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Syntheses of Novel Sulfated Glycans for Cell-Adhesion Interaction Studies

Vipin Kumar, Robert D. Locke, Khushi L. Matta*

Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA

Fax +1(716)8458768; E-mail: khushi.matta@roswellpark.org
Received 23 April 2009

Abstract: Stereoselective syntheses of two 3-O-Gal sulfated trisac-
charides GalNAcB(1-4)[(3-SE)-Gal]p(1-3)GalNAca-O-All and
GalNAcB(1-4)[(3-SE)-Gal]p(1-4)GlcB-O-All were accomplished
through the use of three novel glycosyl acceptors, namely, allyl
4,6-0-benzylidene-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-
a-D-galactopyranoside, methyl 2,6-di-O-benzoyl-3-O-naphthylme-
thyl-a-D-galactopyranoside and allyl 6-O-acetyl-2-O-benzoyl-3-O-
naphthylmethyl-B-D-galactopyranosyl-(1—4)-2,3,6-tri-O-benzoyl-
B-D-glucopyranoside. These sulfated trisaccharides were expected
to act as potential reference compounds for human B4GalNAc
transferase and can be effectively used as antigens when linked to
KLH.
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thesis, sulfated glycans, sulfotransferases

Biosynthesis of oligosaccharides, polysaccharides, and
glycoconjugates is mainly carried out by a large family of
enzymes known as glycosyltransferases (Glycosyl-Ts).!
Aberrant glycosylation and overexpression of carbohy-
drate structures leads to the growth of tumor cells with dif-
ferent adhesion properties.? It is a well-established fact
that the changes in the structures of cancer-associated gly-
cans are driven by the expression and activity alterations
of Glycosyl-Ts involved in their biosynthesis.® Since, sul-
fotransferases (Sulf-Ts) and sialyltransferases (STs) can
compete with GTs for the same sites during an assembly
of glycans,* it became important to study the role of both
the enzyme families in the development of malignant
cells. Based on this principal, over the years, the prime ob-
jective of our laboratory has been to develop the chemis-
try for understanding the enzymic machinery of glycans,
especially O-glycans.*® It is evident from the literature
reports® and our previous biochemical investigations® that
Sulf-Ts are highly specific enzymes which incorporate a
sulfate ester (SE) to a specific position of a specific oli-
gosaccharide acceptor. For instance, two distinct types of
Gal:3-O-sulfotransferases (Gal3Sulf-Ts) in tumor tissues
and cancer cells demonstrated distinctive acceptor prefer-
ences. Enzymes from breast cancer cells prefer to sulfate
3-O position of Gal in the Galf1—3GalNAca moiety of
the mucin core 2 structure. In contrast, enzymes from co-
lon cancer cell lines and colon tumor tissues prefer to act
on the GalB1—4GIcNAcP moiety.’®¢ These studies have
led us to identify whether human B4GalNAc-transferase
has the capability to generate GalNAcP(1-4)[(3-SE)-
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Gal]p sequence. Herein, we report the syntheses of
GalNAcB(1-4)-[(3-SE)-Gal]B(1-3)GalNAca(1-0)-All (1)
and GalNAcB(1-4)-[(3-SE)-Gal]B(1-4)GlcB(1-0)-All (6)
as potential reference compounds that can be effectively
used as antigens when linked to keyhole limpet hemocya-
nin (KLH) under conventional conditions.”

As envisaged from the retrosynthetic scheme (Figure 1),
coupling between 3,4,6-tri-O-acetyl-2-deoxy-2-(2,2,2-
trichloroethoxycarbonylamino)-B-D-galactopyranosyl-
(1—-4)-2,6-di-O-benzoyl-3-O-naphthylmethyl-D-galacto-
pyranosyl trichloroacetimidate (2) and allyl 4,6-O-ben-
zylidene-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-
a-D-galactopyranoside (3) would yield the desired sulfat-
ed trisaccharide 1. The disaccharide donor 2 could in turn
be obtained by the reaction of known 3,4,6-tri-O-acetyl-2-
deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-D-galacto-
pyranosyl trichloroacetimidate (4)® with methyl 2,6-di-O-
benzoyl-3-0-naphthylmethyl-a-D-galactopyranoside (5).
Similarly, synthesis of second target molecule 6 necessi-
tates the use of N-trichloroethoxycarbonyl (N-Troc) Gal
imidate 4 and suitably protected lactose acceptor 7 having
free 4’-OH accessible for glycosylation reaction. In order
to introduce acetamido groups in the final trisaccharides 1
and 6 (examples of B-glycosides), N-Troc-protected glyc-
osyl donor 4 was preferred as it is known to furnish B-gly-
cosides in high yield with good B-stereoselectivity.®® Also
their transformation into acetamido group is straightfor-
ward.'® To accomplish the introduction of sulfate group at
the 3’-OH of Gal unit of trisaccharides 1 and 6, protection
with 2-naphthylmethyl (NAP) group proved to be highly
suitable for our purpose owing to its stability under vari-
ous reaction conditions, viz. acetal hydrolysis, glycosyla-
tion, and ester deprotection. Also, its chemoselective
removal under DDQ oxidative conditions as required in
the later part of our synthetic strategy is an added advan-
tage.!! We opted to make the allyl glycoside derivatives 1
and 6 because of their ease in attachment to gold nanopar-
ticles and KLH following standard protocols.”!> We in-
tend to utilize these compounds for developing
monoclonal antibodies and for discovery of carbohydrate-
binding aptamers.

