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ABSTRACT
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The high regio- and stereoselectivity have been obtained from the allylic substitution reaction catalyzed by palladium(ll) species. From allylic
alcohols, one-pot reaction with tosyl isocyanate followed by palladium(ll)-catalyzed allylic substitution gives N-tosyl (E)-allylic amines in high
yield. The substitution occurs only at the y-position of the 1- or 3-substituted allylic alcohols.

Allylic amines are important synthetic intermediates for the challengée’ In general, a sterically demanding group at one
preparation of a number of biologically active molecules. terminus of the allylic system usually blocks the incoming
In recent years, the Pd(0)-catalyzed amination of allyllic nucleophile, or an electron-withdrawing group at an allylic
substrates has been extensively studied for its relevance tacarbon atom has been used to change the electronic density
organic synthesi$.However, the two terminal carbons of of the two carbon atoms of the-allyl intermediaté. Herein,
thesr-allyl palladium complex are nearly equivalent, and the

_nUde()ph"'C substitution usually gave a mixture of F€gIo- (1) (a) Johannsen, M.; Jargensen, K Ghem. Re. 1998 98, 1689. (b)
isomers (Scheme 2£)Thus, controlling of regioselectivity fggékhéz;% B(.;)C\P;\;':\e}bozun\i(, R.l;< Laurené A.E;SMis%n, P.igl\éifti,l%%the(zi)s
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we report a facile, highly regio- and stereoselective method examples of facile reduction of Pd(Il) to Pd@Y.However,

for the synthesis di-tosyl allylic amines directly from allylic
alcohols via divalent palladium-catalyzed intramolecular
allylic substitution.

it is inconsistent with the fact that the control experiment
only in the presence of Pd(OAg)ithout LiBr in DMF gave
no reaction. In addition, in a parallel study, when compound

In our laboratory, we have developed a series of regio- 1@ (1 mmol) was subject to a Pd catalytic system (Pd(QAc)
and stereoselective reactions based on Pd(ll)-mediated nu{0.05 mmol)) in the presence of LiBr (4 mmol) and CuBr

cleopalladation of alkynes and tandem carboarbon bond
coupling® With these previous developments, we explored

(8 mmol) in DMF (5 mL),3a was the sole product in 98%
yield. Furthermore, the reaction dfa (1 mmol) could

the intramolecular nucleopalladation of alkenes by nitrogen proceed with Pd(OAg)(0.05 mmol) and LiBr (4 mmol)
nucleophiles and wished to achieve a tandem nucleopalla-Without the presence of CuBin DMF (5 mL) at room

dation—conjugate addition reaction (Scheme 2, a). However,
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when we attempted the reaction &h (0.1 mmol) with
acrolein (1.5 mmol) in the presence of Pd(OA¢).005
mmol) and LiBr (0.5 mmol) in THF, we only obtained the
compounds3a (yield: 57%) and4 (yield: 30%) instead of
2. The formation o may be explained by the direct Michael
addition of 1a to acrolein; but the formation o8a was

somewhat unexpected in Pd(ll)-catalyzed reactions. Usually,

the transformation ofla to 3a could be speculated by a
Pd(0)-catalyzed allylic cleavage followed by decarboxylation
and nucleophilic substitution by tosylamide anion. This

appeared a reasonable supposition in light of the numerou
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temperature to produ@ain 95% yield. No reaction occurred

in the absence of Pd(ll) catalyst even at 1UD. These
observations led us to believe that the reaction is actually
catalyzed by Pd(ll) instead of Pd(0).

To further clarify the reaction mechanism, we studied the
substitution reaction witlD-[but-(22)-enyl]tosylcarbamate
(1b) (Scheme 3). Fronib (1 mmol), a Pd(0) [Pd(OAg)

Scheme 3
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(0.05 mmol), PP§ (0.2 mmol)] catalyzed allylic substitution
leads to3b and E)-3eas the main products together with a
minor amount of unidentified produét.While under
Pd(OAc)—LiBr catalysis, only the/-substituted produ@b
was isolated in 96% yield.

It is significant that theN-tosyl carbamates can be prepared
in situ from the corresponding allylic alcoh®Bsnd undergo
allylic substitution without isolation. For example, allyl
alcohol5a (1 mmol) reacted with TSNCO (1.1 mmol) in THF
for 20 min; after THF was removed, the catalytic reaction
was carried out in DMF in the presence of Pd(OAE).05
mmol) and LiBr (4 mmol). This procedure afford&a in
96% vyield. A wide range of 1-, 3-substituted or 1,3-
disubstituted Z)-allylic alcohols were examined under the
same conditions (Scheme 4, Table 1), and they all gave
exclusively they-substitution product¥’

