Paper

Convenient One-Pot Two-Step Synthesis of Symmetrical and Unsymmetrical Diacyl Ureas, Acyl Urea/Carbamate/Thiocarbamate Derivatives, and Related Compounds

Α

Anolan Garcia Hernandez Gregory M. Grooms Abir T. El-Alfy¹ Jozef Stec^{*2}

Chicago State University, College of Pharmacy, Department of Pharmaceutical Sciences, 9501 S. King Drive, Chicago, IL 60628, USA jstec@ketchum.edu

Dedicated to Professor Richard J. Whitby

Received: 19.12.2016 Accepted after revision: 27.01.2017 Published online: 21.02.2017 DOI: 10.1055/s-0036-1588724; Art ID: ss-2016-m0860-op

Abstract A wide range of chemicals such as amides, hydrazides, amines, alcohols, carbazate, and sulfonate were reacted with acyl isocyanates generated by the reaction of primary amides with oxalyl chloride to give symmetrical and unsymmetrical diacyl urea derivatives, acyl ureas/carbamates/thiocarbamates, and related compounds. This method provides means for convenient one-pot, two-step synthesis of compounds bearing urea, carbamate, and other functional groups from cheap and commercially available starting reagents. It is expected that the results presented in this report will expand the medicinal chemist's toolbox.

Key words bioisostere, acyl isocyanates, symmetrical/unsymmetrical diacyl ureas, acyl ureas, acyl carbamates, acyl thiocarbamates

Carbamate (urethane) 2 and urea 3 functional groups share similarities in structural, electronic, and biologic properties with amide (peptide) bond 1 (Figure 1). Both of these groups are considered to be nonclassical bioisosteres of amide bond, and in the case of urea – hydroxyl group 4 as well (Figure 1).³ The overall physicochemical properties of carbamate and urea linkers are often decisive not only to the pharmacologic activity but also to the ADME/Tox (absorption, distribution, metabolism, excretion, and toxicity) profile of compounds relevant to medicine and agriculture. Bioisosteric replacement of functional groups is often used to modulate the druggability of lead candidates by improving their potency, selectivity, metabolic stability, pharmacokinetic properties, and safety profile.⁴ Accordingly, carbamate and urea motifs are broadly utilized in medicinal chemistry, drug discovery, and development process.

Figure 1 Nonclassical bioisosteres of amide bond: carbamate and urea groups. Urea is also a bioisostere of the hydroxyl group.

Numerous drug molecules approved for the treatment of various diseases contain carbamate moiety (Figure 2).⁵ Rivastigmine (**5**), for treatment of mild-to-moderate Alzheimer's disease (AD) dementia and dementia due to Parkinson's disease (PD); the anticonvulsant medication felbamate (**6**); the antibiotic linezolid (**7**); and the anthelmintic agents albendazole (**8**) and mebendazole (**9**) represent only few examples of important medications that con-

Downloaded by: University of Liverpool. Copyrighted material.

tain a carbamate moiety (Figure 2).⁵ Additionally, the use of carbamates in the development of prodrugs cannot be overemphasized. Prodrug strategy is frequently employed to increase the bioavailability of drug molecules and to improve their overall ADME/Tox properties. Representative examples of carbamate-based prodrugs approved for clinical use include the beta blocker bambuterol (**10**) used in the treatment of asthma,⁵ the antihistamine agent loratadine (**12**),⁶ and the anticancer medication capecitabine (**14**)⁷ (Figure 3).

Basic urea (**18**) is the end product of protein metabolism that is excreted in the urine of ureotelic organisms (Figure 4).⁸ This chemical group is also present in various thera-

peutics and agrochemicals. The antineoplastic agent sorafenib (**19**), the anthelmintic drug hetrazan (**20**), and the antipsychotic medication cariprazine (**21**) represent pharmaceuticals containing urea functionality (Figure 4).⁹ Cumyluron (**22**) and tebuthiuron (**23**) are herbicides that also possess a urea linker (Figure 4).⁹

Furthermore, close derivatives of urea group such as hydroxyurea (antineoplastic, **24**),¹⁰ nitrosourea in lomustine (anticancer, **25**),¹¹ sulfonylurea in torsemide (diuretic, **26**),¹² acylated ureas in pheneturide (anticonvulsant, **27**),¹³ bromisoval (hypnotic and sedative, **28**),¹⁴ diflubenzuron (insecticide, **29**),¹⁵ and lufenuron (insecticide, **30**)^{15b,16} are decisive to the bioactivity of the aforementioned com-

$\ensuremath{\mathbb{C}}$ Georg Thieme Verlag Stuttgart \cdot New York – Synthesis 2017, 49, A–N

pounds (Figure 5). Ritonavir (**31**)¹⁷ is an approved antiviral agent that contains both the carbamate and the urea groups (Figure 6).

A plethora of synthetic protocols provide means for implementation of carbamate or urea functional groups within organic molecules. One of the oldest methods used to access carbamates and ureas utilizes the harsh reagent phosgene (Scheme 1).¹⁸ Commonly adopted methods for preparation of carbamates and ureas are based on the addition of alcohols and amines, respectively, to isocyanates generated in situ or available commercially (Scheme 2).^{5,19} Newer methods utilize milder and less toxic phosgene surrogates, carbonates, formamides, chloroformates, and other reagents (Scheme 3).²⁰ Most recent synthetic methods em-

ploy various metal and non-metal reagents and raw materials such as carbon monoxide, carbon dioxide, and methanol (Scheme 4).^{5,21} Conversion of primary aliphatic amines and carbon dioxide to urea derivatives in the absence of solvent and catalyst was also reported.²²

Scheme 3 Synthesis of carbamates and ureas from carbonates as the starting materials

Scheme 4 Exploitation of raw materials in the synthesis of substituted carbamates and ureas

A simple diacetyl urea (ureide) was first prepared nearly one and a half centuries ago by condensation of two equivalents of acetamide with phosgene.²³ Next, a stepwise approach to acyl urea, diacyl urea, and acyl carbamate was developed by reacting ammonia, amide, and alcohol, respectively, with an acyl isocyanate that was generated via

reaction of acetyl chloride with the explosive mercury(II) fulminate.^{23b,24} Modification²⁵ of the initial method by replacing phosgene with oxalyl chloride provided diacyl ureas; however, limitation of this method was observed.^{23b} Synthesis of symmetrical and unsymmetrical diacyl ureas by the condensation of monoacyl ureas with acyl chlorides and sulfuric acid as the catalyst was reported in 1938.^{23b} The use of oxalyl chloride in generating acyl isocyanates from primary amides and their subsequent application to synthesis of acyl ureas, acyl carbamates, and thiocarbamates as well as other compounds was extensively investigated by Speziale and Smith.²⁶ Symmetrical diaroyl ureas can be prepared by the reaction of urea with aromatic acid esters in the presence of sodium hydride.²⁷ Alternatively, treatment of urea with excess of acvl chloride in a DMAPpyridine solution affords a symmetrical diacyl urea derivative.²⁸ Dye-induced photooxygenation of imidazolin-2-ones also was shown to yield diacyl ureas.²⁹ Method for the preparation of diacyl ureas for use in agriculture from urea and carboxylic acids was also reported.³⁰ Metal-catalyzed carbonylation of urea derivatives with aryl halides affords arovl ureas.31

Herein we report optimization and scoping studies on the addition of a wide range of nucleophiles **32**, **34**, **36**, **38**, **40**, **42**, **43**, and **45** to acyl isocyanates **33** generated by the reaction of primary amides **32** with oxalyl chloride (Scheme 5). This method provides means for convenient one-pot, two-step synthesis of symmetrical and unsymmetrical diacyl urea derivatives, acyl ureas/carbamates/ thiocarbamates, and related compounds starting from cheap and commercially available reagents (Scheme 5). The obtained compounds are presented in Table 1.

