Synthesis of a-Hydroxyhydrazones from Aldehydes

Rosario Fernández,** Eloísa Martín-Zamora,* Carmen Pareja,* Manuel Alcarazo,* Jesús Martín,* José M. Lassaletta**

^a Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado de Correos No. 553, E-41071, Seville, Spain
 ^b Instituto de Investigaciones Químicas, CSIC-USe, c/ Americo Vespuccio s/n, Isla de la Cartuja, E-41092 Seville, Spain
 Fax +34 954460565; E-mail: jmlassa@cica.es

Received 30 April 2001

Abstract: The 1,2-addition of formaldehyde *N*,*N*-dialkylhydrazones to simple aldehydes takes place in the presence of $ZnCl_2$ or Et₂AlCl to afford the corresponding α -hydroxyhydrazones. More reactive aldehydes undergo addition of these reagents in the absence of promoters. Use of (*S*)-1-methyleneamino-2-(diphenylmethoxymethyl) pyrrolidine as the reagent afforded separable mixtures of diastereoisomers, thereby allowing for the isolation of optically pure adducts in a single step.

Key words: diastereoselectivity, hydroxyhydrazones, nucleophilic addition

 α -Hydroxy-*N*,*N*-dialkylhydrazones are useful compounds not only as protected forms of α -hydroxyaldehydes, but also as versatile intermediates for the synthesis of α alkoxy carbonyl compounds,¹ cyanohydrins,² and many other compounds resulting from C-C bond-forming radical³ or anionic⁴ additions to their C=N bond. The nucleophilic properties of formaldehyde N,N-dialkylhydrazones 1, associated to their enhanced aza-enamine character, has allowed their use as d¹ reagents toward several electrophilic substrates.⁵ Thus, the Michael addition to several electrophilic alkenes such as nitroalkenes,⁶ conjugated enones,⁷ and unsaturated lactones,⁸ has served for the synthesis of several kinds of bifunctional compounds. These precedents stimulated studies on the 1,2-addition of these reagents to carbonyl compounds for the synthesis of the title compounds. The first findings on this topic revealed that the inductive effects operating in carbohydrate-derived alkoxyaldehydes^{2a} or trifluoromethyl ketones^{2b} enhance the carbonyl reactivity up to the level required for the spontaneous addition of these reagents. In this paper, we wish to report on a broader scope of this reaction, given by the 1,2-addition of formaldehyde N,N-dialkylhydrazones to several types of aldehydes.

Preliminary experiments demonstrated that simple aliphatic and aromatic aldehydes **2a-f** do not react spontaneously with formaldehyde *N*,*N*-dialkylhydrazones **1**. Attempts to activate the substrates by several Lewis acids (BF₃·Et₂O, R₃SiOTf, SnCl₄, ZnBr₂) led mainly to the formation of undesired hydrazono transfer products **3**, which, in the absence of moisture, are presumably formed via [2+2] and retro-[2+2] cycloadditions.⁹ Variable amounts of compounds **4** were also isolated from the reaction mixtures; their formation can be explained as an oxidative dimerization of **1** via α -hydrazinoacetaldehyde hydrazone.¹⁰ Therefore, only small amounts of the desired products **5** were detected under these conditions (Scheme 1).

Scheme 1

Fortunately, it was finally possible to obtain the desired adducts **5a-f** in variable yields by using ZnCl_2^{11} or $\text{Et}_2\text{AlCl}^{12}$ as suitable promoters. 1-Methyleneaminopyrrolidine **1a**, readily available from commercial *N*-nitrosopyrrolidine,^{2c} was the reagent of choice, giving better yields of adducts and faster reactions than the simplest formaldehyde *N*,*N*-dimethylhydrazone **1b** (Scheme 2, Table 1).

Noteworthy, *p*-nitrobenzaldehyde **2g** also reacted with **1a** in the absence of any promoter to give the corresponding 1,2-adduct **5g**, though in a lower 33% yield than that obtained (81%) for the ZnCl₂-promoted reaction (entries 7 and 8). This last result and the above-mentioned precedents^{2a,b} prompted us to investigate the uncatalyzed addition of reagents **1** to more reactive substrates. Thus,

Table 1Addition of 1-methyleneaminopyrrolidine (1a) to aldehydes2a-g.