Syntheses of starting materials required for the construc-
tion of sulfated trisaccharide 1 is depicted in Scheme 1.
4,6-0O-Benzylidene protection of allyl a-D-GalNAc (8)
followed by hydrolysis of its acetamido group provided
amine 9 in 70% yield over two steps.'? Troc protection of
9 using TrocCl and NaHCO; afforded the required accep-
tor 3 in reasonable yield. The poor yield of 3 may be at-
tributed to the low solubility of free amine 9 in the

Downloaded by: Deakin University. Copyrighted material.



2634 V. Kumar et al. LETTER
AcO _OAc
AcO _OAc o
(0] AcO
AcO iﬁ{o OBz TrocHN
TrocHN 0 OC(NH)CCls
HO _OH NAPO 4
(0]
BzO — +
H
HO O __oH OH_oH 2 OC(NH)CClg o
AcHN & . o j . 0Bz
-0 — Ph (0]
NaO3S HO%% AcHN o NAPO
OAll 0 Bob
1 o) OMe
HO 5
TrocHN OAll
3
HO _OH
HO _OAc OBz
O OH o o
AcHN &/ — 4 + NaPO OBZO OAll
NaOzS~ OAll BzO 0Bz

7

Figure 1 Retrosynthetic analysis of target sulfated trisaccharides 1 and 6

reaction medium (water). Attempts to improve the yield
of 3 in the above reaction are ongoing. Similarly, 3-O-
NAP galactoside 5 was prepared from commercially
available methyl a-D-galactoside (10). Reaction of 10
with NAPBTr in presence of Bu,NI and Bu,SnO brought
about the regioselective introduction of NAP to afford
methyl 3-O-NAP-o-D-galactoside (11) in a very high
yield (96%).!! Tt is worth mentioning here that the 3-O-
NAP group could be chemoselectively removed at the
final stage of the synthetic strategy to endure sulfation.
Selective benzoylation at 2- and 6-OH of 11 was success-
fully achieved using BzCl (2 equiv) in pyridine at —30 °C
to provide the desired acceptor 5 in 80% yield
(Scheme 1).

With the required starting materials in hand, we turned our
attention on the synthesis of one of the target molecules 1.
Condensation of alcohol 5 with imidate 4 was performed
under standard glycosylation conditions using TMSOTf

OAll OAIl
8 9
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Scheme 1 Preparation of the key building blocks 3 and 5. Reagents
and conditions: a) i) PhACH(OMe),, PTSA, DMF, r.t., overnight; ii)
30% KOH solution, 1,4-dioxane-EtOMe (5:3 v/v), refluxed at
120 °C, 18 h (70%, 2 steps); b) TrocCl, NaHCO;, Et,0-H,O (1:1
v/v), r.t., 1.5 h (40%); c¢) Bu,SnO—dry benzene, refluxing, 4 h, then
NAPBr, n-Bu,NI, 80-85 °C, 18 h (96%). d) BzCl, pyridine, =30 °C,
6 h (80%).
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as the catalyst'* to provide the desired B-(1—4) linked dis-
accharide 12 in 86% yield (Scheme 2). In order to synthe-
size disaccharide donor 2, compound 12 was first
subjected to acetolysis'> with AcOH-Ac,0-H,SO, fol-
lowed by removal of the resulting anomeric acetate by hy-
drazinium acetate'® to afford the 1-hydroxy compound 13
in a good yield of 75% over two steps. Compound 13 upon
further treatment with trichloroacetonitrile in the presence
of DBU® gave the desired trichloroacetimidate 2 in a 78%
yield. Under the similar conditions as mentioned for the
synthesis of 12, coupling between 2 and 3 was carried out
successfully to obtain the B-(1—3) linked trisaccharide 14
in moderate yield. Subsequent removal of 4,6-O-ben-
zylidene ring of 14 followed by conversion of NHTroc
into NHAc!® afforded 15 in 69% over three steps
(Scheme 2). Chemoselective removal of NAP from 15
was effected using DDQ to afford 16 in 75% yield.!! Fi-
nally, sulfation using SO;—pyridine complex in DMF!’
followed by complete deprotection using NaOMe/MeOH,
neutralization with IR-120 (H*) resin, and passage
through IR-120 (Na*) resin afforded the title compound
1'® as a white solid in 95% yield (over two steps,
Scheme 2).

