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Titanium(lV) benzylidenes bearing a masked nitrogen nucleophile in the ortho position converted Merrifield resin-bound esters into enol
ethers. An unusual nitrogen protecting group, N-silylated tert-butyl carbamate, was employed. One percent TFA released N-Boc indoles in
high yield and purity. N-Methyl indoles were also prepared. Cyclative termination was not required to release the chameleon catch. The first
example of a carbonyl group within a titanium alkylidene reagent is reported.

A variety of titanium reagents will alkylidenate esters to give

Tebbe, Petasis, Grubbs, and Takeda are believed to be

enol ethers. The most commonly used are those developeditanocene(lV) alkylidenes (Gfi=CR'R?, 1). Tebbe and

by the groups of TebBéand applied by Pine, Grubbs, Evans
and co-worker, Petasis, and Takat! although Grubbsg,
Matsubaré,and Takedahave introduced interesting alterna-

Grubbs reagents allow only methylenation of esters via active
speciesl (R! = R? = H). The method of Petasis is more
general and involves generating titanium alkylideag&R*

tives. The reactive agents produced under the conditions of= H, RZ2 = H,% aryl 3¢ silyl*®) by thermolysis of dialkyl-
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titanocenes. However, organolithiums or Grignard reagents
are used to make the dialkyltitanocenes, and this limits the
functionality that may be present in the alkylidenating reagent
1. Furthermore, the method does not allow the generation
of titanium alkylidenes that have hydrogen atofhto the
titanium atom in active speciek In Takeda's method,

a wide range of titanium alkylidenes (with or without
hydrogen atomg to the titanium atom) can be generated
by reducing thioacetals with a low valent titanium complex,

(6) Matsubara, S.; Ukai, K.; Mizuno, T.; Utimoto, IKChem. Lett1999
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T. J. Org. Chem1998 63, 7286-7288.



Cp:Ti[P(OEt)y],. Takai reagent$which are probably 1,1-  affect any unreacted este2s thus ensuring high purity of
bimetallics, have a similar generality but have to be made the compounds released. This “chameleon catch strategy”
from 1,1-dihaloalkanes, which are synthetically less acces-was introduced by Barrett and co-workétsyho used the
sible than thioacetals. Tebbe reagent to methylenate ester links to the resin.

We envisaged using Takeda’s method to generate func-However, their choice of reagent precluded the introduction
tionalized titanium alkylidene reagents that would allow new of any other functionality in the alkylidenation step. Our
synthetic strategies involving conversion of esters into enol strategy, on the other hand, relies on the introduction of a
ethers. Current strategies employ alkylidenation of esters masked nucleophile by the titanium reagent. Our solid-phase
followed by sigmatropic rearrangement (particularly useful synthesis of bicyclic heterocycles would be traceless in that,
in the synthesis of macrocycles)jng-closing metathesis  theoretically, substituents are allowed at any site and would
(useful in the synthesis of polyethefsf, acid-induced be classified as using a@sp*-Csp? (benzofuran) oNsp*-
rearrangemerit, or another reaction of the enol ether Csp? (indole) linkert®

moiety*? However, none of these strategies relies on the  Having successfully used the above route to make ben-
titanium I’eagent introducing any functionality other than the Zofuransl;e we now report its app“cation to the So”d_phase

enol ether. In their seminal papéivortimore and Kocienski

synthesis of indole¥. Readily availableortho-nitrobenzal-

used a Takai reagent bearing a masked oxygen nucleophilqjehydesg were converted into thioaceta®s and the nitro
in a synthesis of spiroketals. We have designed a similargroup was reducédl to give anilines10 (Scheme 2).
strategy for the synthesis of aromatic heterocycles on solid However, we failed to generate an effective alkylidenating

phase (Scheme 1). Resin-bound estarmuld be benzylide-

Scheme 1. General Strategy
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nated with titanium benzylidene3 having a masked nu-
cleophile in theortho position. The acid-stable est&svould
thus be converted into acid-sensitive enol ethérsThe

masked nucleophile would then be unmasked to give enol

ethers 5. Treatment with acid should then lead to the
formation of oxonium ior6 and release from the resin with
concomitant cyclization to give bicyclic heterocycléslf
Merrifield resin is used, treatment with mild acid would not
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agent from anilinel0. The key challenge was then to find a
suitable nitrogen protecting group that would be unaffected
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Scheme 2. Synthesis of Thioacetal Substrates
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by both the titanium alkylidene moiety and by the low-valent
titanium used to generate it. The protecting group should

also be easy to remove, and any side-products generate

during deprotection should be volatile. Therefore, anilines
10 were converted intoert-butyl carbamated 1 using Boc
anhydride'® Aniline 10awas also diprotected to give imide
12ausing sodium hexamethyldisilazide as base. Methylation
of carbamatellawas accomplished by treating its lithium
salt with methyl iodide.