entry	educt	R	promoter ^a	time (h) ^a	product	yield. (%) ^b
1	2a	n-butyl	ZnCl ₂	7	5a	52
2	2b	n-pentyl	Et _t AICI	4 ^c	5b	63
3	2c	cyclohexyl	Et₂AICI	12	5c	44
4	2d	Bn	ZnCl₂	4.5	5d	72
5	2e	Ph	Et₂AICI	14	5e	52
6	2f	<i>p</i> -Br-C ₆ H₄	Et₂AICI ^d	19	5f	54
7	2g	$p-O_2NC_6H_4$	ZnCl₂	4	5g	81
8	2g	$p-O_2NC_6H_4$	-	150	5g	33 ^e

^{*a*}The amounts of promoter and reaction temperatures as indicated in footnotes 11 and 12, unless otherwise specified. ^{*b*} Isolated yield after chromatography. ^{*c*}-78 °C \rightarrow r.t. (2 h) and then 2 h at r.t. ^{*d*}2.4 mmol of promoter were used. ^{*e*}**3g** (R¹R²N = pyrrolidin-1-yl, R = *p*-O₂NC₆H₄) was isolated as by-product in 30% yield.

 α -monoalkoxy (**2h**,**i**) and α , α -dialkoxy (**2j**) aldehydes, as well as chloral (**2k**) and fluoral (**2l**) also reacted with **1a** in the absence of promoters to afford the corresponding α -hydroxyhydrazones **5h-l** in good to excellent yields (Table 2).¹³ As expected, the observed aldehyde reactivities were strongly dependent on the substitution pattern. Nevertheless, reasonable reaction rates were observed for all substrates at room temperature, except for α -benzyloxy-acetaldehyde **2h**, which required heating at 60 °C for 18 h for completion (Table 2, entry 1).

Table 2Uncatalyzed addition of methyleneaminopyrrolidine (1a)to aldehydes 2h-m.

entry	educt	R	time (h) ^a	prod.	yield (%) ^b
1	2h	BnOCH ₂	18 ^c	5h	63
2	2i	TBSOCH₂	5	5i	76
3	2ј	(MeO)₂CH	28	5j	87
4	2k	Cl ₃ C	0.5	5k	95
5	21	F₃C	1	51	94
6	2m	F_5C_6	4	5m	60

^{*a*} At room temperature, unless otherwise specified. ^{*b*} Isolated yield after chromatography. ^{*c*} At 60 °C.

Interestingly, the commercial forms of dimethoxyacetaldehyde 2j (60% in H₂O), chloral 2k (monohydrate), and fluoral 2l (ethyl hemiacetal) could be used without any previous treatment. Additionally, pentafluorobenzaldehyde **2m**, chosen as representative of aromatic aldehydes, behaves also as substrate for the spontaneous addition of **1a**, affording the corresponding adduct **5m** in 60% yield.

The development of an asymmetric version of these uncatalyzed additions was also studied with limited success. Thus, the addition of chiral reagents as 1-(methyleneamino)-2-(methoxymethyl)pyrrolidine 1c^{6c} or the D-mannitol-derived C_2 -symmetric hydrazone $1d^{14}$ (Figure) to aldehydes 2h-m proceeded with very low asymmetric induction, affording the corresponding adducts in high yields, but as unseparable mixtures of diastereoisomers in all cases. On the other hand, the addition of (S)-1-methyleneamino-2-(diphenylmethoxymethyl)pyrrolidine $1e^{2c}$ to aldehydes 2h-m took place with similar yields and selectivities, but in this case the resolving properties of the auxiliary allowed an easy chromatographic separation of the (2R/S) diastereometic mixtures. In this reaction, compound **1e** plays two roles: it serves as a d¹ reagent and as a resolving agent at once, thereby allowing the obtention of enantiomerically pure (R)- and (S)-**6h-m** adducts in a single operation (Scheme 3). The results for the addition of **1e** to aldehydes **2h-m** are collected in Table 3.

Figure Chiral hydrazones from L-proline and D-mannitol

Scheme 3

Summarizing, the nucleophilic addition of formaldehyde N,N-dialkylhydrazones to aldehydes represents a convenient, single step method for the synthesis of a variety of synthetically useful α -hydroxyhydrazones.

Acknowledgement

We thank the Spanish 'Ministerio de Educación y Cultura' (Grants PB 97-0747 and PPQ2000-1341) and the 'Junta de Andalucía' for financial support.

Table 3 Uncatalyzed addition of 1e to aldehydes 2h-m.

entry	educt	R	time (h) ^a	product, yield (%) ^b	dr ^c
1	2h	BnOCH₂	120 ^d	6h , 71	50:50
2	2i	TBSOCH₂	120	6i , 68	50:50 ^e
3	2j	(MeO)₂CH	96	6j , 94	50:50
4	2k	Cl₃C	2.5	6k , 96	80:20
5	21	F₃C	20	61 , 96	60:40
6	2m	F₅C ₆	72	6m , 66	50:50

^{*a*}At room temperature. ^{*b*}Isolated yield. ^{*c*}Mixture fully separable by flash chromatography. ^{*d*}At 50 °C. ^{*e*}Mixture separable after benzylation.

