CHEMISTRY LETTERS, pp. 1801-1804, 1988.

© 1988 The Chemical Society of Japan

Electrooxidative Cyclization of 4-Dithioazetidinones (Kamiya's Disulfides) A Facile Access to 2-(Substituted methyl)penicillanates

Hideo TANAKA, Motoaki TANAKA, Yo-ichi HIRONAKA, Akira NAKAI, and Sigeru TORII^{*} Department of Applied Chemistry, Faculty of Engineering, Okayama University, Tsushima-naka, Okayama 700

A straightforward access to penicillanates bearing SCN and SeCN groups at the 2β -methyl group was performed by electrolysis of 4-dithioazetidinones in a two-phase system (aqueous and organic phases) in the presence of KSCN and KSeCN, respectively, while a mixture of 2β -azidomethyl derivative and its 2α -isomer (6/4) was obtained by a similar electrolysis with NaN₃.

Since the discovery of β -lactamase inhibitory properties of clavulanic acid,¹⁾ a variety of inhibitors has appeared in the literature. Among them, penicillanic acid dioxide 4 (Y = H, Sulbactam)^{2a)} and its homologues bearing substituents (Y), e.g., Cl,^{2b)} N₃,^{2c)} SCN,^{2d)} triazolyl,^{2e)} and tetrazolylthio,^{2d)} at the 2 β -methyl groups have attracted much attention as a promising β -lactamase inhibitor. The introduction of the proper substituent (Y) to the 2 β -methyl group of 4 has generally relied on replacement of the chlorine atom of chloromethylpenams 3 (Y = Cl), derived from dithioazetidinones 1 by the action of Cl₂³⁾ or CuCl₂,^{2c)} or by electrolytic chlorination.⁴⁾

Recently, the electrochemical olefin addition of Y⁻ (or Y₂), e.g., SCN⁻, N₃⁻, diphenyldiselenide, and diphenyldisulfide, has been reported, in which, electrogenerated electrophilic species Y⁺ (or Y⁺) would attack olefins to generate an intermediary onium ion (or radical) (Scheme 1).⁵) This prompted us to investigate the possibility of the direct transformation of 1 into 2β-(substituted methyl)penam 3 through onium (or radical) intermediates 2 as expected to be formed in similar electrolysis media (Scheme 2). Herein, we describe a straightforward access to 2-(substituted methyl)penicillanate 3 (Y = SCN, SeCN, N₃) by a simple electrolysis procedure.

The electrolysis was carried out in an undivided cell fitted with two Pt

Y⁻: SCN⁻, N₃⁻ Y₂: PhSe-SePh, PhS-SPh Scheme 1.

S: OH, OCH3, OAC, NHAC

electrodes (1.5 x 2 cm²). Some of the results are summarized in Table 1. A typical electrolysis procedure (entry 1 in Table 1) is as follows: A mixture of the 4-dithioazetidinone 1 (R = PNB, R¹ = R² = H, 0.5 mmol) and KSCN (3 mmol) in CH₂Cl₂ (4 ml), H₂O (4 ml), and 0.2N H₂SO₄ (0.5 ml) was electrolyzed at 10 mA/cm² at room temperature. After most of 1 was consumed (12 h), the usual workup followed by column chromatography (SiO₂, benzene-AcOEt) afforded 3 (Y = SCN, 97%) along with bis(2-benzothiazolyl)disulfide (BTS-SBT, 99%). Notably, two-phase electrolysis system consisting of aqueous and CH₂Cl₂ phases is indispensable for the present purpose; otherwise (entries 4 and 5), the decomposition of 1 mainly occurs to give a complex mixture. The presence of acids, e.g., H₂SO₄ and AcOH, in the electrolysis media is effective for improving the current efficiency in some extent (entries 1-3).