Scheme 4
1 1 Pd(OAC),
RZR — o3 TsNCO RZR — o3 LiBr rR?2 R3
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5 1 3
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Table 1. Pd(ll)-Catalyzed Synthesis &f-Tosyl (E)-Allylic
Ainest

1,TsNCO, THF
2, Pd(OAc); | LiBr
DMF
substrate product
entry 5 R1 R? R3 3 yield (%)P

1 5a H H H 3a 95
2 5¢c H H n-CsHg  3c 80
3 5d Ph H H 3d 98
4 5e Me H H 3e 96
5 5f n-C5H11 H H 3f 85
6 5g Ph H Ph 39 98
7 5h Me Me H 3h 58

aReaction condition:5 (1 mmol) reacted with TSNCO (1.1 mmol) in
THF for 20 min; then THF was removed, the residue was dissolved in
DMF, and then Pd(OAg)(0.05 mmol) and LiBr (4 mmol) were added and
stirred at room temperature (for entry 1) or 100 (for entries 2-7).
b|solated yields.

[3,3]-Sigmatropic rearrangements of allylic acetate is
known to be catalyzed efficiently by PdQPhCN).* In
addition, conversion of S-allylthioimidates inkd-allylthio-
amide, and allylimidates into allylamides, are also catalyzed
by Pd(l1)1®> The mechanism of the rearrangement reaction
of allylic acetate was explained by the oxypalladation of the
double bond to form a six-membered cyclic Pd(ll) intermedi-
ate. Resembling Pd-catalyzed [3,3]-rearrangement, we pro-
pose another plausible mechanism of the reaction as route b
in Scheme 5.

It is noteworthy that the reaction is highly stereoselective.
From 1-substituted or 1,3-disustituted allylic carbamates
(Table 1, entries 36), the reaction gives onli-tosyl (2E)-
allylic amines: noZ)-products can be detected By NMR
and HPLC. This feature allows for convenient selective
synthesis of E)-allylic amines from readily available 1-sub-
stituted or 1,3-disustituted allylic alcohols. The higB){
selectivity can be explained by the favorable conformation
of the six-membered cyclic intermediate and the highly
specific trans-heteroatom eliminatid' (Scheme 6): The

On the basis of these results, we speculate that the reactio_

proceeds via a Pd(ll)-mediated 3 substitution-decarbox-
ylation mechanism (Scheme 5, a): Compouba first
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dissociates to give anio® The nitrogen anion attacks the
double bond activated by Pd(ll), leading to a cyclic inter-
mediate7. f-Heteroatom elimination assisted by bromide
ionst! then gives8, which spontaneously releases £©
afford 9. The proton exchange betwe8randla gives the
neutral product3a and anion6, which enters a second
catalytic cycle. The preferential elimination of theoxygen-
containing group of results in the high regioselectivity of
the reaction.

(8) A typical experiment showed that the products contained 37% of
3b, 51% of E)-3e and other unidentified products as characterized by
HPLC.

(9) Tamaru, Y.; Kimura, M.; Tanaka, S.; Kure, S.; Yoshida,Eill.
Chem. Soc. Jpri994 67, 2838.

(10) Using the [E)-allylic alcohol as the substrate, no expected product
formed.
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nucleopalladation ofd—g can lead to two possible inter-
mediates in chair conformatio6A and6B. With the bulky
groups, Pd group, Ts, and R in equatorial positids,is
more stable thaBB. The cyclization preferentially give&A,
and thentrans-elimination of Pd-OCO—-R leads to E)-
double bond.

(11) The role of bromide ions might be ascribed to (a) the presence of
excess bromide ion makes the Pd coordinatively saturated ang-lthe
elimination not so feasibl& (b) The coordination of bromide ion with Pd
increase the electron density of Pd, resulting in the weakening of the
carbon-palladium bond3
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Organomet. Chenil994 482 191. (b) Ryabov, A. D.; Sakodinskaya, .-
K.; Titov, V. M.; Yatsimirsky, A. K. Inorg. Chim. Actal981, 54, L195.

(c) Ryabov, A. D.; Sakodinskaya, |.-K.; Yatsimirsky, A. Kiorg. Chim.
Acta 1986 116, L55.
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Henry, P. M.J. Am. Chem. Sod 972 94, 5200.
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An important application of the current reaction is the alcohols, one-pot reaction with tosyl isocyanate followed by
preparation of conjugated-tosyl dienylamines. From 1,4- divalent palladium-catalyzed allylic substitution givégosyl
pentadien-3-ol, which can be easily prepared from acrolein allylic amines in high yield, and high stereo- and regio-
and vinyl Grignard reagent\-tosyl (2E)-2,4-pentadienyl-  selectivity as compared with the drawback of regioselectivity
amines can be synthesized in high yield and stereoselectivityof allylic substitution catalyzed by Pd(0).
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