Synthesis of the symmetrical 1,3-diaroyl ureas 35a-o was efficient and provided the final products in yields ranging from good to excellent (67–92%) (Scheme 5, Table 1). Exception was the thiobenzamide, which did not provide the thio analogue of 35a (results not shown).³² Lower yield for the aliphatic diacyl urea **35p** in comparison to aromatic analogues is consistent with findings reported in the literature.^{26b} The unsymmetrical acyl ureas **35q-v** were obtained in various yields. The aromatic compounds 35g and 35s were obtained in very good yields, similarly to the mixed aromatic-aliphatic counterparts 35u and 35v. For compounds 35s, 35u, and 35v, the acyl isocyanates were generated from the corresponding benzamides. When the isocyanate was generated from nicotinamide (34a) followed by the addition of benzamide (32a), the crude reaction mixture consisted of several products; thus compound 35s was neither isolated from that reaction nor the reaction for symmetrical 1,3-dinicotinoyl urea was successful. The reaction yield for compound 35r was slightly decreased due to use of only 1.0 equivalent of p-chlorobenzamide. It is noteworthy that the product 35r is a close analogue of diflubenzuron (29). The yield for 35t was compromised by

Scheme 5 Elaboration of acyl isocyanates **33** obtained from primary amides **32**. *Reagents and conditions*: a) i. **32** (1.0 mmol), anhyd CH₂Cl₂, r.t., 5 min, ii. (COCl)₂ (3.0 equiv) reflux 2.5–3 h, iii. r.t., in vacuo solvent evaporation; b) nucleophile **32**, **34**, **36**, or **38** (1.1–1.25 equiv), anhyd toluene, reflux, 2.5–3 h.

difficult purification. In general, the reaction for unsymmetrical diacyl ureas was rather capricious, often accompanied by formation of a small amount of the symmetrical product rendering the need for purification and/or adjustment of equivalents of the nucleophile.

Addition of urea (36) to isocvanates generated from amides 32a and 32p furnished the expected products 37a and **37b**, respectively (Scheme 5). The reverse reaction was unsuccessful. Compound **37a** was also obtained (87% vield) when two equivalents of benzoyl isocyanate (33a; R = Ph, prepared from **32a**) were used with respect to one equivalent of urea, thus indicating that the carbamoylation occurs only at one site of the urea. This result differs from the reported observation relating to the reaction of urea with equimolar amounts of benzoyl isothiocyanate to provide the thio analogue of **37a** along with small quantities of the diadduct.³³ Attempts of reaction of product **37a** with isocyanate 33a or benzoyl chloride were ineffective, presumably due to insolubility of 37a in the reaction solvent (results not shown). The concept of dicarbamoylation was further investigated by attempting to generate diisocyanate from 4,5-dichlorophthalamide and further addition of 2 equivalents of benzamide. This reaction failed due to the likely decomposition of the diisocyanate during in vacuo evaporation of dichloromethane.³⁴ Instead of the desired product,

Ε

Syn<mark>thesis</mark>

A. G. Hernandez et al.

small amount of compound **35a** (23%) was isolated from this reaction. The reverse approach, namely addition of 4,5dichlorophthalamide to two equivalents of benzoyl isocyanate (**33a**) also did not occur and the starting material (4,5dichlorophthalamide) was isolated (73%). This reaction did not proceed, likely due to steric hindrance factors. Addition of succinamide to 2 equivalents of benzoyl isocyanate (**33a**) was unproductive, which supported the initial observation that under the present reaction conditions the dicarbamoylation reaction is apparently ineffective. Conversion of succinamide to the corresponding diisocyanate was not pursued due to the unsatisfactory results for this reaction reported earlier.³⁴

Paper

 $\ensuremath{\mathbb{C}}$ Georg Thieme Verlag Stuttgart \cdot New York — Synthesis 2017, 49, A–N

Syn<mark>thesis</mark>

A. G. Hernandez et al.

Paper

Table 1 (continued)

No	Starting amide			Nucleophile	Final product		Yield (%)
12	321	F O NH ₂	321	F O NH ₂	351		85
13	32m	F ₃ C NH ₂	32m	F ₃ C NH ₂	35m	F ₃ C CF ₃	68
14	32n	CI NH2	32n	CI NH2	35n		91
15	320	Ph NH ₂	320	Ph NH ₂	350	Ph Ph	85
16	32p	<i>n</i> -C ₅ H ₁₁ NH ₂	32p	n-C ₅ H ₁₁ NH ₂	35p	$n \cdot C_5 H_{11}$ H H H $n \cdot C_5 H_{11}$	60
17	32f	O ₂ N NH ₂	32m	F ₃ C NH ₂	35q	O_2N H H H H CF_3	85
18	321	F O NH ₂	32n	CI NH2	35r		66°
19	32a	NH ₂	34a	NH ₂	35s		88 ^d
20	32a	NH ₂	34b	NH ₂	35t		69 ^e /16 ^f
21	32a	NH ₂	32p	<i>n</i> -C ₅ H ₁₁ NH ₂	35u		72
22	32d	MeO NH ₂	32p	n-C ₅ H ₁₁ NH ₂	35v	MeO H H H H H H H H H H H H H H H H H H H	86
23	32a	NH ₂	36		37a		87 ^g
24	32p	n-C ₅ H ₁₁ NH ₂	36		37b	$n-C_5H_{11}$ N H H H H_2 NH_2	51 ^f

F

Syn<mark>thesis</mark>

A. G. Hernandez et al.

Downloaded by: University of Liverpool. Copyrighted material.

Table 1 (continued)

lable	abe (continued)										
No	Starting amide			Nucleophile	Final product		Yield (%)				
25	32a	NH ₂	38a		39a		59 ^h				
26	32a	NH ₂	38b		39b		55 ⁱ				
27	32a	NH ₂	40a	NH2 H	41a		88				
28	32a	NH ₂	40Ь	n-C ₅ H ₁₁ NH ₂	41b	$ \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	89 ^j				
29	32a	NH ₂	42		41c		83				
30	32a	NH ₂	43a	- NH2 U NH2 U NH2	44a		73				
31	32a	NH ₂	43b	n-C7H15-U N O O	44b		90				
32	32q	F O NH ₂	45a	NH ₂	46a		~ 74 ^k /34 ^f				
33	32r	NH ₂	45b	NH ₂	46b		60 ^f				
34	32a	NH ₂	45c	NH ₂	46c		78				
35	32a	O NH ₂	45d	ОН	46d		58				
36	32a	NH ₂	45e	MeO OH	46e	MeO NH O MeO OMe	74 ^f				
37	32a	NH ₂	45f	ОН	46f		79 ^f				

G

Syn thesis

A. G. Hernandez et al.

Paper

Table 1 (continued)

н

^a 3 mmol scale reaction.

^b After purification by crystallization from MeOH.

^c 1 equivalent of *p*-chlorobenzamide (1 equiv) was used. The isolated crude product was still contaminated with ~5% of *p*-chlorobenzamide as determined by ¹H NMR spectroscopy.

^d Isolated crude product contaminated with ~25% of an unknown by-product as determined by ¹³C NMR spectroscopy.

^e Isolated crude product contaminated with cinnamide.

^f After purification by flash chromatography.

⁹ 2 mmol scale reaction with 1.0 equivalent of urea being used.

^h 2 equivalents of methyl carbamate were used.

ⁱ Isolated crude product contaminated with ~20% of an unknown by-product as determined by ¹H NMR spectroscopy.

^j Contaminated with ~5% of unknown by-product as determined by ¹H NMR spectroscopy.

^k Isolated crude product contaminated with geranylamine as determined by ¹H NMR spectroscopy.

Addition of methyl carbamate (38a) and ethyl carbamate (38b) to isocyanate 33a provided products 39a and 39b, respectively, in moderate yields and deteriorated purity for 39b (Scheme 5, Table 1). Reaction of isocyanate 33a with hydrazides 40a, and 40b, tert-butyl carbazate (42), and p-toluenesulfonyl hydrazide 43a provided in good yields the expected products 41a,b, 41c, and 44a, respectively (Scheme 6). Conversion of benzhydrazide (40a) to its corresponding isocyanate and subsequent treatment with benzamide resulted in a mixture of products, two of them deemed to be the compounds 41a and 48a (entry 27, and Scheme 7). Of note is the fact that the thio analogue of compound **41a**. that is. 1.4-dibenzovlthiosemicarbazide. was previously obtained via reaction of equimolar amounts of hydrazine hydrate with benzoyl isothiocyanate.³⁵ An interesting outcome was obtained when benzhvdrazide (40a) and *p*-toluenesulfonyl hydrazide (43a) were treated with oxalyl chloride followed by the addition of 40a and 43a, respectively (Scheme 7). In both cases, substitution reaction occurred to provide the symmetrical products 48a and 48b in good yields (Scheme 7). However, nucleophilic substitution reactions that occur in similar manner with oxalyl chloride are known in the literature.^{34,36} In contrast, addition of 40a to 47b provided unidentified mixture of products.

