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= ABSTRACT

Cross dehydrogenative coupling (CDC) strategyldees) employed for C-alkynylation of
4-thiazolidinone with terminal alkyne under coppetalysis. Present reaction involves coupling
of C(sp) adjacent to sulfur of 4-thiazolidinone with C(syf)terminal alkyne under CDC strategy
is unprecedented to the best of our knowledge. ifgignt functional group tolerance,
considerable yield and DFT study for mechanism nthke synthetic task more interesting and

compatible.

= Key words: Cross dehydrogenative coupling (CDC)3(&))-sp(C) bond, 4-thiazolidinone,
DFT study

= INTRODUCTION

Over the past few decades transition metal catdlyross coupling reactions have retain
their identity as revolutionary synthetic tool téoremmline synthesis of numerous organic
molecules:* Although classical cross coupling reactions wexelusively studied and widely
applied for coupling of C(p-C(sp), C(sp)-C(sp), C(sp)-C(sp) and CEPX (X = hetero atom)
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it remains challenging for C(3pC(sp) coupling due to some mechanistic aspettsorder to
remove barriers of C(pC(sp) coupling, concept of oxidative coupling leaisen which enables
desired coupling through slightly different mectsaici route (Figure £) However, oxidative
C(sp)-C(sp) coupling reactions generally require eitherganometallic precursor or
prefunctionalized substraté® In context to atom economy as well as green ceyni
perspectives, functionalization of C-H bond to afistvarious organic motif through cross
dehydrogenative coupling (CDC) emerged as a progiipiathway to construct carbon-carbon
bond without need of prefunctionalized subsffateln the past few years, remarkable progress
has been achieved for the activation of relatiiebrt C(sp)-H by employing CDC tacti¢§?
Although in several cases late transition metad falladium, platinum, ruthenium and rhodium
were used as heroic catalysts, nowadays, majofitghemists shifting their attention towards
utilization of inexpensive and non-toxic first ravansition metal such as copper and iron were
reported to exhibits remarkable catalytic act®/ity. Alkyl group substituted with alkynyl
counterpart are of interest for pigment, pharmdcalas well as material science industfiés
Hence, development of methods for straight forw@rdlkynylation of sp C-H carbon is an
emerging field of organic chemistfy*’. Beside few available other methods like nucleliphis
well as electrophilic alkynylation to form $pp carbon-carbon bond, radical mediated direct
installation of alkyne group is comparatively lessplored®32 However, copper/iron catalysed
CDC reactions have been widely investigated fodative functionalization of C(SpH adjacent

to nitrogen or oxygeti™’, functionalization of C(sp-H adjacent to sulfur was comparatively less
reported®*!. Keeping this in mind and to continue our effdrtgransition metal catalysed C-H
functionalizatio?®*® herein we report an efficient synthetic protoéoi functionalization of
C(sp))-H of 4-thiazolidinone with terminal alkyne to fher explore C-alkynylation. We chose 4-

thiazolidinone because of its well known bioaciprefile®®>*

as well as our expertise in synthesis
and activation on 1* In past, we have reported C-alkynylation on sabakl bond of 4-

thiazolidinone through palladium cataly§igFigure 2) but here we are reporting alkynylation
through CDC pathway and further we have studiedti@a possibilities through DFT study. We
have synthesised 4-thiazolidinones of hydrazinelydrazides with different ketones via Schiff
base pathway. Slightly more acidic C-H bond adjatersulfur was chosen for functionalization
with terminal alkyne through CDC strategy. Howeverpposed pathway could not give

remarkable quantity of yield.

Figure -1: Oxidative coupling reaction for C&pC(sp) coupling’?




1. R—== + R,-Zn-X

Where R4 = alkyl, aryl

R, = alkyl
X=Cl, Br

2. R-My + Ro————M,
Where R4 = alkyl

M;, M, = metal salt

R, = alkyl, aryl

Pd(dba),
—_—

Ri——R;
air, CO
PdCl,(dppf
2(dppf) R—=R,
Desyl-Cl, THF
—G AgNO;4

3. R-COOH + 5 K,S,04 R——G
CH3CN/H,0

Where R = alkyl
G = Aryl, TIPS

Figure-2: Previous work

Our previous work*°
R-H + H———R?2

Where R' = 4-oxothiazolidinyl
R? = aryl

Present work
R-H + H——R?

Where R = 4-oxothiazolidinyl
R? = aryl

Pd(Il), Ligand
R1 — R2
0,, base, solvent
90°C
Cu(l), air Rl_— R2

oxidant, solvent

= RESULTSAND DISCUSSION

In order to get preliminary practical informatiome began our study with 2-methyl-2-

phenyl-3-(phenylamino)thiazolidin-4-one (1a) anceipyl acetylene (2a) as a model reactants in

presence of DDQ as an oxidant along with CuBr gatah toluene for 8.0 hour at 90°C under air.

