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Electrooxidative Cyclization of 4-Dithioazetidinones (Kamiya's Disulfides)

A Facile Access to 2-(Substituted methyl) penicillanates
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A straightforward access to penicillanates bearing SCN and SeCN

groups at the 2 β-methyl group was performed by electrolysis of 4-

dithioazetidinones in a two-phase system (aqueous and organic 

phases) in the presence of KSCN and KSeCN, respectively, while a

mixture of 2β-azidomethyl derivative and its 2α-isomer (6/4) was

obtained by a similar electrolysis with NaN3.

Since the discovery of β-lactamase inhibitory properties of clavulanic

acid,1) a variety of inhibitors has appeared in the literature. Among them, 

penicillanic acid dioxide 4 (Y=H, Sulbactam)2a) and its homologues bearing 

substituents (Y), e.g., Cl,2b) N3,2c) SCN,2d) triazolyl,2e) and tetrazolylthio,2d)

at the 2β-methyl groups have attracted much attention as a promising β-lactamase

inhibitor. The introdUction of the proper substituent (Y) to the 2β-methyl

group of 4 has generally relied on replacement of the chlorine atom of chloro-

methylpenams 3 (Y=Cl), derived from dithioazetidinones 1 by the action of Cl23) 

or CuCl2,2c) or by electrolytic chlorination.4)

Recently, the electrochemical olefin addition of Y- (or Y2), e.g., SCN-, N3-, 

diphenyldiselenide, and diphenyldisulfide, has been reported, in which, electro-

generated electrophilic species Y+ (or Y・) would attack olefins to generate an

intermediary onium ion (or radical) (Scheme 1).5) This prompted us to

investigate the possibility of the direct transformation of 1 into 2β-(substituted

methyl) penam 3 through onium (or radical) intermediates 2 as expected to be formed

in similar electrolysis media (Scheme 2). Herein, we describe a straightforward 

access to 2-(substituted methyl) penicillanate 3 (Y=SCN, SeCN, N3) by a simple 

electrolysis procedure.

The electrolysis was carried out in an undivided cell fitted with two Pt

Scheme 1.
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Scheme 2.

electrodes (1.5×2cm2). Some of the results are summarized in Table 1. A

typical electrolysis procedure (entry .1 in Table 1) is as follows: A mixture of 

the 4-dithioazetidinone 1 (R=PNB, R1=R2=H, 0.5mmol) and KSCN (3mmol) in 

CH2Cl2 (4ml), H2O (4ml), and 0.2N H2SO4 (0.5ml) was electrolyzed at 10mA/cm2 

at room temperature. After most of 1 was consumed (12h), the usual workup 

followed by column chromatography (SiO2, benzene-AcOEt) afforded 3 (Y=SCN, 97%) 

along with bis (2-benzothiazolyl) disulfide (BTS-SBT, 99%). Notably, two-phase 

electrolysis system consisting of aqueous and CH2Cl2 phases is indispensable for 

the present purpose; otherwise (entries 4 and 5), the decomposition of 1 mainly 

occurs to give a complex mixture. The presence of acids, e.g., H2SO4 and AcOH, 

in the electrolysis media is effective for improving the current efficiency in 

some extent (entries 1-3).

The two-phase electrolysis procedure can be successfully applied to various 4-

dithioazetidinones 1 to give the 2β-thiocyanatomethylpenams 3 (entries 6-9).

Furthermore, the electrolytic selenocyanation is achieved by slight modification 

of the electrolysis media. Thus, the electrolysis of 1 (R=PNB, R1=R2=H)

with KSeCN in a benzene-acetonitrile-H2O-AcOH system afforded 2β-selenocyanato-

methylpenam 3 (Y=SeCN) in 90% yield (entry 10). On the other hand,

electrolysis of 1 with NaN3 in the homogeneous solution took place more 

efficiently than that in two-phase system (entries 13 and 14), affording a

mixture of the corresponding 2β-azidomethylpenam 3 and the 2α-isomer 6(6/4).6)

Although reaction mechanism is still unclear, it is likely that formation of 

Y+ (or Y2) by two electron oxidation of Y- is followed by the electrophilic 

attack on the terminal olefin of 1 affording 2 and subsequent cyclization of 2 

leads to the final products 3 (Y=SCN or SeCN). The formation of a mixture of

2β- and 2α-azidomethylpenam 3 (Y=N3) and 6 would involve epimerization of

radical intermediate 5 generated in the analogous way (Scheme 3) before the

Scheme 3.
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Table 1. Electrosynthesis of 2β-(substituted methyl) penams 3

a) Electrolysis was carried out in an undivided cell fitted with two platinum

electrodes (1.5×2cm2) at room temperature except for entry 13 (at 0℃).

b) PNB: p-nitrobenzyl, PMB: p-methoxybenzyl, Bh: benzhydryl, Bn: benzyl. 

c) Unless otherwise noted, constant current (entries 1-14: 10mA/cm2, entries 15 

and 16: 3.3mA/cm2) was supplied until most of dithioazetidinones 1 was consumed. 

d) Isolated yields. e) Recovered 1. f) A mixture of 3 (Y=N3) and 6 (6/4).
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cyclization to thiazolidine ring formation (5→3 and 6). A similar

epimerization to that of radical intermediates 5 has been observed in either 

photolysis of 4-dithioazetidinone 1 (R=CH3, R1=H, R2=PhCH2CONH)7) or in 

biomimetic synthesis of penicillin.8)

Next, electrolysis of 1 with diphenyldiselenide or diphenyldisulfide was 

carried out in a similar manner (entries 15 and 16). However, no appreciable 

amounts of cyclized products 3 were observed; former affording phenylselenothio-

azetidinone 7 (74%) and latter affording a mixture of phenyldithioazetidinone 8 

(20%) and dimer 9 (71%). Presumably, electrophilic species (PhSe+, PhSe-SePh, 

PhS+, PhS-SPh) generated in the electrolysis media would attack the disulfide 

moiety of 1 preferentially rather than the olefin.
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