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Abstract: Hecogenin acetate 5 was converted to an intermediate suitable for the 
construction of a C14V,1sB dihydro derivative of the “South” hexacyclic spiroketal of 
cephalostatin 1 1. The key transformations include: (i) proximal functionalization of the C-l 8 
methyl group in 17 via hypoiodite homolysis; (ii) Rhodium [II] catalyzed intermolecular 
oxygen alkylation of primary neopentyl hydroxyl group in 20 and (iii) intramolecular 
Wadsworth-Emmons reaction to provide 23, the ester precursor of aldehyde 4. 

Cephalostatin 1 12 is the most potent member of a family of twenty eight trisdecacyclic 
pyrazines. This compound is active at sub-nanomolar concentrations in a substantial 
proportion of the 60 in vitro anticancer screens of the NCl.3 Recently we described the 
preparation of the North segment of cephalostatin 1 1. lb In conjunction with our synthetic 
program, we elected to initially prepare dihydrocephalostatin 1 2, the saturated “South” D- 
ring analog of 1. The reasons for this were two-fold: To address the stereochemical issues 
of spiroketal synthesis and a desire to provide some insight into the anti-cancer mechanism 
of cephalostatins. This communication describes the transformation of hecogenin acetate 5 
to pentacyclic aldehyde 4, a precursor suitable for the construction of steroid 3 (Scheme 1). 
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The mechanism of antineoplastic activity of the cephalostatins is currently unknown. 

Cursory inspection of the structure of cephalostatin 1 1 reveals no obvious functionality 
which might serve in the most common role of a DNA alkylating agent. While it may be 

possible that cephalostatins owe their potent biological activity to simply the fortuitous 
topological positioning of their collection of hydrogen-bond donors and acceptors, a more 
intriguing possibility is implied by considering a hypothetical biosynthesis of a series of 
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triterpenes of the a species. Trichilinin 6 and Nimbidinin 7 have the same C,a 
oxidation states as seen in the cephalostatin series.4 Epoxidation of the Cl4 olefin could 

yield either a-8,9 or p-8,9. Mechanistic considerations suggest that fragmentation of a- 

epoxides will occur,c while f3-epoxides p-8,9 should be inert. Nimbolidins-B,A (12,13) are 
compounds that could have arisen from such fragmentations,” while several “unreactive” Cl4 

beta-epoxides related to p-8,9 have also been isolated6bs7 (Scheme 2). 

Scheme 2 

6 Z = a-H, BOH - 8 Z = a-H, P-OH - 10 X=H c 12 X=H 
7 z=o * 9z=o - 11 X=OR - 13 X=OR 

Set in the context of the cephalostatin family, a related fragmentation might involve an 
electrophilic activation (protonation or D_eDoxidations) of the C14. olefin followed by a 
nucleophilic attack at the C1sV ketone (c.f. 11). Such a process generates up to five sites 
(CQ’, and the four carbons of the resulting ene-1,4-diol system: Cts’ and C13~,14~,15~) for 

nucleophilic bond formation in compound 1 (Scheme 1). Since dihydrocephalostatin 1 2 is 
incapable of forming an epoxide in the Southern hemisphere, it could potentially have 
diminished biological activity. It is noteworthy that Fusetani has postulated a somewhat 
related fragmentation to explain the biosynthesis of the recently identified cephalostatin, 
ritterazine A.9 

Using a modified procedure of Dauben ,lO hecogenin acetate 5 was converted into 
enone 14 in 60% overall yield on an 80 gram scale. Efforts to convert 14 into saturated keto- 
alcohol 17 via reduction and/or hydrogenation were unsuccessful because of side reactions 
involving attack at the Cl2 carbonyl functionality. Therefore, 14 was convened to ketal 1 5 

using standard protection procedures (89%).11 Protected enone 15 was reduced 
stereospecifically to the allylic alcohol 16 with NaBH4 in the presence of hydrated CeCl312 in 

THF:MeOH (2:l) in 86% yield. Hydrogenation of 16 using platinum oxide in methylene 
chloride gave, after ketal deprotection, the saturated alcohol 17 in a two-step 77% yield. 
Proximal functionalization of the Cl8 methyl group in 17 was accomplished via the 

hypoiodite method of Meystrela which conveniently provided lactone 18 on a 7g scale after 
chromium trioxide oxidation. Hydrolysis of the C3 acetate group of 18 gave alcohol 19 in 

94% yield. Silylation of the hydroxyl group of 19 followed by LAH reduction of the lactone 
moiety gave trio1 20 in 71% yield for the two steps (Scheme 3). The overall yield from 
hecogenin acetate 5 to trio1 20 is 13%. 
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The use of diazophosphonates in the synthesis of cyclic ethers was extensively 

studiedI by Moody a d. and has been effectively applied in our laboratories.15 We 
therefore decided to construct the pyran ring in 3 using this protocol which required insertion 
of a diazophosphonate regioselectively into the primary neopentyl hydroxyl group of 20. A 
review of literature revealed no examples of regioselective insertion reactions of 
diazophosphonates into polyhydroxylated substrates. Initial treatment of 20 in benzene with 
ethyldiazophosphonate using 3 mole% of Rh,(OAc), as a catalyst gave, among other 

products, -60% of the desired ether 21 (Scheme 4). However, syringe-drive addition of 
ethyldiazophosphonate to a O.OlM solution of trio1 20 in benzene, with 3 mole% of 
Rhs(OAc)4 regiospecifically provided a 1 :1 diastereomeric mixture of neopentyl CP 

alkoxyphosphonoacetates 21 in a superb 96% yield. 

Scheme 4 
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This is the first example of a rhodium-carbenoid mediated O-H insertion reaction into a 

primary neopentyl alcohol system. Bis-oxidation using the Brown-Jones procedurel‘j 

provided 22 as another 1 :l mixture of phosphonate esters. Treatment of the diastereomeric 
mixture of 22 with sodium hydride in THF effected the intramolecular Wadsworth-Emmons 
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reaction exclusively affording the dihydropyran ester 23 in 86% yield for the two step 
procedure. Selective reduction of the ester functionality in 23 to aldehyde using DIBAL 
proved unsuccessful because of attack at the C-l 2 keto group. Therefore 23 was reduced by 
lAH to diol mixture 24 which was then directly subjected to Swern oxidation17 generating the 
key pentacyclic keto-aldehyde 4 in a two-step 87% yield (Scheme 4). 
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