Sodium 1-heptanesulfonate (**43b**) readily reacted with **33a** to give the final product **44b** in excellent yield (Scheme 6). Disappointingly, reactions of benzenesulfonamide with **33a** resulted in a mixture of products that was not further analyzed. Other compounds that were unproductively reacted with **33a** include benzoic acid, sodium benzoate, benzhydroxamic acid, dibutyl phosphate, diethyl phosphoramidate, and certain amino acids such as L-serine and L-arginine (results not shown). The unsatisfactory outcome of addition of the amino acids to **33a** is especially disappointing as similar reaction of acyl isothiocyanates with several amino acids has been reported.³⁷ Reaction of geranyl amine

Scheme 6 Elaboration of acyl isocyanates 33. *Reagents and conditions*: a) nucleophile 40, 42, 43, or 45 (1.1–1.25 equiv), anhyd toluene, reflux, 2.5–3 h.

V

I

(45a), 2-adamantylamine (45b), and O-benzylhydroxylamine (45c) with the corresponding isocyanates 33q, 33r, 33a gave the final products 46a-c, respectively. The significantly lower yield for 46a pertains to difficult purification of the final product. Addition of various alcohols 45d-g and a thiol 45h to 33a resulted in a range of benzoyl carbamates 46d-g and benzoyl thiocarbamate (46h), respectively. The lower yield for 46d is assumed to be associated with the lower nucleophilicity of phenol (45d) when compared to the other alcohols 45e-g used in the reaction.

In conclusion, we have reported an optimized synthetic procedure for the synthesis of a wide range of organic molecules 35, 37, 39, 41, 44, 46, 48 possessing diacyl urea; acyl urea, acyl carbamate, acyl thiocarbamate, acyl semicarbazide; and other functional groups. Overall, the reaction is efficient (high yielding) with conversion time of approximately six hours for both steps and straightforward isolation of the crude materials. The isolated products were virtually pure except for a few cases when crystallization or automated flash chromatography purification method was applied. The obtained final products are deemed to share structural similarities with reported agents possessing antibacterial and antiprotozoal activities.³⁸ Accordingly, the synthetic protocol is currently utilized in the synthesis of compounds suitable for biological investigation. It is believed that the presented results will be of interest to the broader audience of synthetic organic and medicinal chemists.39

All reagents were purchased from Sigma-Aldrich and Fisher Scientific. Anhyd toluene was purchased from Sigma-Aldrich whereas anhyd CH_2Cl_2 was obtained by distillation over CaH_2 . ¹H NMR and ¹³C NMR spectra were recorded on a Jeol spectrometer at 400 and 100 MHz, respectively. NMR spectra were reprocessed by ACD/NMR Processor Academic Edition version 12.01. Standard abbreviations were used for indicating multiplicity. HRMS experiments were performed on Agilent 6224 Tof-MS instrument with a mixed chemical ionization/positive electrospray (CI/+ESI) mode. TLC was performed on Merck 60 F254 silica gel plates. Flash chromatography was performed using a Biotage – IsoleraTM system with pre-packed silica gel columns (Biotage FLSH SNAP CRT SI 10, 25, or 50 grams).

Synthesis of 35, 37, 39, 41, 44, 46, and 48; General Procedure

The appropriate amide **32a–p**, benzhydrazide (**40a**), or *p*-toluenesulfonyl hydrazide (43a) (1.0 mmol, 1.0 equiv) was placed in a Schlenk Kjeldahl reaction flask and the flask was evacuated/argon re-filled three times. Subsequently, anhyd CH₂Cl₂ (25 mL) was added and the mixture was stirred at r.t. for 10 min before dropwise addition of oxalyl chloride (3.0 mmol, 3.0 equiv) followed. The reaction mixture was then stirred at reflux for 2.5-3.0 h before cooling to r.t. and the solvent was evaporated in vacuo. Subsequently, the appropriate nucleophile 32, 34, 36, 38, 40, 42, 43, or 45 (1.1-1.25 mmol, 1.1-1.25 equiv) was rapidly added and the flask was evacuated/argon re-filled before anhyd toluene (12 mL) was added. The reaction mixture was then stirred at reflux for 2.5-3 h before cooling to r.t. and concentration to about 1/3 of the initial volume on rotavapor. Hexane was added to the residue and the obtained precipitate (often sonicated) was collected by filtration under reduced pressure to yield the crude product. When necessary, the isolated material was purified either by crystallization from MeOH or flash chromatography on silica gel with hexane-EtOAc as the eluent.

N,N'-Carbonyldibenzamide (35a)

Milky-white solid; yield: 240 mg (89%).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.84 (s, 2 H), 7.97–7.92 (dd, *J* = 7.4, 1.4 Hz, 4 H), 7.68–7.63 (t, *J* = 7.4 Hz, 2 H), 7.58–7.52 (t, *J* = 7.4 Hz, 4 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 167.3 (2 C), 149.5 (C), 133.9 (2 × CH), 133.0 (2 C), 129.4 (4 × CH), 128.5 (4 × CH).

HRMS: m/z [M]⁺ calcd for C₁₅H₁₂N₂O₃: 268.0848; found: 268.0851.

N,N'-Carbonylbis[2-(benzyloxy)benzamide] (35b)

Off-white solid; yield: 410 mg (85%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.53 (s, 2 H), 7.67 (dd, *J* = 7.8, 1.4 Hz, 2 H), 7.51 (dd, *J* = 7.9, 1.6 Hz, 2 H), 7.45–7.43 (m, 4 H), 7.29–7.21 (m, 8 H), 7.04 (t, *J* = 7.7 Hz, 2 H), 5.29 (s, 4 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 166.0 (2 C), 156.6 (2 C), 148.7 (C), 136.8 (2 C), 134.5 (2 C), 131.4 (2 C), 129.0 (4 × CH), 128.5 (2 × CH), 128.0 (4 × CH), 122.6 (2 C), 121.5 (2 × CH), 114.2 (2 × CH), 70.5 (2 × CH₂).

HRMS: *m*/*z* [M]⁺ calcd for C₂₉H₂₄N₂O₅: 480.1685; found: 480.1691.

N,N'-Carbonylbis(2-methoxybenzamide) (35c)

Grey powder; yield: 288 mg (88%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.57 (s, 2 H), 7.78 (dd, *J* = 7.8, 1.4 Hz, 2 H), 7.56 (td, *J* = 7.8, 1.8 Hz, 2 H), 7.19 (d, *J* = 8.2 Hz, 2 H), 7.07 (t, *J* = 7.6 Hz, 2 H), 3.93 (s, 6 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 165.7 (2 C), 157.8 (2 C), 148.8 (C), 134.8 (2 × CH), 131.5 (2 × CH), 121.8 (2 C), 121.4 (2 × CH), 112.9 (2 × CH), 56.6 (2 × OCH₃).

V

Scheme 7 Reaction of oxalyl chloride with hydrazides **40a** and **43a**. *Reagents and conditions*: a) i. **40a** or **43a** (1.0 mmol), anhyd CH₂Cl₂, r.t., 5 min, ii. (COCl)₂ (3.0 equiv), reflux 2.5–3 h, iii. r.t., in vacuo solvent evaporation; b) **40a** or **43a** (1.1 equiv), anhyd toluene, reflux, 2–3 h.

Svn thesis

A. G. Hernandez et al.

HRMS: m/z [M]⁺ calcd for C₁₇H₁₆N₂O₅: 328.1059; found: 328.1064.

N,N'-Carbonylbis(4-methoxybenzamide) (35d)

White powder; yield: 820 mg (83% on a 3.0 mmol scale).

