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ABSTRACT: A multicomponent catalytic double asymmetric cascade reaction (DACR) for obtaining chlorinated oxindoles and C-
N aminals simultaneously has been described. A calcium VAPOL phosphate complex was shown to catalyzed two 
enantiocontrolled multicomponent reactions utilizing 3-aryloxindoles, N-Boc imines and N-chlorophthalimide, which afforded two 
structurally complex and diverse chiral products with high levels of stereocontrol in one-pot. This transformation is facile and has a 
high degree of both step and atom economy.

KEYWORDS: Multicomponent reactions; Phosphoric acid; Chiral metal phosphate; Enantioselective synthesis; Cascade 
reactions

It is widely known that substitution at the 3-position of 
oxindoles results in a stereogenic center that is found in a high 
number of pharmaceutically active compounds and natural 
products.1 Additionally, chiral geminal diamines are also 
important structural motifs found in important biologically 
active compounds of interest.2 We have achieved the 
preparation of both of these diverse chiral structures with high 
enantiocontrol using a new and unique process whereby one 
chiral catalyst achieves what we term as a double asymmetric 
cascade reaction (DACR).

In the past decades, multicomponent reactions (MCRs)3 
have been developed by a number of conceptually interesting 
and noteworthy approaches. Asymmetric multicomponent 
reactions (AMCRs), in particular the catalytic enantioselective 
MCRs, are a versatile and powerful strategy4 for complex 
bond construction in organic and medicinal chemistry. These 
reactions often feature excellent step and atom economy, 
require simple operations, and are often employed in the 
enantioselective synthesis of natural products and potentially 
biologically active compounds.5 

A double asymmetric cascade reaction or DACR will be 
defined herein as the reaction of at least two or more reactants 
in a single reaction vessel where two different and distinct 
enantiocontrolled reactions are catalyzed by a single chiral 
catalyst.

Scheme 1. General scheme for a double asymmetric 
cascade reaction with three reagents (DACR).

A > B >

C1 C2>
DACR

<

A > C1> * B > C2> *

A DACR can conceivably produce at least two new chiral 
compounds utilizing all of the reactants. In one iteration of this 

reaction, one of the reactants is partitioned to react with each 
of the other two reactants (Scheme 1). However, one could 
envision other possible ways a DACR could occur.

Recently, the synergy of chiral phosphoric acids and 
efficient transition metal catalysts in enantiocontrolled 
reactions have allowed for more diverse synthetic 
tranformations to occur in a single reaction pot.6-10 AMCRs 
have been used effectively in synthesis, due to their bond-
forming efficiency, and excellent stereoselectivity, along with 
the potential to quickly assemble complex products.10,11 
Although there are many advantages for AMCRs, the 
controlled enantioselective cascade of two different reactions 
by only one catalyst in one pot is still one of the remaining 
unmet challenges. In addition to the catalyst, various other 
factors must be taken into consideration for asymmetric 
cascade reactions, such as solvent, substrates and 
intermediates.12 Moreover, it is obviously much more difficult 
to control the enantioselectivity when the substrates combine 
in domino reactions because of the different catalytic 
mechanisms. Therefore, the development of a catalytic 
enantioselective MCR to access more than one optically pure 
chiral product from simple starting materials with a single 
catalyst is highly challenging and potentially desirable.

We envisioned that we could possible match two 
independent enantiocontrolled reactions first discovered in our 
laboratory with each other by utilizing the same chiral 
catalyst.13 In the first reaction we knew our previously 
discovered chlorinations of 3-aryl oxindoles using NCS as the 
chlorine source was robust and highly selective using Ca[PA]2 
metal complexes.13b In the second reaction we thought the 
addition of imides to activated imines previously known to be 
catalyzed by chiral PA’s could occur from the NCS byproduct 
(imide anion).13a In light of the fact that some reactions before 
Ishihara’s 2010 discovery that metal-phosphates could be the 
true catalysts for early reactions assumed to be chiral PA’s,13c 
we theorized that the imide additions could be occurring with 
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a chiral Ca-phosphate catalyst. Matching these two reactions 
with a single catalyst was the basis of our initial investigations 
(Scheme 2).