The result of this experiment indicate desired ¢iogpproduct in moderate proportion (table 1,

entry no. 4). Hence, to get aimed product in satisfry proportion we screened series of catalyst,

oxidant as well as solvent. Among tested catalyStd3r was found best compared to other like



Cul, CuCl, CuOAc to transform proposed reactiontrgemo. 1-4). Furthermore, utilization of
copper(ll) catalysts instead of copper(l) could wotk well and gives trace product (entry no. 13-
14). After catalyst, we have examined differentdaxits and from the results we came to know
thattert-Butyl hydrogen peroxide (TBHP) was appeared toods along with CuBr (entry no. 7).
Other tested oxidants like Benzoquinone (BQ), Diketylhydrogen peroxide (DTBP), 2,3-
Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), Patasspersulfate (KS;Og), Ox(g) (entry no.
5-9) were found to provide desired product in pmomoderate quantity. For solvents, DCE was
found as best among other tested solvents likengyloluene and acetonitrile (entry no. 7, 10-
12). Moreover proposed transformation could nohtbtruitful enough when performed undes N
(balloon) condition (entry no. 15). In additionaotion without oxidant was found to provide trace
amount of yield (entry no. 16). In summary, catalglystem of CuBr and TBHP in DCE at 90°C
under air was chosen as optimized condition (emiryl10).

Table 1: Reaction Optimizatic®

/© ada i C/©
oxidant Z
Ny ¢ .C PhHN\Njﬁ/C
PhHN 7% H/C solvent, air, S
o 90°C

1a 2a 3a

Entry Catalyst  Oxidant Solvent  °Yied

1 CuCl DDQ Toluene 31%
2 Cul DDQ Toluene 30%
3 CuOAc DDQ Toluene 35%
4 CuBr DDQ Toluene 50%
5 CuBr BQ Toluene 40%
6 CuBr KoS,0g Toluene 25%
7 CuBr TBHP Toluene 60%
8 CuBr DTBP Toluene 50%
9 CuBr Q(9) Toluene 20%
10 CuBr TBHP DCE 70%



11 CuBr TBHP Xylene 60%

‘12 CuBr TBHP Acetonitrile 50%
13 CuC} TBHP DCE Trace
14 Cu(OAc) TBHP DCE Trace
915 CuBr TBHP DCE 15%
16 CuBr - DCE Trace

®Reaction Condition: 1a: 1.0 mmol, 2a: 1.5 mmolabatt: 10 mol%, oxidant: 2.0 mmol, solvent:
5 ml per mmol, 8.0 hours, under &isolated Yield “at 80°C %under N gas.

Having optimized condition in hand, we shiftedr aitention toward examination of
substrate scope. Initially, different 4-thiazolidimes (made from various phenylhydrazine or aryl
hydrazide with aromatic ketone via Schiff base epuivere allowed to react with different
terminal aryl alkynes under optimized conditionb{&2). Both electron withdrawing and
donating groups were found to tolerate employedmopéd system in more or less proportion.
Although, synthesis of 3b, 3f, 3m, 3p, 3g and 8ktmore time to complete whereas formation of
39, 3h, 3n and 30 were completed in relatively stuore with best yield.

Table 2: Scope for the reaction of various 4-thaizolidinevith different terminal alkynés

S Il CuBr
j\[\ TBHP s A
R, NS  t —
R DCE, air
R2

Rs 90°C

1(a-9) 2(a-g) 3(a-h)

Where R = -NH-Ar or -NHCO-Ar

S B f; 5 O\
O
N\N HN\N HN-p

a (70%) b3b (65%) 3¢ (72%)

A\
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®Reaction Condition: 1a: 1.0 mmol, 2a: 1.5 mmolabat: 10 mol%, oxidant: 2.0 mmol, solvent:

5 ml per mmol 8.0 hours, under d&€ompleted in 10 hourSCompleted in 6.5 hours.

Interesting results were found when we used 4-thidinone of aldehyde instead of

ketone (table-3). Two different products were aletdi each with considerable quantity.



Table 3: Scope for the reaction of 4-thaizolidinone witffatient terminal alkynés

CuBr

TBHP

DCE air
90°C

1 2 3
R 3 4
- .
N/ j&@ yl\
3s (35%) 4a (30%)
s ﬁ \
H
©\WN\ HN—N S Q s
0] H HN,N
0
0]
3t (45%)
4b (30%)

®Reaction Condition: 1: 1.0 mmol, 2: 1.5 mmol, cgtal 10 mol%, oxidant: 2.0 mmol, solvent: 5

ml per mmol, 8.0 hours, under air.

From table-2 and 3, it can be said that optimzaudition exhibits considerable functional
group tolerance including —NH-OH, -X, -OR, -NQ and -CEk. After completion of substrate

examination we moved to propose plausible mechamathway for proposed transformation.