 ^1H NMR (400 MHz, DMSO- $d_6):$ δ = 11.77 (s, 2 H), 7.96–7.91 (m, 4 H), 7.10–7.05 (m, 4 H), 3.82 (s, 6 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 166.5 (2 C), 163.8 (2 C), 149.7 (C), 130.7 (4 × CH), 124.9 (2 C), 114.7 (4 × CH), 56.1 (2 × OCH₃). HRMS: m/z [M + H]⁺ calcd for C₁₇H₁₇N₂O₅: 329.1132; found: 329.1131.

N,N'-Carbonylbis(2-nitrobenzamide) (35e)

White powder; yield: 250 mg (70%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.29 (s, 2 H), 8.19 (d, J = 7.8 Hz, 2 H), 7.89–7.84 (m, 2 H), 7.76–7.68 (m, 4 H).

 13 C NMR (100 MHz, DMSO- d_6): δ = 168.2 (2 C), 149.4 (C), 145.7 (2 C), 135.4 (2 × CH), 132.0 (2 × CH), 131.8 (2 C), 129.1 (2 × CH), 124.8 (2 × CH).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₁₀N₄O₇: 358.0549; found: 358.0551.

N,N'-Carbonylbis(3-nitrobenzamide) (35f)

Off-white powder; yield: 330 mg (92%).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.94 (s, 2 H), 8.71 (br s, 2 H), 8.51– 8.47 (m, 2 H), 8.34 (m, 2 H), 7.86 (t, *J* = 8.0 Hz, 2 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 165.6 (2 C), 149.2 (C), 148.4 (2 C), 134.7 (2 × CH), 134.6 (2 C), 131.3 (2 × CH), 128.2 (2 × CH), 123.4 (2 × CH).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₁₀N₄O₇: 358.0549; found: 358.0547.

N,N'-Carbonylbis(4-nitrobenzamide) (35g)

Off-white powder; yield: 240 mg (67%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.90 (s, 2 H), 8.37 (d, J = 8.7 Hz, 4 H), 8.13 (d, J = 8.7 Hz, 4 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 166.1 (2 C), 150.6 (2 C), 149.2 (C), 138.6 (2 C), 130.1 (4 × CH), 124.5 (4 × CH).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₁₀N₄O₇: 358.0549; found: 358.0552.

N,N'-Carbonylbis(2-methylbenzamide) (35h)

White powder; yield: 245 mg (83%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.40 (s, 2 H), 7.52 (d, J = 7.3 Hz, 2 H), 7.41 (t, J = 7.3 Hz, 2 H), 7.31–7.25 (m, 4 H), 2.37 (s, 6 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 169.8 (2 C), 149.2 (C), 136.9 (2 C), 134.8 (2 C), 131.7 (2 × CH), 131.6 (2 × CH), 128.0 (2 × CH), 126.4 (2 × CH), 20.1 (2 × CH₃).

HRMS: m/z [M]⁺ calcd for C₁₇H₁₆N₂O₃: 296.1161; found: 296.1166.

N,N'-Carbonylbis(3-methylbenzamide) (35i)

White crystalline product; yield: 242 mg (82%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.78 (s, 2 H), 7.77 (br s, 2 H), 7.73 (d, *J* = 7.3 Hz, 2H), 7.49–7.40 (m, 4 H), 2.36 (s, 6 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 167.3 (2 C), 149.5 (C), 138.9 (2 C), 134.5 (2 × CH), 133.0 (2 C), 129.3 (2 × CH), 129.0 (2 × CH), 125.6 (2 × CH), 21.4 (2 × CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₇H₁₆N₂O₃: 296.1161; found: 296.1164.

N,N'-Carbonylbis(3-methylbenzamide) (35j)

White crystalline product; yield: 268 mg (90%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.79 (s, 2 H), 7.84 (d, J = 8.2 Hz, 4 H), 7.34 (d, J = 8.2 Hz, 4 H), 2.35 (s, 6 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 167.1 (2 C), 149.6 (C), 144.3 (2 C), 130.1 (2 C), 130.0 (4 × CH), 128.6 (4 × CH), 21.6 (2 × CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₇H₁₆N₂O₃: 296.1161; found: 296.1166.

N,N'-Carbonylbis(2-fluorobenzamide) (35k)

Milky-white powder; yield: 283 mg (93%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.57 (s, 2 H), 7.76–7.68 (m, 2 H), 7.67–7.57 (m, 2 H), 7.39–7.26 (m, 4 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 164.7 (2 C), 159.8 (2 C, d, $J_{C,F}$ = 252.1 Hz), 148.8 (C), 135.1 (2 × CH, d, $J_{C,F}$ = 8.6 Hz), 131.1 (2 × CH), 125.4 (2 × CH, d, $J_{C,F}$ = 3.8 Hz), 122.4 (2 C, d, $J_{C,F}$ = 12.5 Hz), 117.0 (2 × CH, d, $J_{C,F}$ = 22.1 Hz).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₁₀F₂N₂O₃: 304.0659; found: 304.0668.

N,N'-Carbonylbis(2,6-difluorobenzamide) (351)

Off-white powder; yield: 290 mg (85%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.39 (s, 2 H), 7.59 (m, 2 H), 7.21 (t, J = 8.2 Hz, 4 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 161.6 (2 C), 159.2 (2 C, d, $J_{C,F}$ = 250.1 Hz), 159.1 (2 C, d, $J_{C,F}$ = 250.2 Hz), 148.6 (C), 134.0 (2 × CH, t, $J_{C,F}$ = 10.6 Hz), 113.8 (2 C, t, $J_{C,F}$ = 20.1 Hz), 112.8 (4 × CH, d, $J_{C,F}$ = 23.0 Hz).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₈F₄N₂O₃: 340.0471; found: 340.0474.

N,N'-Carbonylbis[3-(trifluoromethyl)benzamide] (35m)

White solid; yield: 275 mg (68%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.90 (s, 2 H), 8.24 (br s, 2 H), 8.21 (d, J = 7.8 Hz, 2 H), 8.03 (d, J = 7.8 Hz, 2 H), 7.81 (t, J = 7.8 Hz, 2 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 166.1 (2 C), 149.3 (C), 134.1 (2 C), 132.6 (2 × CH), 130.8 (2 × CH), 130.3 (2 × CH, d, J_{CF} = 3.9 Hz), 130.1 (2 C, q, J_{CF} = 32.3 Hz), 125.2 (2 × CH, d, J_{CF} = 3.8 Hz), 124.3 (2 × CH, q, J_{CF} = 272.5 Hz).

HRMS: *m*/*z* [M]⁺ calcd for C₁₇H₁₀F₆N₂O₃: 404.0596; found: 404.0598.

N,N'-Carbonylbis(4-chlorobenzamide) (35n)

White crystalline product; yield: 307 mg (91%).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.80 (s, 2 H), 7.93 (d, *J* = 8.2 Hz, 4 H), 7.63 (d, *J* = 8.2 Hz, 4 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 166.4 (2 C), 149.4 (C), 138.8 (2 C), 131.8 (2 C), 130.5 (4 × CH), 129.6 (4 × CH).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₁₀Cl₂N₂O₃: 336.0068; found: 336.0072.

N,N'-Carbonylbis([1,1'-biphenyl]-4-carboxamide)(350)

Milky-white solid; yield: 359 mg (85%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.92 (s, 2 H), 8.08–8.04 (m, 4 H), 7.89–7.85 (m, 4 H), 7.76–7.73 (m, 4 H), 7.51–7.46 (m, 4 H), 7.43–7.38 (m, 2 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 167.0 (2 C), 149.6 (C), 145.3 (2 C), 139.2 (2 C), 131.7 (2 C), 129.7 (4 × CH), 129.3 (4 × CH), 129.1 (2 × CH), 127.6 (8 × CH).

HRMS: *m*/*z* [M]⁺ calcd for C₂₇H₂₀N₂O₃: 420.1474; found: 420.1474.

N,N'-Carbonyldihexanamide (35p)

White powder; yield: 153 mg (60%).

