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Abstract: The 1,2-addition of formaldehyde N,N-dialkylhydra-
zones to simple aldehydes takes place in the presence of ZnCl2 or
Et2AlCl to afford the corresponding a-hydroxyhydrazones. More
reactive aldehydes undergo addition of these reagents in the absence
of promoters. Use of (S)-1-methyleneamino-2-(diphenyl-
methoxymethyl) pyrrolidine as the reagent afforded separable mix-
tures of diastereoisomers, thereby allowing for the isolation of
optically pure adducts in a single step. 
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α-Hydroxy-N,N-dialkylhydrazones are useful compounds
not only as protected forms of α-hydroxyaldehydes, but
also as versatile intermediates for the synthesis of α-
alkoxy carbonyl compounds,1 cyanohydrins,2 and many
other compounds resulting from C–C bond-forming
radical3 or anionic4 additions to their C=N bond. The nu-
cleophilic properties of formaldehyde N,N-dialkylhydra-
zones 1, associated to their enhanced aza-enamine
character, has allowed their use as d1 reagents toward sev-
eral electrophilic substrates.5 Thus, the Michael addition
to several electrophilic alkenes such as nitroalkenes,6 con-
jugated enones,7 and unsaturated lactones,8 has served for
the synthesis of several kinds of bifunctional compounds.
These precedents stimulated studies on the 1,2-addition of
these reagents to carbonyl compounds for the synthesis of
the title compounds. The first findings on this topic re-
vealed that the inductive effects operating in carbohy-
drate-derived alkoxyaldehydes2a or trifluoromethyl
ketones2b enhance the carbonyl reactivity up to the level
required for the spontaneous addition of these reagents. In
this paper, we wish to report on a broader scope of this re-
action, given by the 1,2-addition of formaldehyde N,N-di-
alkylhydrazones to several types of aldehydes.

Preliminary experiments demonstrated that simple ali-
phatic and aromatic aldehydes 2a-f do not react spontane-
ously with formaldehyde N,N-dialkylhydrazones 1.
Attempts to activate the substrates by several Lewis acids
(BF3·Et2O, R3SiOTf, SnCl4, ZnBr2) led mainly to the for-
mation of undesired hydrazono transfer products 3,
which, in the absence of moisture, are presumably formed
via [2+2] and retro-[2+2] cycloadditions.9 Variable
amounts of compounds 4 were also isolated from the re-
action mixtures; their formation can be explained as an
oxidative dimerization of 1 via α-hydrazinoacetaldehyde
hydrazone.10  Therefore,  only  small   amounts  of   the
desired products 5 were detected under these conditions
(Scheme 1).

Fortunately, it was finally possible to obtain the desired
adducts 5a-f in variable yields by using ZnCl2

11 or
Et2AlCl12 as suitable promoters. 1-Methyleneaminopyrro-
lidine 1a, readily available from commercial N-nitrosopy-
rrolidine,2c was the reagent of choice, giving better yields
of adducts and faster reactions than the simplest formalde-
hyde N,N-dimethylhydrazone 1b (Scheme 2, Table 1).

Scheme 2

Noteworthy, p-nitrobenzaldehyde 2g also reacted with 1a
in the absence of any promoter to give the corresponding
1,2-adduct 5g, though in a lower 33% yield than that ob-
tained (81%) for the ZnCl2-promoted reaction (entries 7
and 8). This last result and the above-mentioned
precedents2a,b prompted us to investigate the uncatalyzed
addition of reagents 1 to more reactive substrates. Thus,
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α-monoalkoxy (2h,i) and α,α-dialkoxy (2j) aldehydes, as
well as chloral (2k) and fluoral (2l) also reacted with 1a in
the absence of promoters to afford the corresponding α-
hydroxyhydrazones 5h-l in good to excellent yields (Ta-
ble 2).13 As expected, the observed aldehyde reactivities
were strongly dependent on the substitution pattern. Nev-
ertheless, reasonable reaction rates were observed for all
substrates at room temperature, except for α-benzyloxy-
acetaldehyde 2h, which required heating at 60 °C for 18 h
for completion (Table 2, entry 1).

Table 2 Uncatalyzed addition of methyleneaminopyrrolidine (1a)
to aldehydes 2h-m.

a At room temperature, unless otherwise specified. b Isolated yield af-
ter chromatography. c At 60 °C.

Interestingly, the commercial forms of dimethoxyacetal-
dehyde 2j (60% in H2O), chloral 2k (monohydrate), and
fluoral 2l (ethyl hemiacetal) could be used without any

previous treatment. Additionally, pentafluorobenzalde-
hyde 2m, chosen as representative of aromatic aldehydes,
behaves also as substrate for the spontaneous addition of
1a, affording the corresponding adduct 5m in 60% yield.

The development of an asymmetric version of these un-
catalyzed additions was also studied with limited success.
Thus, the addition of chiral reagents as 1-(methyleneami-
no)-2-(methoxymethyl)pyrrolidine 1c6c or the D-manni-
tol-derived C2-symmetric hydrazone 1d14 (Figure) to
aldehydes 2h-m proceeded with very low asymmetric in-
duction, affording the corresponding adducts in high
yields, but as unseparable mixtures of diastereoisomers in
all cases. On the other hand, the addition of (S)-1-methyl-
eneamino-2-(diphenylmethoxymethyl)pyrrolidine 1e2c to
aldehydes 2h-m took place with similar yields and selec-
tivities, but in this case the resolving properties of the aux-
iliary allowed an easy chromatographic separation of the
(2R/S) diastereomeric mixtures. In this reaction, com-
pound 1e plays two roles: it serves as a d1 reagent and as
a resolving agent at once, thereby allowing the obtention
of enantiomerically pure (R)- and (S)-6h-m adducts in a
single operation (Scheme 3). The results for the addition
of 1e to aldehydes 2h-m are collected in Table 3.

Figure Chiral hydrazones from L-proline and D-mannitol

Scheme 3

Summarizing, the nucleophilic addition of formaldehyde
N,N-dialkylhydrazones to aldehydes represents a conve-
nient, single step method for the synthesis of a variety of
synthetically useful α-hydroxyhydrazones.
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Table 1 Addition of 1-methyleneaminopyrrolidine (1a) to alde-
hydes 2a-g.

aThe amounts of promoter and reaction temperatures as indicated in
footnotes 11 and 12, unless otherwise specified. b Isolated yield after
chromatography. c-78 °C→r.t. (2 h) and then 2 h at r.t. d2.4 mmol of
promoter were used. e3g (R1R2N = pyrrolidin-1-yl, R = p-O2NC6H4)
was isolated as by-product in 30% yield.
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Table 3 Uncatalyzed addition of 1e to aldehydes 2h-m.

aAt room temperature. bIsolated yield. cMixture fully separable by
flash chromatography. dAt 50 °C. eMixture separable after benzyl-
ation.
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