Scheme 2. The double asymmetric cascade reaction 
(DACR).
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After some development we found that N-Moc-protected 3-
phenyloxindole 1a, tert-butyl (E)-(4-methoxybenzylidene) 
carbamate 2a, and readily available N-chlorosuccinimide 
(NCS) 3a were good substrates. By using catalytic amounts 
(2.5 mol %) of calcium VAPOL phosphate complex Ca[PA]2 
and iPrOH as the solvent (Table 1, entry 1), it was determined 
to that these were the best conditions for a DACR. The data 
obtained from these experiments are shown in Table 1. It was 
determined that by using NCS as the chlorine source in iPrOH, 
the proposed reaction allowed for asymmetric chlorination 
product formation but unfortunately did not produce the 
aminal product. DACR was also not possible when the 
reaction was run in ether (Table 1, entry 2). Then, N-
chlorophthalimide was chosen as an alternate chlorinating 
agent. To our delight, it enabled the desired DACR to proceed. 
Ether was shown to provide conditions for a higher 
enantioselectivity (Table 1, entries 3-8). We also compared 
molecular sieves of different pore size and the ee was further 
improved to 96% and 91% with 4Å MS as an additive (Table 
1, entry 10). The satisfactory yield and enantioselectivity for 
4a and 5a were obtained in ether at room temperature.

We next intended to explore whether the catalyst loading 
could be reduced. It was found that lowering the catalyst 
amounts significantly gave poor results; when 2.0 mol % 
catalyst was used a longer reaction time and lower ee was 
obtained (Table 1, entry 13). Therefore, the subsequent 
reactions used 2.5 mol % catalyst. In order to better realize the 
green and step economy, we evaluated the optimal 
stoichiometry of the three starting materials. Interestingly, 
when the amounts of the three-substrate ratios were change to 
1a/2a/3b = 1:1:1 (Table 1, entry 14), the yield and 
enantioselective of 5a were sharply lower. Therefore, two 
equivalents of tert-butyl imine were used to ensure an efficient 
and selective reaction.14

Table 1. Optimization of reaction conditionsa

N
CO2Me

O

Ph NBoc NHBoc

N

O

O
solvent, rt

Ca[PA]2

N
CO2Me

O

Ph Cl

1a 2a 3a-b 4a 5a
O O

NCl

O

O

R
R

N Cl

O

O

N

O

O

Cl3a 3b

1

2

3
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7

8

9

10

ether

99/90

99/86

99/88

99/85

99/53

99/44

99/49

99/32

99/93

entry Cl
source Additive

4a Yield (%)b

/ee (%)c
5a Yield (%)b

/ee (%)c

11

99/96

12

99/92

-

-

88/87

72/80

81/66

79/64

63/41

74/58

85/79

92/91

86/88

99/91 90/87

13d

14e

99/91

95/94
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78/82

Solvent

3a

3a

3b

3b

3b

3b

3b

3b

3b

3b

3b

3b

3b

3b

-

-

-

-

-

-

-

-

4Å MS

4Å MS

3Å MS

5Å MS

4Å MS

4Å MS

iPrOH

ether

toluene

DCM

ether

ether

ether

ether

ether

THF

EtOAc

CH3CN

iPrOH

aUnless otherwise specified, all reactions were carried out with 
oxindole 1a (0.05 mmol), N-Boc-imine 2a (0.10 mmol), chlorine 
source 3 (0.055 mmol), 40 mg 4Å MS and the catalyst (2.5 mol %) in 
solvent (1.0 mL) at rt for 24h. bIsolated yield. cThe ee values were 
determined by chiral HPLC analysis. dCatalyst loading (2.0 mol %). 
eEquivalent ratio of 1a/2a/3b = 1:1:1.

   Having found the optimal conditions the Ca[PA]2-catalyzed 
DACR was evaluated with N-Moc/Boc-protected oxindoles 1. 
The results are summarized in Scheme 3. Substrate generality 
for the oxindole core arene ring were first examined by the 
reaction with 2a and 3b. Complete conversion of chlorination 
products were observed in all cases, and the corresponding 
enantioenriched aminal products were all well tolerated. The 
electronic nature of the arene substituent on the C-3 and that 
of the oxindole core were evaluated. It was found that R1 
group can be an electron-donating or -withdrawing group and 
still give the products in excellent yields (99%) and up to 86 - 
93% ee values, respectively (Scheme 3, 4a-4c, 4k-4l). 
Substitutions at the C-3 arene can be both electron rich or poor 
for the reactions to be well tolerated, and the desired product 
4d, 4e, 4i and 4j was formed in high yield (99%), and with 
high enantioselectivities of 88%, 96%, 99% and 91%, 
respectively. Notably, substrate 4i allowed for a complete 
conversion and excellent enantioselectivity (99% yield, >99% 
ee) under the same reaction conditions, and when the electron-
withdrawing substituents in 3-alkyloxindoles 2d and 2j were 
used, the corresponding chlorinated products 4d and 4j were 
found in high yields, but with lower ee’s than the substrates 
with electron-donating groups 4e and 4i (Scheme 3, 4d-4e, 4i-
4j). Substrates 2f and 2g, bearing the substituent groups at the 
oxindole core arene ring and at the C-3 arene simultaneously, 
also gave the corresponding products 4f and 4g, respectively, 
with good enantioselectivities. These seemed to have no 
obvious effect on the ee with only a slightly lower 
enantioselectivity (91% and 92%). The absolute 
configurations of compounds 4a - 4r were found to be “(S)” 
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by comparison of the observed optical rotation values and 
HPLC spectrum to the reported literature values.13b, 15