¹H NMR (400 MHz, DMSO- d_6): δ = 10.83 (s, 2 H), 2.47–2.44 (m overlapped with DMSO, 4 H), 1.49 (quint, *J* = 7.3 Hz, 4 H), 1.29–1.15 (m, 8 H), 0.82 (t, *J* = 6.9 Hz, 6 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 175.5 (2 C), 150.0 (C), 36.9 (2 × CH₂), 31.1 (2 × CH₂), 24.1 (2 × CH₂), 22.4 (2 × CH₂), 14.3 (2 × CH₃). HRMS: *m*/*z* [M]⁺ calcd for C₁₃H₂₄N₂O₃: 256.1787; found: 256.1790.

3-Nitro-*N*-{[3-(trifluoromethyl)benzoyl]carbamoyl}benzamide (35q)

Off-white solid; yield: 325 mg (85%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.93 (br s, 2 H), 8.71 (m, 1 H), 8.48 (m, 1 H), 8.34 (m, 1 H), 8.25 (br s, 1 H), 8.22 (d, *J* = 7.8 Hz, 1 H), 8.04 (d, *J* = 7.8 Hz, 1 H), 7.86 (t, *J* = 8.0 Hz, 1 H), 7.81 (t, *J* = 7.8 Hz, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 166.2 (C), 165.6 (C), 165.5 (C), 149.3 (C), 148.4 (C), 134.7 (CH, q, J_{CF} = 4.8 Hz), 134.1 (C), 132.6 (CH), 131.3 (CH), 130.8 (CH), 130.3 (CH, d, J_{CF} = 2.9 Hz), 130.1 (C, q, J_{CF} = 32.3 Hz), 128.2 (CH), 125.3 (CH, d, J_{CF} = 3.8 Hz), 124.3 (C, q, J_{CF} = 272.2 Hz), 123.4 (CH).

HRMS: *m*/*z* [M]⁺ calcd for C₁₆H₁₀F₃N₃O₅: 381.0573; found: 381.0567.

N-[(4-Chlorobenzoyl)carbamoyl]-2,6-difluorobenzamide (35r)

White solid; yield: 222 mg (66%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.66 (br s, 1 H), 11.41 (br s, 1 H), 7.90 (d, J = 8.2 Hz, 2 H), 7.64–7.57 (m, 1 H), 7.61 (d, J = 8.2 Hz, 2 H), 7.23 (t, J = 8.2 Hz, 2 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 166.5 (C), 161.7 (C), 159.2 (2 C, dd, $J_{C,F}$ = 250.7, 7.2 Hz), 149.0 (C), 138.8 (C), 134.0 (CH, t, $J_{C,F}$ = 10.1 Hz), 131.7 (C), 130.6 (2 × CH), 129.9 (2 × CH), 114.0 (C, t, $J_{C,F}$ = 20.6 Hz), 112.9 (2 × CH, d, $J_{C,F}$ = 23.0 Hz).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₉ClF₂N₂O₃: 338.0270; found: 338.0275.

N-(Benzoylcarbamoyl)nicotinamide (35s)

Off-white solid; yield: 236 mg (88%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.86 (br s, 1 H), 11.83 (br s, 1 H), 9.06 (d, *J* = 1.8 Hz, 1 H), 8.79 (dd, *J* = 4.8, 1.6 Hz, 1 H), 8.27 (m, 1 H), 7.95–7.92 (m, 2 H), 7.66 (m, 1 H), 7.61–7.53 (m, 3 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 166.8 (C), 166.7 (C), 154.0 (CH), 149.5 (CH), 149.4 (C), 136.5 (CH), 133.9 (CH), 133.0 (C), 129.5 (2 \times CH), 129.0 (C), 128.4 (2 \times CH), 124.3 (CH).

HRMS: *m*/*z* [M]⁺ calcd for C₁₄H₁₁N₃O₃: 269.0800; found: 269.0812.

N-(Cinnamoylcarbamoyl)benzamide (35t)

White solid; yield: 48 mg (16%).

¹H NMR (400 MHz, DMSO- d_6): δ = 12.14 (br s, 1 H), 11.25 (br s, 1 H), 7.89 (d, *J* = 7.3 Hz, 2 H), 7.79 (d, *J* = 16.0 Hz, 1 H), 7.68–7.59 (m, 3 H), 7.56 (t, *J* = 7.6 Hz, 2 H), 7.44 (m, 3 H), 6.92 (d, *J* = 16.0 Hz, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 167.8 (C), 165.4 (C), 149.7 (C), 145.5 (CH), 134.4 (C), 133.8 (CH), 133.4 (C), 131.5 (CH), 129.7 (2 × CH), 129.6 (2 × CH), 128.9 (2 × CH), 128.1 (2 × CH), 120.0 (CH).

HRMS: m/z [M]⁺ calcd for C₁₇H₁₄N₂O₃: 294.1004; found: 294.1013.

N-(Hexanoylcarbamoyl)benzamide (35u)

White crystalline product; yield: 190 mg (72%).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.82 (s, 1 H), 11.02 (s, 1 H), 7.85 (dd, *J* = 7.6, 1.4 Hz, 2 H), 7.64 (t, *J* = 7.3 Hz, 1 H), 7.54 (t, *J* = 7.6 Hz, 2 H), 2.46–4.43 (m overlapped with DMSO, 2 H), 1.53 (quint, *J* = 7.3 Hz, 2 H), 1.29–1.18 (m, 4 H), 0.83 (t, *J* = 7.1 Hz, 3 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 176.5 (C), 165.9 (C), 149.5 (C), 133.8 (CH), 133.2 (C), 129.5 (2 × CH), 128.2 (2 × CH), 36.7 (CH₂), 31.1 (CH₂), 24.2 (CH₂), 22.4 (CH₂), 14.3 (CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₄H₁₈N₂O₃: 262.1317; found: 262.1324.

N-(Hexanoylcarbamoyl)-4-methoxybenzamide (35v)

White crystalline product; yield: 252 mg (86%).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.67 (s, 1 H), 11.04 (s, 1 H), 7.84 (d, *J* = 8.7 Hz, 2 H), 7.06 (d, *J* = 9.2 Hz, 2 H), 3.80 (s, 3 H), 2.47–2.44 (m overlapped with DMSO, 2 H), 1.52 (quint, *J* = 7.3 Hz, 2 H), 1.30–1.20 (m, 4 H), 0.82 (t, *J* = 6.7 Hz, 3 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 176.3 (C), 165.4 (C), 163.7 (C), 149.7 (C), 130.4 (2 × CH), 125.1 (C), 114.8 (2 × CH), 56.1 (CH_3), 36.7 (CH_2), 31.1 (CH_2), 24.2 (CH_2), 22.4 (CH_2), 14.3 (CH_3).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₂₀N₂O₄: 292.1423; found: 292.1428.

N-(Carbamoylcarbamoyl)benzamide (37a)

White powder; yield: 360 mg (87%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.34 (br s, 1 H), 10.25 (s, 1 H), 7.92 (dd, J = 7.6, 1.4 Hz, 2 H), 7.62 (t, J = 7.3 Hz, 1 H), 7.50 (t, J = 7.6 Hz, 2 H), 7.45–7.33 (br s, 2 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 168.6 (C), 153.7 (C), 152.5 (C), 133.8 (CH_2), 132.7 (C), 129.2 (2 × CH_2), 128.8 (2 × CH_2).

HRMS: *m*/*z* [M]⁺ calcd for C₉H₉N₃O₃: 207.0644; found: 207.0644.

N-(Carbamoylcarbamoyl)hexanamide (37b)

Off-white solid; yield: 102 mg (51%).

¹H NMR (400 MHz, DMSO- d_6): δ = 10.84 (s, 1 H), 10.08 (s, 1 H), 7.35 (s, 2 H), 2.33 (t, J = 7.3 Hz, 2 H), 1.48 (quint, J = 7.4 Hz, 2 H), 1.28–1.15 (m, 4 H), 0.82 (t, J = 6.9 Hz, 3 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.5 (C), 153.4 (C), 152.4 (C), 36.4 (CH₂), 31.1 (CH₂), 24.3 (CH₂), 22.3 (CH₂), 14.3 (CH₃). HRMS: *m*/*z* [M]⁺ calcd for C₈H₁₅N₃O₃: 201.1113; found: 201.1113.