The two-phase electrolysis procedure can be successfully applied to various 4dithioazetidinones 1 to give the 2β -thiocyanatomethylpenams 3 (entries 6-9). Furthermore, the electrolytic selenocyanation is achieved by slight modification of the electrolysis media. Thus, the electrolysis of 1 (R = PNB, R¹ = R² = H) with KSeCN in a benzene-acetonitrile-H₂O-AcOH system afforded 2β -selenocyanatomethylpenam 3 (Y = SeCN) in 90% yield (entry 10). On the other hand, electrolysis of 1 with NaN₃ in the homogeneous solution took place more efficiently than that in two-phase system (entries 13 and 14), affording a mixture of the corresponding 2β -azidomethylpenam 3 and the 2α -isomer 6 (6/4).⁶

Although reaction mechanism is still unclear, it is likely that formation of Y^+ (or Y_2) by two electron oxidation of Y^- is followed by the electrophilic attack on the terminal olefin of 1 affording 2 and subsequent cyclization of 2 leads to the final products 3 (Y = SCN or SeCN). The formation of a mixture of 2 β - and 2 α -azidomethylpenam 3 (Y = N₃) and 6 would involve epimerization of radical intermediate 5 generated in the analogous way (Scheme 3) before the

Entry	Dithioazetidinone 1			¥-	Conditions		Products 3
	R1	R ²	_R b)		Solvent-System (ml) H	/mol ^c)	Yield/% ^d)
1	Н	Н	PNB	KSCN	$CH_2C1_2-H_2O-0.2N$ H_2SO_4 (4/4/0.5)	14	97
2	Н	Н	PNB	KSCN	$CH_2Cl_2-H_2O$ (4/4)	27	98
3	Н	Н	PNB	KSCN	CH ₂ C1 ₂ -H ₂ O-AcOH (4/4/1)	20	93
4	H	Н	PNB	KSCN	MeCN-H ₂ O (5/2)	6	decomp.
5	Н	Н	PNB	KSCN	DMF-AcOH (5/2)	15	decomp.
6	Н	Н	PMB	KSCN	CH ₂ Cl ₂ -H ₂ O-0.2N H ₂ SO ₄ (4/4/0.5)	14	98
7	Н	Н	Bh	KSCN	$CH_2C1_2-H_2O-0.2N$ H_2SO_4 (4/4/0.5)	12	89
8	Br	Н	PNB	KSCN	$CH_2C1_2-H_2O-0.2N$ H_2SO_4 (4/4/0.5)	14	54 (44) ^{e)}
9	Н	PhCH2CONH	Bn	KSCN	$CH_2C1_2-H_2O-0.2N$ H_2SO_4 (4/4/0.5)	27	80
10	Н	Н	PNB	KSeCN	C ₆ H ₆ -MeCN-H ₂ O-AcOH (6/1/3/1)	22	90
11	Н	Н	PNB	KSeCN	CH ₂ Cl ₂ -H ₂ O (6/1)	21	20 (77) ^{e)}
12	H	Н	PNB	KSeCN	СН ₂ С1 ₂ -Н ₂ О-АсОН (3/2/1)	21	75
13	Н	Н	PNB	NaN ₃	DMF-AcOH (4/5)	4	22 ^{f)} (56) ^{e)}
14	H	Н	PNB	NaN ₃	CH ₂ Cl ₂ -H ₂ O-AcOH (7/2/1)	4	₅ f)
15	Н	Н	PMB	(PhSe) ₂	MeCN-0.2N H ₂ SO ₄ (8/0.5	5) 4	
16	Н	Н	PMB	(PhS) ₂	MeCN-0.2N H ₂ SO ₄ (8/0.5	i) 4	

Table 1. Electrosynthesis of 2β -(substituted methyl)penams 3

a) Electrolysis was carried out in an undivided cell fitted with two platinum electrodes (1.5 x 2 cm²) at room temperature except for entry 13 (at 0 $^{\circ}$ C). b) PNB: <u>p</u>-nitrobenzy1, PMB: <u>p</u>-methoxybenzy1, Bh: benzhydry1, Bn: benzy1.

