O)Ph2
complex (I) is formed from MnIII and substrate 2a with the
abstraction of proton by acetate anion. Subsequently, the
reaction between intermediate I and substrate 2a affords the
radical intermediate II, while MnIII is reduced to MnII, which
completes the Mn cycle. Finally, the allylic radical intermediate
II is oxidized by MnIII, and the following deprotonation gives
the final product 3a, while the proton is reduced on the Pt
cathode to release hydrogen gas.
In conclusion, we have developed a Mn-catalyzed electro-

oxidative dehydrogenative C−H/P−H cross-coupling between
electron-rich aromatics and phosphine oxides under undivided
electrolytic conditions. This electrochemical strategy employs a
catalytic amount of inexpensive Mn(II) salt and avoids the use
of chemical-oxidants, which affords a convenient and environ-
mentally friendly pattern for the synthesis of the C(sp2)−P
bond. Importantly, the good functional group tolerance, the
brand new diphosphorylation method, and the excellent
efficiency in gram-scale experiment reveal that this reaction
has further potential in industrial production.
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