References and Notes

- (1) (a) Enders, D.; Reinhold, U. Synlett 1994, 792. (b) Enders, D.; Reinhold, U. Liebigs Ann. 1996, 11.
- (2) (a) Lassaletta, J.M.; Fernández, R.; Martín-Zamora, E.; Pareja, C. *Tetrahedron Lett.* **1996**, *37*, 5787. (b) Fernández, R.; Martín-Zamora, E.; Pareja, C.; Vázquez, J.; Díez, E.; Monge, A.; Lassaletta, J.M. *Angew. Chem. Int. Ed. Engl.* **1998**, *37*, 3428. (c) Pareja, C.; Martín-Zamora, E.; Fernández, R.; Lassaletta, J.M. J. Org. Chem. **1999**, *64*, 8846. (d) Cerè, V.; Peri, F.; Pollicino, S.; Ricci, A. *Tetrahedron* **1999**, *55*, 1087.
- (2) For a related reaction see: Gautier, A.; Renault, J. Bull. Soc. Chim. Fr. 1963, 33, 1555. Such a mechanism is also in agreement with ab initio MO calculations: Pappalardo, R.R.; Muñoz, J.M.; Fernández, R.; Lassaletta, J.M., unpublished results.
- (3) (a) Friestad, G.K. Org. Lett. 1999, 1, 1499. (b) El Kaim, L.; Gacon, A.; Perroux, A. Tetrahedron Lett. 1998, 39, 371.
 (c) Miyata, O.; Muroya, M.; Koide, J.; Naito, T. Synlett 1998, 271.
- (4) (a) Claremon, D.A.; Lumma, P.K.; Phillips, B.T. J. Am. Chem. Soc. 1986, 108, 8265. (b) Baker, W.R.; Condon, S.L. J. Org. Chem. 1993, 58, 3277. (c) Enders, D.; Reinhold, U. Angew. Chem. 1995, 34, 1219. (d) Nicaise, O.; Denmark, S. Bull. Soc. Chim. Fr. 1997, 134, 395. (e) Cerè, V.; Peri, F.; Pollicino, S.; Ricci, A. Synlett 2000, 1585.
- (5) Short review: Fernández, R.; Lassaletta, J.M. Synlett 2000, 1228.
- (6) (a) Lassaletta, J.M.; Fernández, R. *Tetrahedron Lett.* 1992, *33*, 3691. (b) Lassaletta, J.M.; Fernández, R.; Gasch, C.; Vázquez, J. *Tetrahedron* 1996, *52*, 9143. (c) Enders, D.; Syrig, R.; Raabe, G.; Fernández, R.; Gasch, C.; Lassaletta, J.M.; Llera, J.M. Synthesis 1996, 48.
- (7) (a) Lassaletta, J.M.; Fernández, R.; Martín-Zamora, E.; Díez, E. *J. Am. Chem. Soc.* **1996**, *118*, 7002. (b) Díez, E.; Fernández, R.; Gasch, C.; Lassaletta, J.M.; Llera, J.M.; Martín-Zamora, E.; Vázquez, J. *J. Org. Chem.* **1997**, *62*, 5144.
- (8) (a) Enders, D.; Vázquez, J. *Synlett* **1999**, *5*, 629. (b) Enders, D.; Vázquez, J.; Raabe, G. *Chem. Commun.* **1999**, 701. (c) Enders, D.; Vázquez, J.; Raabe, G. *Eur. J. Org. Chem.* **2000**, 893.