c) Unless otherwise noted, constant current (entries 1-14: 10 mA/cm², entries 15 and 16: 3.3 mA/cm²) was supplied until most of dithioazetidinones 1 was consumed. d) Isolated yields. e) Recovered 1. f) A mixture of 3 (Y = N₃) and 6 (6/4). cyclization to thiazolidine ring formation (5 - 3 and 6). A similar epimerization to that of radical intermediates 5 has been observed in either photolysis of 4-dithioazetidinone 1 (R = CH₃, R¹ = H, R² = PhCH₂CONH)⁷) or in biomimetic synthesis of penicillin.⁸)

Next, electrolysis of 1 with diphenyldiselenide or diphenyldisulfide was carried out in a similar manner (entries 15 and 16). However, no appreciable amounts of cyclized products 3 were observed; former affording phenylselenothioazetidinone 7 (74%) and latter affording a mixture of phenyldithioazetidinone 8 (20%) and dimer 9 (71%). Presumably, electrophilic species (PhSe⁺, PhSe-SePh, PhS⁺, PhS-SPh) generated in the electrolysis media would attack the disulfide moiety of 1 preferentially rather than the olefin.

References

- 1) T. Howarth, T. A. G. Brown, and T. J. King, J. Chem. Soc., Chem. Commun., <u>1976</u>, 266.
- 2) a) A. English, J. A. Retsema, A. E. Girard, J. E. Lynch, and W. E. Barth, Antimicrob. Agents Chemother., <u>14</u>, 414 (1978); b) W. J. Gottstein, L. B. Crast, Jr., R. G. Graham, U. J. Haynes, and D. N. McGregor, J. Med. Chem., <u>24</u>, 1531 (1981); c) R. G. Micetich, S. N. Maiti, P. Spevak, M. Tanaka, T. Yamasaki, and K. Ogawa, Synthesis, <u>1986</u>, 292; d) H. Tanaka, M. Tanaka, A. Nakai, S. Yamada, N. Ishida, Y. Otani, and S. Torii, J. Antibiotic, <u>41</u>, 579 (1988); e) R. G. Micetich, S. N. Maiti, P. Spevak, T. W. Hall, S. Yamabe, N. Ishida, M. Tanaka, T. Yamasaki, A. Nakai, and K. Ogawa, J. Med. Chem., <u>30</u>, 1469 (1987).
- 3) T. Kamiya, T. Teraji, Y. Saitoh, M. Hashimoto, O. Nakaguchi, and T. Oku, Tetrahedron Lett., 1973, 3001.
- A. Balsamo, P. M. Benedini, I. Giorgi, B. Macchia, and F. Macchia, Tetrahedron Lett., <u>23</u>, 2991 (1982); S. Torii, H. Tanaka, T. Siroi, M. Sasaoka, N. Saitoh, J. Nokami, and N. Tada, Chem. Lett., <u>1982</u>, 1829.
- 5) a) J. Y. Becker, "Electrochemical Oxidation, Reduction and Formation of the C-X Bond Direct and Indirect Processes," in "The Chemistry of Functional Groups, Supplement D," ed by S. Patai and Z. Rappoport, John Wiley & Sons, New York (1983), Chap. 6, pp. 203-286, and references cited therein; b) S. Torii, K. Uneyama, and M. Ono, Tetrahedron Lett., <u>21</u>, 2741 (1980); c) A. Bewick, D. E. Coe, G. B. Fuller, and J. M. Mellor, ibid., <u>21</u>, 3827 (1980);
 d) A. Bewick, D. E. Coe, G. B. Fuller, J. M. Mellor, and W. M. Owton, J. Chem. Soc., Perkin Trans. 1, <u>1985</u>, 1033.
- 6) The low conversion of 1 may be ascribable to the significant decomposition of N_3 ($-N_6-N_2$); see Ref. 5a.
- 7) Y. Maki, J. Chem. Soc., Chem. Commun., <u>1978</u>, 836.
- 8) J. E. Baldwin, R. M. Adlington, and R. Bohlmann, J. Chem. Soc., Chem. Commun., 1985, 357.

(Received August 15, 1988)

1804