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corresponding devinylated metabolites, the spontan
PYRRO/NO (3) and V-PROLI/NO (4).
An improved synthesis of V-PROLI/NO, a cytochrome P450-activated nitric oxide (NO) prodrug, in an
overall yield of 26% in four steps from prolinol is reported; the previously published yield of this trans-
formation was 1%. Using this revised strategy, the sarcosine analogue (14) of V-PROLI/NO was prepared.
Finally, the methyl ester of V-PROLI/NO (15) was found to be an esterase-activated prodrug form of V-
PROLI/NO.

Published by Elsevier Ltd.
O2-(Vinyl) diazeniumdiolates are prodrugs that are designed to
be activated by cytochrome P450 to release nitric oxide (NO). O2-
Vinyl 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (V-PYRRO/NO,
1), a member of this class of prodrugs, was shown to be a hepato-
protective agent against a variety of toxins in several animal mod-
els (Scheme 1).1–18

Earlier, we reported that O2-vinyl [2-carboxylato)pyrrolidin-1-
yl]diazen-1-ium-1,2-diolate (V-PROLI/NO, 2), the L-proline
analogue of V-PYRRO/NO, was metabolized by two isoforms of
cytochrome P450 (Scheme 1). The nitric oxide prodrug PROLI/NO
(4) may have a favorable toxicological profile as the expected prod-
ucts of decomposition are L-proline and NO, both naturally occur-
ring metabolites.19 Upon treatment of human liver HepG2 cells
with V-PROLI/NO, the formation of nitrite, a product of aerobic oxi-
dation of NO, in a time- and concentration-dependent manner, was
reported.20 Finally, V-PROLI/NO enhanced arsenite’s chemothera-
peutic efficacy in a HepG2 liver cell model.20
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and V-PROLI/NO (2) and their
eously NO-releasing anions
V-PROLI/NO was previously synthesized in four steps from pro-
linol in an overall yield of roughly 1% (Scheme 2).19 Diazeniumdi-
olation of prolinol provided 5 (73%), which was then subsequently
treated with 2-bromo-1-(trifluoromethanesulfonyloxy)ethane to
afford 6 in 48% yield (Scheme 2).19 Oxidation of 6 formed 7 in
19% yield; and dehydrohalogenation of 7 afforded V-PROLI/NO in
19% yield.19

At the outset, our goal was to improve the overall yield of V-
PROLI/NO. Towards this aim, first, the diazeniumdiolation of pro-
linol was carried out numerous times and the yield of 5 varied from
73% to 82%. Next, the alkylation of 5 to form 6 was optimized and
the yield obtained was 78%.21 Recently, we reported the improved
synthesis of V-PYRRO/NO using an alkylation followed by a dehy-
drohalogenation of 8 by Verkade’s SuperBase (9) (Scheme 3).18,22

Under similar conditions, when 7 was treated with 9, we ob-
served complete disappearance of starting material but without
any trace of the desired product, V-PROLI/NO.18

Instead, an inseparable mixture of presumably intra- and inter-
molecular substitution products resulted. This observation is con-
sistent with a previous study by Arumugam and Verkade who re-
ported that 1-bromo-propanoic acid failed to produce the
dehydrohalogenation product, acrylic acid, but instead formed
the nucleophilic substitution product, b-propiolactone, in a nearly
quantitative yield.22 Other bases such as DBU or proton sponge
failed to induce elimination of 7 and resulted in the recovery of
the starting material.

Thus, a revised strategy to synthesize V-PROLI/NO was neces-
sary. Instead of oxidizing 6 to 7 and then attempting to dehydro-
halogenate 7 to form V-PROLI/NO, a reversal of the order of the
aforementioned reactions was envisaged (Scheme 4). Dehydro-
halogenation of 6 is expected to produce 10 and subsequent oxida-
tion of 10 should produce V-PROLI/NO.

Indeed this strategy to synthesize V-PROLI/NO was successful
(Scheme 5). The alcohol 10 was isolated in 83% yield from the
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Figure 1. HPLC traces of: (A) 15 in pH 7.4 phosphate buffered saline (PBS) at
time = 0; (B) 15 and its hydrolysis product in pH 7.4 PBS at time = 14 days, the
hydrolysis product was identified as V-PROLI/NO; (C) V-PROLI/NO in pH 7.4 PBS.
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treatment of 6 with 9.23 Next, oxidation of 10 was carried out using
the Jones oxidation method to produce V-PROLI/NO in a yield of
50%; this step was also convenient as no chromatography was re-
quired during isolation of the product.24 Thus, starting from prolin-
ol, the overall yield of V-PROLI/NO was 26% in four steps.

This improved strategy was applied to the synthesis of the sar-
cosine analogue of V-PROLI/NO (Scheme 6). A reported method
was used to prepare the diazeniumdiolate salt 11.25 Next, 11 was
alkylated to afford 12 in 71% yield.26 Dehydrohalogenation of 12
produced 13 in 55% yield;27 and finally, the alcohol 13 was oxi-
dized to form 14 in 57% yield.28 The overall yield of 14 from the
commercially available 2-(methylamino)ethanol was 16% (four
steps).

Next, the methyl ester of V-PROLI/NO was prepared in 70% yield
by reacting V-PROLI/NO with diazomethane in ether (Scheme 7).29
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The methyl ester 15 was found to be a prodrug form of V-PROLI/
NO. In pH 7.4 buffer at 37 �C, gradual disappearance of 15
(Fig. 1A) over several days (Fig. 1B) with concomitant formation
of V-PROLI/NO (Fig. 1C) was observed.30 A time course of this ester
hydrolysis to form V-PROLI/NO is shown in Figure 2. Finally, treat-
ment of 15 with esterase formed V-PROLI/NO in a nearly quantita-
tive yield (by HPLC).31 Taken together, these results indicate that
15 is a prodrug for V-PROLI/NO.
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Figure 2. Time course of ester hydrolysis of 15 (A) forming V-PROLI/NO (B) in pH
7.4 Hank’s Balanced Salt Solution (HBSS) at 37 �C during 15 days.
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Carboxylic acid esters are reported to have improved bioavail-
ability in comparison with their carboxylic acid counterparts.32 Re-
cently, we reported that ester derivatives of PROLI/NO were
superior cell penetrators and inhibitors of proliferation of HL-60
leukemia cells than their corresponding free carboxylic acid coun-
terparts.33 Studies on the cell permeability and the efficacy of 14
and 15 as hepatoprotective agents will be reported in due course.
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