Scheme 3. Variation of N-Moc/Boc oxindole substrate for 
the Ca[PA]2 catalyzed DACRa
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aReaction condition: all reactions were carried out with oxindole 1a-h 
(0.05 mmol), N-Boc imine 2a (0.10 mmol), chlorine source 3b (0.055 
mmol), 40 mg 4Å MS and the catalyst (2.5 mol%) in ether (1.0 mL) at 
rt for 24h. bIsolated yield. cThe ee values were determined by chiral 
HPLC analysis. 

   The reaction scope of imine substrates was next examined in 
Scheme 4. The reactions progressed well and gave products 4 
and 5 in good yield and moderate to good ee using the general 
conditions already established. The chlorination products were 
available directly and in high yield along with excellent 
selectivity in all cases, and enantioenriched aminal products 
were all tolerated well. There appeared to be a good reaction 
scope with respect to aryl substituted imines for the DACR. A 
series of aryl-substituted imines were synthesized and 
performed for the double asymmetric cascade reaction, 

respectively. Both the electron-donating (5m-5o) and electron-
withdrawing substituents (5q-5r) and no substituent (5p) on 
the arene ring were equally efficient using the reaction 
conditions. To our delight, Electron donating groups in the 
ortho (Scheme 4, 5o), the meta (Scheme 4, 5m), or the para 
(Scheme 4, 5n) position were good substrates for the reaction, 
and the products were found in good yields (87%-90%) and ee 
values, 87% - 89% respectively (Scheme 4, 5m - 5o). In 
addition, electron-withdrawing groups (Scheme 4, 5q - 5r) in 
the para-position of the substrate gave excellent results. The 
absolute configurations of 5a-5r were determined to be “(R)” 
by comparing the observed optical rotation values and HPLC 
spectrum to that reported in the literature.[13a, 2b]

Scheme 4. Variation of N-Boc imine substrate for the 
Ca[PA]2 catalyzed DACRa
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aReaction condition: all reactions were carried out with oxindole 1a 
(0.05 mmol), N-Boc imine 2m-r (0.10 mmol), chlorine source 3b 
(0.055 mmol), 40 mg 4Å MS and the catalyst (2.5 mol%) in ether (1.0 
mL) at rt for 24h. bIsolated yield. cThe ee values were determined by 
chiral HPLC analysis.

   Due to insights in our previous studies with the individual 
reactions in this cascade, we believe the chiral chiral calcium 
phosphate complex binds to activate both the nucleophile and 
the electrophiles in each case, and the proposed reaction 
pathway and transition state is shown in Figure 1. Initially, the 
centralized chelation sphere of calcium and the carbonyl 
oxygen’s of the Moc group (1a) and chlorine source (3b), 
increase the Brønsted basicity of the chiral phosphate and this 
allows for the oxindole tautomer to also be activated. These 
interactions together with the hydrogen-bonding interactions 
of the oxindole tautomer O-H group and the P=O group of the 
catalyst can give a rationale for the stereoselectivity of the 
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reaction. The imide anion from the chloride source provides 
for the subsequent asymmetric aminal formation again via the 
catalysis of Ca[PA]2, to provide 5a. The reaction progress was 
monitored by the removal of aliquots that were subsequently 
analysed by 1H NMR. This analysis showed that the 
chlorination product was built-up significantly before the 
presumably slower N-H phthalimide addition to the imine was 
observed. In consideration of this transition state, the Lewis 
acidic Ca[PA]2 could activate the imine via mono-activation 
(TS II). The chiral environment created by the Ca[PA]2 
backbone and the bulk of the ligand, thus providing the 
experimentally observed enantioenriched products (S)-4a and 
(R)-5a.
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Figure 1. Possible mechanism for the DACR.

In conclusion, by using chiral calcium VAPOL phosphate 
catalyst, we establish what we believe is the first firm case for 
a DACR for the highly enantioselective preparation of both 
chlorinated 3-aryloxindoles and geminal diamines. This 
cascade reaction efficiency is conducted with mild conditions 
at room temperature, and with a relatively low catalyst loading 
(2.5 mol%). This DACR requires only readily available 
starting materials, has good functional group tolerance, and the 
atom-economy is excellent. In addition, our insight might 
allow for the future development of other asymmetric 
multicomponent/cascade type reactions. Further work into 

other possible cases where DACR can occur is currently 
underway.
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