Methyl (Benzoylcarbamoyl)carbamate (39a)

White solid; yield: 131 mg (59%).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.29 (s, 1 H), 10.94 (s, 1 H), 7.88 (d, *J* = 7.8 Hz, 2 H), 7.62 (t, *J* = 7.3 Hz, 1 H), 7.51 (s, 2 H), 3.68 (s, 3 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 167.3 (C), 153.1 (C), 149.1 (C), 133.8 (C), 132.9 (CH), 129.3 (2 × CH), 128.5 (2 × CH), 53.4 (OCH₃). HRMS: m/z [M]⁺ calcd for C₁₀H₁₀N₂O₄: 222.0641; found: 222.0646.

Ethyl (Benzoylcarbamoyl)carbamate (39b)

Off-white solid; yield: 131 mg (55%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.29 (s, 1 H), 10.89 (s, 1 H), 7.88 (d, J = 7.3 Hz, 2 H), 7.65–7.60 (m, 1 H), 7.57–7.49 (m, 2 H), 4.14 (q, J = 7.3 Hz, 2 H), 1.20 (t, J = 7.1 Hz, 3 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 167.4 (C), 152.5 (C), 149.1 (C), 133.8 (CH), 132.9 (CH), 129.3 (2 × CH), 128.5 (2 × CH), 62.3 (OCH₂), 14.6 (CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₁H₁₂N₂O₄: 222.0641; found: 222.0646.

Syn thesis

A. G. Hernandez et al.

N,2-Dibenzoylhydrazine-1-carboxamide (41a)

Pale yellow powder; yield: 248 mg (88%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.07 (s, 1 H), 10.62 (d, *J* = 1.4 Hz, 1 H), 10.13 (d, *J* = 1.4 Hz, 1 H), 7.97 (d, *J* = 7.3 Hz, 2 H), 7.87 (dd, *J* = 7.6, 1.4 Hz, 2 H), 7.62 (t, *J* = 7.3 Hz, 1 H), 7.56 (t, *J* = 7.3 Hz, 1 H), 7.52–7.46 (m, 4 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 168.6 (C), 166.0 (C), 154.3 (C), 133.6 (CH), 132.7 (2 C), 132.5 (CH), 129.1 (2 × CH), 129.0 (2 × CH), 128.8 (2 × CH), 128.1 (2 × CH).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₁₃N₃O₃: 283.0957; found: 283.0961.

N-Benzoyl-2-hexanoylhydrazine-1-carboxamide (41b)

White crystalline product; yield: 246 mg (89%).

¹H NMR (400 MHz, DMSO- d_6): δ = 10.98 (s, 1 H), 10.04 (d, J = 2.3 Hz, 1 H), 10.00 (d, J = 1.8 Hz, 1 H), 7.93 (d, J = 7.3 Hz, 2 H), 7.60 (t, J = 7.5 Hz, 1 H), 7.48 (t, J = 7.5 Hz, 2 H), 2.10 (t, J = 7.3 Hz, 2 H), 1.49 (quint, J = 7.2 Hz, 2 H), 1.29-1.16 (m, 4 H), 0.82 (t, J = 6.9 Hz, 3 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 171.5 (C), 168.5 (C), 153.7 (C), 133.5 (CH), 132.7 (C), 129.1 (2 × CH), 128.8 (2 × CH), 33.5 (CH₂), 31.3 (CH₂), 25.2 (CH₂), 22.4 (CH₂), 14.4 (CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₄H₁₉N₃O₃: 277.1426; found: 277.1422.

tert-Butyl 2-(Benzoylcarbamoyl)hydrazine-1-carboxylate (41c)

White powder; yield: 231 mg (83%).

¹H NMR (400 MHz, DMSO- d_6): δ = 10.91 (s, 1 H), 9.72 (s, 1 H), 8.97 (s, 1 H), 7.92 (d, J = 7.8 Hz, 2 H), 7.60 (t, J = 7.3 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 1.38 (s, 9 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 168.5 (C), 155.8 (C), 154.7 (C), 133.5 (CH), 132.7 (C), 129.1 (2 × CH), 128.8 (2 × CH), 80.0 (C), 28.6 (3 × CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₃H₁₇N₃O₄: 279.1219; found: 279.1225.

N-Benzoyl-2-tosylhydrazine-1-carboxamide (44a)

White powder; yield: 242 mg (73%).

¹H NMR (400 MHz, DMSO- d_6): δ = 10.93 (s, 1 H), 9.92 (s, 2 H), 7.87 (d, J = 7.3 Hz, 2 H), 7.70 (d, J = 8.2 Hz, 2 H), 7.59 (t, J = 7.6 Hz, 1 H), 7.48–7.44 (m, 2 H), 7.37 (d, J = 8.2 Hz, 2 H), 2.35 (s, 3 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 168.6 (C), 153.6 (C), 144.3 (C), 135.9 (C), 133.7 (CH), 132.3 (C), 130.2 (2 × CH), 129.1 (2 × CH), 128.8 (2 × CH), 128.2 (2 × CH), 21.6 (CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₁₅N₃O₄S: 333.0783; found: 333.0787.

Benzoylcarbamic Heptane-1-sulfonic Anhydride (44b)

White solid; yield: 293 mg (90%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.84 (s, 1 H), 7.94 (dd, J = 8.5, 1.1 Hz, 2 H), 7.65 (m, 1 H), 7.57–7.53 (m, 2 H), 2.33–2.29 (m, 2 H), 1.52–1.45 (m, 2 H), 1.25–1.19 (m, 8 H), 0.81 (t, J = 6.9 Hz, 3 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 167.3 (C), 149.5 (C), 133.9 (CH), 133.0 (C), 129.4 (2 × CH), 128.5 (2 × CH), 52.1 (SO₂CH₂), 31.7 (CH₂), 29.1 (CH₂), 28.9 (CH₂), 25.7 (CH₂), 22.6 (CH₂), 14.5 (CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₂₁NO₅S: 327.1140; found: 327.1138.

(E)-N-[(3,7-Dimethylocta-2,6-dien-1-yl)carbamoyl]-2,3,4-trifluo-robenzamide (46a)

White solid; yield: 122 mg (34%).

¹H NMR (400 MHz, DMSO- d_6): δ = 10.81 (s, 1 H), 8.22 (t, *J* = 5.3 Hz, 1 H), 7.50–7.36 (m, 2 H), 5.18 (t, *J* = 6.6 Hz, 1 H), 5.03 (t, *J* = 6.9 Hz, 1 H), 3.76 (t, *J* = 6.2 Hz, 2 H), 2.04–1.92 (m, 4 H), 1.61–1.59 (m, 6 H), 1.52 (s, 3 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 164.4 (C), 152.9 (C), 152.6 (C, ddd, $J_{C,F}$ = 252.1, 9.6, 2.9 Hz), 149.0 (C, ddd, $J_{C,F}$ = 254.6, 10.5, 3.4 Hz), 139.4 (C, dt, $J_{C,F}$ = 250.2, 15.6 Hz), 138.5 (C), 131.5 (C), 125.3 (CH, dd, *J* = 8.6, 3.8 Hz), 124.4 (CH), 121.5 (C, overlapped d, $J_{C,F}$ = 2.9 Hz), 121.4 (CH), 113.5 (CH, dd, $J_{C,F}$ = 17.7, 3.4 Hz), 39.4 (CH₂), 37.5 (CH₂), 26.4 (CH₂), 26.0 (CH₃), 18.1 (CH₃), 16.5 (CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₈H₂₁F₃N₂O₂: 354.1555; found: 354.1557.

N-[(Adamantan-2-yl)carbamoyl]adamantane-1-carboxamide (46b)

White powder; yield: 212 mg (60%).

¹H NMR (400 MHz, CDCl₃): δ = 9.05 (s, *J* = 7.8 Hz, 1 H), 8.19 (s, 1 H), 3.99 (d, *J* = 8.2 Hz, 1 H), 2.06 (br s, 3 H), 1.93–1.82 (m, 16 H), 1.76–1.60 (m, 10 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 179.8 (C), 153.2 (C), 54.1 (CH), 41.9 (C), 38.6 (3 × CH₂), 37.6 (CH₂), 37.1 (2 × CH₂), 36.3 (3 × CH₂), 32.2 (2 × CH), 32.0 (2 × CH), 28.0 (3 × CH), 27.3 (CH), 27.2 (CH).