- (9) For a related reaction see: Gautier, A.; Renault, J. Bull. Soc. Chim. Fr. 1963, 33, 1555. Such a mechanism is also in agreement with ab initio MO calculations: Pappalardo, R.R.; Muñoz, J.M.; Fernández, R.; Lassaletta, J.M., unpublished results.
- (10) The mechanism of the acid-catalyzed dimerization of formaldehyde dimethylhydrazone has been studied in detail: Condon, F.E.; Farcasiu, D. J. Am. Chem. Soc. **1970**, 92, 6625.
- (11) **Typical procedure**: To a cooled (0 °C) solution of **1** (2 mmol) and **2** (1 mmol) in dry CH₂Cl₂ (7 mL) was added 1M ZnCl₂ in Et₂O (4 mmol). After completion, the mixture was washed with sat. NaHCO₃ and H₂O, concentrated and purified by column chromatography (petroleum ether-ethyl acetate). Representative characterization data for **5g** (oil): ¹H NMR (300 MHz, CDCl₃) δ 1.87-1.94 (m, 4H), 3.14-3.20 (m, 4H), 4.05 (bs, 1H), 5.39 (d, 1H, *J* = 3.5 Hz), 6.45 (d, 1H, *J* = 3.5 Hz), 7.40-8.32 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 23.2, 51.0, 72.6, 123.7, 126.8, 132.2, 147.2, 149.4; IR (film, cm⁻¹) 3358-3298 br, 1581; MS (EI) 249 (M⁺, 24), 231 (80), 99 (66), 70 (100); HRMS m/z calcd. for C₁₂H₁₅N₃O₃: 249.1113; found 249. 1106.
- (12) Typical procedure: To a cooled (-78 °C) solution of 1 (2 mmol) and 2 (1 mmol) in dry THF (4 mL) was added dropwise 1M Et₂AlCl in hexane (1.5 mmol). After completion, 5M NaOH (1 mL) was added and the mixture stirred for 30 min. at r.t. H₂O (10 mL) was added and the mixture was extracted with Et_2O (3 × 10 mL). The organic layer was washed with brine, dried (Na₂SO₄), concentrated, and purified by column chromatography (petroleum ether-ethyl acetate). Representative characterization data for 5e: mp 46-48 °C, ¹H NMR (300MHz, CDCl₃) δ 1.84-1.92 (m, 4H), 3.12-3.19 (m, 4H), 3.87 (bs, 1H), 5.28 (d, 1H, J = 3.5 Hz), 6.57 (d, 1H, J = 3.5 Hz), 7.31-7.40 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 23.1, 51.2, 73.4, 126.3, 127.5, 128.2, 135.1, 152.6; IR (film, cm⁻¹) 3381-3230 br, 1601; MS (EI) 204 (M⁺, 10), 186 (100). Anal. Calcd. for C₁₂H₁₆N₂O: C, 70.56; H, 7.89; N, 13.71. Found: C, 70.25; H, 7.90; N, 13.70.
- (13) Typical procedure: A mixture of 1a or 1e (1 mmol) and 2h-m (2-5 mmol) in CH₂Cl₂ (4 mL) was allowed to react until completion, concentrated, and purified by column chromatography (petroleum ether-ethyl acetate). Representative characterization data for 5m: mp 82-83 °C, 1H NMR (300MHz, CDCl₃) δ 1.88-1.92 (m, 4H), 3.17-3.24 (m, 4H), 3.85 (bs, 1H), 5.65 (d, 1H, J = 3.4 Hz), 6.55 (d, 1H, J = 3.4 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 23.2, 50.9, 65.1, 128.8, 135.8, 139.1, 143.4, 146.7; IR (film, cm⁻¹) 3300-3000 br, 1505; MS (EI) 294 (M⁺, 35), 276 (15), 70 (100). Anal. Calcd. for C₁₂H₁₁F₅N₂O: C, 48.99; H, 3.77; N, 9.52. Found: C, 49.18; H, 3.83; N, 9.39. Data for **61** (major isomer): $[\alpha]^{28}_{D}$ -156.0 (c 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, 300 MHz) δ 0.12-0.36 (m, 1H), 1.41-1.52 (m, 1H), 1.96-2.13 (m, 2H), 2.64-2.74 (m, 1H), 2.78-2.86 (m, 1H), 2.97 (s, 3H), 3.63 (d, 1H, J = 5.2 Hz), 4.40-4.44 (m, 1H), 4.77 (dd, 1H, J = 2.9, 8.3 Hz), 6.21 (d, 1H, J = 2.9 Hz), 7.31-7.61 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 21.3, 25.8, 49.3, 51.6, 68.0, 69.3 (q, *J* = 31.7 Hz), 85.6, 119.6, 123.9 (q, J = 281 Hz), 127.2, 127.6, 129.4, 129.8, 129.9, 138.4, 140.2; IR (film, cm⁻¹) 3439, 1590; MS (EI) 392 (M⁺, 1), 195 (100). Anal. Calcd for C₂₁H₂₃F₃N₂O₂: C, 64.27; H, 5.90; N, 7.14. Found: C, 64.62; H, 5.99; N, 7.28.
- (14) Fernández, R.; Ferrete, A.; Lassaletta, J.M.; Llera. J.M.; Monge, A. Angew. Chem. Int. Ed. 2000, 39, 2893.

Article Identifier: 1437-2096,E;2001,0,07,1158,1160,ftx,en;D06201ST.pdf