Scheme 3 outlines the synthesis of 3’-O-SO;Na trisaccha-
ride 6. 3’-O-NAP protection of 17" as described before
provided 18 in a reasonable yield. 4,6-O-Benzylidene pro-
tection of 18 followed by conventional benzoylation fur-
nished 19 in 70% yield over two steps. Finally, treatment
of 19 with 80% AcOH cleaved the benzylidene ring to af-
ford diol which was selectively acetylated at the 6’-OH
(primary hydroxyl group) using 1 equivalent of Ac,O in
pyridine at low temperature to get the desired lactose ac-
ceptor 7 in 81% yield. TMSOTf-mediated coupling of 7
with imidate 4 provided the desired B-(1—4) linked
trisaccharide 20 in a good yield (Scheme 3). Following
the same strategy as described for 1; conversion of
NHTroc into NHAc, removal of NAP, sulfation, and
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Scheme 2 Synthesis of trisaccharide 1. Reagents and conditions: a) TMSOTT, 4 A MS, dry CH,Cl,, N,, =50 °C, 40 min (86%); b) i) Ac,0-
AcOH (11:9 v/v), H,SO,, 0 °C to —4 °C, overnight; ii) N,H,-HOAc, DMF, 50 °C, 2 h (75%, 2 steps); ¢) CCI;CN, DBU, CH,Cl,, 0 °C, 30 min
(78%); d) TMSOTT, 4 A MS, dry CH,Cl,, N,, =50 °C to 0 °C, 30 min (55%); e) i) 80% aq AcOH, 55 °C, 30 min; ii) Cd powder, DMF—AcOH
(2:1 v/v), r.t., overnight; iii) Ac,0O—pyridine (1:2 v/v), CH,Cl,, r.t., 70 h (69%, 3 steps); f) DDQ, CH,Cl,-MeOH (4:1 v/v), overnight (75%). g)

i) SO3—pyridine, dry DMF, 50 °C, 2 h; ii) NaOMe/MeOH, r.t., 24 h (95%, 2 steps).

finally complete deprotection and treatment with IR-120
(Na*) resin, afforded the final sulfated trisaccharide 6% as
a white solid in an overall yield of 58% over five steps.

In summary, we have developed a concise and practical
synthesis of two 3-O-Gal-sulfated trisaccharides 1 and 6
based on the rationally designed synthetic strategy. We ar-
gue that the sulfated compounds prepared here will be
useful for cell-adhesion interaction studies which recog-
nize sulfated glycans. Furthermore, attempts to explore
the synthetic utility of intermediates 2, 3, and 7 for obtain-

ing higher oligosaccharides with similar structures are
currently being undertaken. These compounds will be fur-
ther employed for examining the specificity of glycosyl-
transferases and sulfotransferases.
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Scheme 3 Synthesis of trisaccharide 6. Reagents and conditions: a) i) Bu,SnO—dry toluene, refluxing, 4 h, then NAPBr, n-Bu,NI, 110-
115 °C, 48 h (60%); b) i) PACH(OMe),, PTSA, MeCN, r.t., 1 h; ii) BzCl, pyridine, r.t., overnight (70%, 2 steps); c¢) i) 80% AcOH, 75-80 °C,
6 h; i) Ac,0, DMAP, pyridine, =30 °C, 7 h (81%, 2 steps); d) TMSOTT, 4 A MS, dry CH,Cl,, N,, =50 °C, 3 h (76%); e) i) Cd powder, DMF-
AcOH (2:1 v/v), r.t., overnight; ii) Ac,0-py (1:2 v/v), CH,Cl,, r.t., 20 h (80%, 2 steps); f) DDQ, CH,Cl,-MeOH (4:1 v/v), overnight (76%);
g) 1) SOs—pyridine, dry DMF, 50 °C, 4 h; ii) NaOMe/MeOH, r.t., 48 h (95%, 2 steps).
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OCH,CH=CH,) ppm. *C NMR (100 MHz, CD;0D):
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69.4,70.3,72.4,72.8,72.9,74.7,74.8,75.8,77.0,77.9,78.5
(C-3),78.9 (C-3"),98.2,104.6, 106.5 (C-1, C-1’, C-1"),
117.8 (CH=CH,), 135.7 (CH=CH,), 174.2 (COCH,), 175.4
(COCHj;) ppm. ESI-MS: m/z calcd for C,sH, N,NaO,,S:
728.2; found: 751.2 [M + Na]*.
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Analytical Data for Compound 6

"HNMR (400 MHz, CD,0D): & = 2.06 (s, 3 H, NHCOCH,),
3.26 (m, 1 H), 3.91-3.46 (m, 14 H), 4.16-4.01 (m, 2 H),
4.364.28 (m, 4 H, H-1, J = 8.0 Hz, incorporated with other
protons), 4.44 (d, J=7.6 Hz, 1 H, H-1"),4.61 (d, J = 8.4 Hz,
1 H, H-17),5.16 (dd, 3/ =10.8 Hz,2J = 1.2 Hz, 1 H,
OCH,CH=CH_H, ), 5.32 (dd,*J = 17.6 Hz, 2J = 1.6 Hz,
1 H, OCH,CH=CH_,H,,,,,), 5.99-5.93 (m, 1 H,
OCH,CH=CH,) ppm. '*C NMR (100 MHz, CD;0D):
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135.8 (CH=CH,), 174.9 (COCHj;) ppm. ESI-MS: m/z calcd
for C,;H,sNNaO,,S: 687.2; found: 710.2 [M + Na]*.
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