HRMS: *m*/*z* [M]⁺ calcd for C₂₂H₃₂N₂O₂: 356.2464; found: 356.2459.

N-[(Benzyloxy)carbamoyl]benzamide (46c)

White powder; yield: 210 mg (78%)

¹H NMR (400 MHz, DMSO- d_6): δ = 10.99 (s, 1 H), 10.84 (s, 1 H), 7.89 (d, J = 7.3 Hz, 2 H), 7.59 (t, J = 7.3 Hz, 1 H), 7.46 (t, J = 7.8 Hz, 2 H), 7.43–7.29 (m, 5 H), 4.87 (s, 2 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 167.8 (C), 153.8 (C), 136.3 (C), 133.4 (CH), 132.6 (C), 129.4 (2 × CH), 129.0 (2 × CH), 128.9 (3 × CH), 128.8 (2 × CH), 77.9 (CH₂).

HRMS: *m*/*z* [M]⁺ calcd for C₁₅H₁₄N₂O₃: 270.1004; found: 270.1008.

Phenyl Benzoylcarbamate (46d)

Off-white solid; yield: 140 mg (58%).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.47 (s, 1 H), 7.92 (dd, J = 7.3, 1.4 Hz, 2 H), 7.61 (tt, J = 7.6, 1.4 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 2 H), 7.45–7.40 (m, 2 H), 7.29–7.19 (m, 3 H).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 166.5 (C), 150.5 (C), 150.4 (C), 135.5 (C), 133.4 (CH), 130.1 (2 × CH), 129.0 (4 × CH), 126.5 (CH), 122.4 (2 × CH).

HRMS: *m*/*z* [M]⁺ calcd for C₁₄H₁₁NO₃: 241.0739; found: 241.0743.

2,3-Dimethoxybenzyl Benzoylcarbamate (46e)

White solid; yield: 233 mg (74%).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.02 (s, 1 H), 7.84–7.81 (m, 2 H), 7.56 (tt, *J* = 7.4, 1.4 Hz, 1 H), 7.46–7.43 (m, 2 H), 7.08–6.98 (m, 3 H), 5.15 (s, 2 H), 3.78 (s, 3 H), 3.74 (s, 3 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 166.4 (C), 152.9 (C), 152.0 (C), 147.4 (C), 133.7 (C), 133.1 (CH), 129.8 (C), 128.9 (4 × CH), 124.5 (CH), 121.9 (CH), 113.8 (CH), 62.5 (CH₂), 60.9 (OCH₃), 56.3 (OCH₃).

HRMS: m/z [M]⁺ calcd for C₁₇H₁₇NO₅: 315.1107; found: 315.1108.

Cinnamyl Benzoylcarbamate (46f)

Off-white solid; yield: 224 mg (79%).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.03 (s, 1 H), 7.84 (m, 2 H), 7.57 (tt, *J* = 7.6, 1.4 Hz, 1 H), 7.49–7.41 (m, 4 H), 7.32 (t, *J* = 7.6 Hz, 2 H), 7.24 (tt, *J* = 7.3, 2.3 Hz, 1 H), 6.74 (d, *J* = 16.0 Hz, 1 H) 6.39 (dt, *J* = 15.9, 6.0 Hz, 1 H), 4.78 (dd, *J* = 6.2, 1.2 Hz, 2 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 166.4 (C), 152.0 (C), 136.4 (C), 134.0 (CH), 133.8 (C), 133.1 (CH), 129.3 (2 × CH), 128.9 (2 × CH), 128.9 (2 × CH), 128.9 (2 × CH), 127.0 (2 × CH), 124.1 (CH), 65.8 (CH₂).

HRMS: *m*/*z* [M]⁺ calcd for C₁₇H₁₅NO₃: 281.1052; found: 281.1056.

Hexyl Benzoylcarbamate (46g)

White solid; yield: 229 mg (92%).

¹H NMR (400 MHz, CDCl₃): δ = 8.11 (br s, 1 H), 7.86–7.78 (m, 2 H), 7.57 (tt, *J* = 7.6, 1.6 Hz, 1 H), 7.49–7.44 (m, 2 H), 4.21 (t, *J* = 6.9 Hz, 2 H), 1.71–1.64 (m, 2 H), 1.40–1.23 (m, 6 H), 0.87 (t, *J* = 6.9 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 164.9 (C), 151.2 (C), 133.1 (C), 133.1 (CH), 129.0 (2 × CH), 127.7 (2 × CH), 66.7 (OCH₂), 31.5 (CH₂), 28.6 (CH₂), 25.5 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₄H₁₉NO₃: 249.1365; found: 249.1366.

S-Hexyl Benzoylcarbamothioate (46h)

White solid; yield: 238 mg (90%).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.68 (s, 1 H), 7.88 (dd, *J* = 8.5, 1.1 Hz, 2 H), 7.59 (m, 1 H), 7.47 (t, *J* = 7.6 Hz, 2 H), 2.79 (t, *J* = 7.3 Hz, 2 H), 1.52 (quint, *J* = 7.3 Hz, 2 H), 1.35–1.23 (m, 6 H), 0.82 (t, *J* = 6.7 Hz, 3 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.6 (C), 166.8 (C), 133.5 (CH), 132.7 (C), 129.1 (2 × CH), 128.8 (2 × CH), 31.3 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 28.5 (CH₂), 22.5 (CH₂), 14.5 (CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₄H₁₉NO₂S: 265.1136; found: 265.1127.

N'¹,N'²-Dibenzoyloxalohydrazide (48a)

Pale yellow solid; yield: 251 mg (77%).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 10.82 (s, 2 H), 10.49 (s, 2 H), 7.86 (dd, *J* = 7.7, 1.8 Hz, 4 H), 7.57 (t, *J* = 7.3 Hz, 2 H), 7.49 (t, *J* = 7.6 Hz, 4 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 165.7 (2 C), 159.1 (2 C), 132.7 (2 C), 132.5 (2 × CH), 129.1 (4 × CH), 128.0 (4 × CH).

HRMS: *m*/*z* [M]⁺ calcd for C₁₆H₁₄N₄O₄: 326.1015; found: 326.1010.

N^{*r*1},*N*^{*r*2}-Bis[(4-methylphenyl)sulfonyl]ethanedihydrazide (48b) Milky-white solid; yield: 400 mg (94%).

¹H NMR (400 MHz, DMSO- d_6): δ = 10.82 (d, J = 2.8 Hz, 2 H), 9.90 (d, J = 3.2 Hz, 2 H), 7.60 (d, J = 8.2 Hz, 4 H), 7.32 (d, J = 7.8 Hz, 4 H), 2.34 (s, 6 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 158.6 (2 C), 143.9 (2 C), 136.8 (2 C), 129.9 (4 × CH), 128.1 (4 × CH), 21.6 (2 × CH₃).

HRMS: *m*/*z* [M]⁺ calcd for C₁₆H₁₈N₄O₆S₂: 426.0668; found: 426.0673.

Acknowledgment

All authors acknowledge CSU COP (summer research training for AGH and GMG) and CSU CTRE (Seed Grant) for generous financial support of this project. The unlimited access to the NMR facility (JEOL 400) in the Department of Chemistry at CSU is acknowledged. Sarah Cramer is acknowledged for the assistance with analyzing the NMR spectra.