Separately, each of the thioacetalss, 12a and13awere
added to 4 equiv of Gi[P(OEt)], in THF, and the resulting
solutions were added to IRORI macrokans containing 0.2
equiv of estefl4x (0.28 mmol per kan of ester derived from
Merrifield resin with a loading of 1.86 mmold). The kans
were washed (5x THF, 5 x alternately MeOH and
dichloromethane, MeOH, and finally ether), dried under
vacuum, and then treated with 1% trifluoroacetic acid (TFA)

Scheme 3. Synthesis ofN-Methyl Indoles
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after 14 and 2.5 h, respectively. The crude mixture from
thioacetallla consisted mainly oN-Boc toluidine18 and
thiol 19 in a 2:9 ratio, while that from thioacetdl?a was
mainly toluidinesl8 and20 and carboxylic aci@lin a 1:1:9
ratio (Figure 1). The toluidine$8 and20 were presumably
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Figure 1. Products and intermediates from thioacetdls—12a

formed from titanium benzylidenes. Compourifand21
are probably the result of monoinsertion of titanium(ll) into
thioacetalsllaand12ato give titanium(IV) complexeg2
and 23, respectively. Intramolecular deprotonation of car-

in dichloromethane. The solvent was then removed, and thebamate22 would account for the formation of thidl9. On
products resulting from each attempted benzylidenation werethe other hand, migration of thert-butoxycarbonyl group

identified. Thioacetal§laand12agave only trace amounts
of impure N-Boc indole, while thioacetal3a gave ketone
16axcleanly in good yield (with respect to resin-bound ester,
Scheme 3), presumably via titanium benzylideh®a
Clearly, theN-Boc group is not very susceptible to ben-

zylidenation. When the procedure was repeated and the

resulting ketonel6ax was immediately treated with 20%
TFA in dichloromethane, indol&7axwas the sole product
following aqueous workup (see Supporting Information for
IH NMR spectrum). In the same way, resin-bound estr
was converted into indol&7ay.

We then investigated the failed reactions. Thioacetaks
and12awere added to 4 equiv of Gpi[P(OEt)], in THF,
and the reactions were quenched2 M hydrochloric acid

(19) Kondo, Y.; Kojima, S.; Sakamoto, J. Org. Chem1997, 62, 6507~
6511.
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from the nitrogen atom of comple2Bto the benzylic carbon
atom, followed by loss of théert-butyl group (presumably
under the acidic workup conditions), would account for the
formation of compoun@®l.

To prevent intramolecular proton transfer, carbamates
1la—cand24 (prepared from phendlldin 83% yield using
TMSCI, pyridine) were deprotonated and silylated to give
N-silylated specie&5 (Scheme 4)N-Silylation as a method
of protecting carbamates (duringlithiation) has only been
reported recentl§? but N-silylation followed by thermolysis
is a well-established method of generating isocyariafeke
N-silylated carbamate®5 were added to 4 equiv of Gpi-
[P(OEt)y]; in THF, and the resulting reagents were used to
benzylidenate estefsix (R = PhCHCH,), 14y (R' = Ph),
and14z(R = Me). The resin was washed and dried as above
and then treated with 1% TFA to give theBoc indoles26

77



Scheme 4. Synthesis ofN-Boc andN-H Indoles
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indoles a cyclative termination mechanism cannot be ruled
out.

in good yields and high purities (excepbbx, 26by, and Acknowledgment. We thank EPSRC and GSK for
26b2) after removal of solvent (Figure 2, see Supporting fynding and Polymer Laboratories Ltd. for microanalysis of
Information for*H NMR spectra of the compounds as they gsins.

are released from resin (i.e., without purification)).

There was significant spontaneous deprotection of the Supporting Information Available: *H NMR spectra of
N-Boc 7-methoxyindole&6bx, 26by, and26bz, so they were ~ N-Boc indoles26 as released from resin, indol@3 after
fully deprotected by treating with 20% TFA in dichlo- solvent removal, andN-methyl indoles17 after aqueous
romethane for 1 h. Free indolggbx and27bywere isolated workup (with no further purification). This material is
in high purity (Figure 2 and Supporting Information) available free of charge via the Internet at http://pubs.acs.org.
following solvent removal, but the deprotection conditions o ;60540
led to substantial decomposition in the case of 2-methylindole

27bz
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