References

- Current address: University of South Carolina, S. o. M. G., Greenville, SC 29605, USA.
- (2) Current address: Marshall B. Ketchum University, C. o. P., Department of Pharmaceutical Sciences, 2575 Yorba Linda Blvd., Fullerton, CA 82831, USA. Phone: +1 7148725711; jstec@ketchum.edu.
- (3) Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96, 3147.
- (4) Silverman, R. B.; Holladay, M. W. The Organic Chemistry of Drug Design and Drug Action; Academic Press: San Diego, 2014, 62.
- (5) Ghosh, A. K.; Brindisi, M. J. Med. Chem. 2015, 58, 2895.
- (6) Simplício, A. L.; Clancy, J. M.; Gilmer, J. F. Molecules 2008, 13, 519.
- (7) Blum, J. L. Oncologist 2001, 6, 56.
- (8) Tymoczko, J. L.; Berg, J. M.; Stryer, L. *Biochemistry: A Short Course*; W. H. Freeman and Company: New York, **2015**, 526.
- (9) Bogolubsky, A. V.; Moroz, Y. S.; Mykhailiuk, P. K.; Granat, D. S.; Pipko, S. E.; Konovets, A. I.; Doroschuk, R.; Tolmachev, A. ACS Comb. Sci. 2014, 16, 303.
- (10) Roche, V. F. In *Foye's Principles of Medicinal Chemistry*; Lemke, T. L.; Williams, D. A.; Roche, V. F.; Zito, S. W., Eds.; Walters Kluwer Health/Lippincott Williams & Wilkins: Baltimore, **2013**, 1243.
- (11) (a) Ishikawa, S.; Mochizuki, M. Genes Environ. 2007, 29, 1.
 (b) Roche, V. F. In Foye's Principles of Medicinal Chemistry; Lemke, T. L.; Williams, D. A.; Roche, V. F.; Zito, S. W., Eds.; Walters Kluwer Health/Lippincott Williams & Wilkins: Baltimore, 2013, 1215.
- (12) Harvison, P. J.; Rankin, G. O. In Foye's Principles of Medicinal Chemistry; Lemke, T. L.; Williams, D. A.; Roche, V. F.; Zito, S. W., Eds.; Walters Kluwer Health/Lippincott Williams & Wilkins: Baltimore, **2013**, 740.
- (13) Gallagher, B. B. In *Anticonvulsants*; Vida, J., Ed.; Academic Press: New York, **1977**, 42.
- (14) Saam, E. US Patent 914518A, 1909.
- (15) (a) Diflubenzuron. WHO Specifications and Evaluations for Public Health Pesticides; **2006**; http://www.who.int/whopes/ quality/diflubenzuron_eval_march_2006.pdf. (b) Pete, U. D.; Zade, C. M.; Bhosale, J. D.; Tupe, S. G.; Chaudhary, P. M.; Dikundwar, A. G.; Bendre, R. S. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 5550.
- (16) Lufenuron. FAO Specifications and Evaluations for Agricultural Pesticides; 2008; http://www.fao.org/fileadmin/templates/ agphome/documents/Pests_Pesticides/Specs/Lufenuron08.pdf.
- (17) Woster, P. M. In Foye's Principles of Medicinal Chemistry; Lemke, T. L.; Williams, D. A.; Roche, V. F.; Zito, S. W., Eds.; Walters Kluwer Health/Lippincott Williams & Wilkins: Baltimore, **2013**, 1298.
- (18) (a) Babad, H.; Zeiler, A. G. Chem. Rev. 1973, 73, 75. (b) Bigi, F.; Maggia, R.; Sartori, G. Green Chem. 2000, 2, 140. (c) Kreye, O.; Mutlua, H.; Meier, M. A. R. Green Chem. 2013, 15, 1431.
- (19) (a) Dubé, P.; Nathel, N. F.; Vetelino, M.; Couturier, M.; Aboussafy, C. L.; Pichette, S.; Jorgensen, M. L.; Hardink, M. Org. *Lett.* **2009**, *11*, 5622. (b) El Dine, T. M.; Chapron, S.; Duclos, M.-C.; Duguet, N.; Popowycz, F.; Lemaire, M. Eur. J. Org. Chem. **2013**, 5445.
- (20) (a) Zadeh, E. H. G.; Abo-Dya, N. E.; Sotuyo, A. C.; Ghiviriga, I.; Hall, C. D. *Tetrahedron Lett.* **2013**, *54*, 5467. (b) Spyropoulos, C.; Kokotos, C. G. J. Org. Chem. **2014**, *79*, 4477. (c) Han, C.; Porco, J. A. Jr. Org. Lett. **2007**, *9*, 1517.
- (21) (a) Yoshida, M.; Hara, N.; Okuyama, S. Chem. Commun. 2000, 151. (b) Kim, S. H.; Hong, S. H. Org. Lett. 2016, 18, 212. (c) Sun, D.-L.; Ye, J.-H.; Fang, Y.-X.; Chao, Z.-S. Ind. Eng. Chem. Res. 2016,

55, 64. (d) Shi, F.; Deng, Y.; SiMa, T.; Peng, J.; Gu, Y.; Qiao, B. *Angew. Chem. Int. Ed.* **2003**, *42*, 3257. (e) Díaz, D. J.; Darko, A. K.; McElwee-White, L. *Eur. J. Org. Chem.* **2007**, 4453.

- (22) Wu, C.; Cheng, H.; Liu, R.; Wang, Q.; Hao, Y.; Yua, Y.; Zhao, F. *Green Chem.* **2010**, *12*, 1811.
- (23) (a) Schmidt, E. J. Prakt. Chem. 1872, 5, 63. (b) Stoughton, R. W.; Diacylureas, I. J. Org. Chem. 1938, 2, 514.
- (24) (a) Scholl, R. Ber. Dtsch. Chem. Ges. 1890, 23, 3516. (b) Meyer, V.; Jacobson, P. Lehrbuch der Organischen Chemie: Allgemeiner Theil; Veit & Comp: Leipzig, 1893, 1013–1014. (c) Bayer & Co. German Patent 286 760, 1913; Chem. Abstr. 1916, 10, 1579
- (25) Bornwater, J. T. Rec. Trav. Chim. Pays-Bas 1912, 31, 105.
- (26) (a) Speziale, A. J.; Smith, L. R. J. Org. Chem. 1962, 27, 3742.
 (b) Speziale, A. J.; Smith, L. R.; Fedder, J. E. J. Org. Chem. 1965, 30, 4306. (c) Speziale, A. J.; Smith, L. R. US Patent 3213135, 1965.
 (d) Speziale, A. J.; Smith, L. R. Org. Synth. 1966, 46, 16.
 (e) Speziale, A. J.; Smith, L. R. J. Org. Chem. 1963, 28, 1805.
 (f) Speziale, A. J.; Smith, L. R.; Fedder, J. E. J. Org. Chem. 1965, 30, 4303. (g) Smith, L. R.; Speziale, A. J.; Fedder, J. E. J. Org. Chem. 1969, 34, 633.

- (27) Wolfe, J. F.; Trimitsis, G. B. Can. J. Chem. 1969, 47, 2097.
- (28) Kanji Kubo, K.; Moriy, A. Chem. Lett. 2005, 34, 1250.
- (29) Chawla, H. M.; Pathak, M. Tetrahedron 1990, 46, 1331.
- (30) Dean, F. W. US Patent 6448440 B1, 2004.
- (31) Bjerglund, K.; Lindhardt, A. T.; Skrydstrup, T. J. Org. Chem. 2012, 77, 3793.

Paper

- (32) Cohen, V. I. J. Org. Chem. 1974, 39, 3043.
- (33) Basyouni, M. N.; El-Khamry, A.-M. Bull. Chem. Soc. Jpn. **1979**, 52, 3728.
- (34) Otohiko, T.; Tadashi, I.; Masashi, T. Tetrahedron 1968, 24, 2583.
- (35) (a) Hoggarth, E. J. Chem. Soc. 1949, 1160. (b) Durant, G. J. J. Chem. Soc. C 1967, 92.
- (36) (a) Nenitzescu, C. D.; Necsoiu, I.; Zalman, M. Comun. Acad. Rep. Populare Romine 1958, 8, 659; Chem. Abstr. 1959, 53, 17092.
 (b) McDonald, R. J. Org. Chem. 1959, 24, 1580.
- (37) Elmore, D. T.; Ogle, J. R. J. Chem. Soc. 1958, 1141.
- (38) Stec, J.; Huang, Q.; Pieroni, M.; Kaiser, M.; Fomovska, A.; Mui, E.; Witola, W.; Bettis, S.; McLeod, R.; Brun, R.; Kozikowski, A. P. *J. Med. Chem.* **2012**, 55, 3088.
- (39) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.