According to literature survéy®® as well as computational studies, we have proposed
following mechanistic pathway for claimed reacti@theme-2).It is generally presumed that
decomposition of tert-butylhnydrogenperoxide (tBuOOlhto t-butoxyl (tBuO® and tert-
butylperoxyl (tBuOO radicals could be achieved by CuBr as well asCif® Earlier Kochi,
Kharasch and Minisci reveals some important secegfarding reaction of Cu(l) with TBHP®
Kochi have proposed the emergence of copper pex@adhplex (D) but could not figure out the
participation of tBuO®®. Based on hydrogen atom transfer (HAT), Miniscggested the
formation of tBuO by the reaction of TBHP and Cu(l) which rapidlyoguces tBuOOin
presence of TBHB®. The mechanism presented in scheme-2 thus reveats thie key
intermediate in such type of transformation is tBu@hich react with Cu(l) to form copper

peroxide complex (D).

Scheme 1: Plausible Catalytic cycle

s

S

) \\

1/2 0, + tBuOOH
Ar—= + cu®Br
(2)
Cu(")BrOH
\N%

04\(3 fBUOOH tBuOO’
(F)
OOtBu

(H) cu™BroOBu + HQO
k \N
S

O

(©)

Mechanistically, CuBA) initiate the cycle by reacting with TBHEBUOOH) (B) and
molecular oxygen to affor@C) and(F). ObtainedBuOO-radical(F) react with 4-thiazolidinone
(2) to provide radical of 4-thiazoldinor{&) with elimination oftBUOOH which on reaction with
(C) to give another intermedia{®) and HO (E). Later on(G) react with(D) to give another
intermediate(H) with removal of CuBr which on reaction with terrairalkyne(2) to produce



copper actylide complefd). Finally, reaction between intermedigt¢ and(H) provide desired

coupling product3).
= COMPUTATIONAL STUDY

For the better understanding of the feasibilitg amechanistic pathway of the proposed
reaction we have performed the computational studibe critical experimental results suggested
that the reaction proceed proposed radical patiwas/the observation ofgfas an intermediate.
Therefore, we focused on the formation @f Ahe reaction energy profile of the radical pathwa
is shown in Figure. Initially, CBr reacts with TBHP and oxidized to form ¥Br(OH) (A,) with
tBuO radical. CUBr(OH) then reacts with another molecule of TBHPdgiwe intermediate
CU'Br(OOtBu) (A) and HO via Tsl. On the other hand tBu€adical abstract a hydrogen
molecule from the reactant la to generate radicalthhough TS. The energy barrier for
abstraction of hydrogen was calculated to be 1k@2 mol'. Combining radical Awith the
doublet A, compound A formed in conjunction with CBr. Overall, from the above energy
profile we can say that the rate-determining stepyidrogen abstraction. Computational studies

results reveals that reaction proceed via radiatiyay to form a crucial intermediatg.A

Table 5: Free energy profile of plausible mechanistic patt
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0.00 tBuOOH
CuBr

AG kcal mol-1

Br-Cu

T

tBuO—OH

A, tBUOOH
Br-Cu-OH )
-0.09

tBuOOH

t. A
tBuO

tBu(.)

Br-Cu-0-0tBu

H20 A4

HsC CH,3

C;Q;NH
o L]

(TS-2)

11.02 kcal mol™!

Reaction Coordinates

All calculations were performed with the Gausst#npackage. The Kohn—-Sham density
functional theory (DFT) was solved with the B3LY#n€tional and 6-31G+(d,p) basis sets were
chosen for all the atoms. The CPCM model was agptieaccount for solvent effects. Frequency
calculations at the same level of theory were g@edormed to verify the stationary points as
minima (no imaginary frequency) or transition ssaene imaginary frequency). Transition states
were located by using the Berny algorithm. Intriins@action coordinates (IRCs) were calculated

for the transition states to confirm that they iedleconnected two relevant minima. All relative
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energies (corrected with zero point energy) ando&itoee energies (at 298.15 K and 1 atm) are

reported in kcal mol. Geometries are displayed with Chemcratt.

= CONCLUSION

In conclusion, we have developed a GIpProach for C-alkynylation of C(3pH using
4-thiazolidinones with terminal alkynes. Presentedk contain an important idea regarding CDC
coupling of sp(C-H) adjacent to sulfur atom which is hither toreported as per our best
knowledge. Although, reported strategy shows canmaiole functional group tolerance but could
not increase yield in remarkable quantity and thight be limitation of this reaction. Current
work could be helpful for synthesis of other simiterivatives to functionalize relatively inert C-

H bond adjacent to sulfur with other C-H bond.

= EXPERIMENTAL SECTION

General comments: All starting materials were purchased from comnatrsuppliers and used
without further purification. All synthesized compuls were characterized By NMR, °C
NMR, HRMS as well as elemental analysis. Meltingnp@nd boiling point were obtained in
open capillaries on Veego electronic apparatus M4eego Instrument Corporation, Mumbai,
India) and are uncorrectetd NMR and**C NMR spectra were recorded on a Bruker400 MHz
model spectrometer using CRCis a solvent and TMS as internal standard Withresonant
frequency of 400 MHz antfC resonant frequency of 100 MHz. HRMS spectra wecerded on
XEVO G2-XS QTOF spectrophotometer. The chemicaftshif ‘H NMR and**C NMR were
reported as parts per million (ppm) downfield frofiIS (MesSi). The splitting patterns are
designated as follows; s, singlet; d, doubletriplét; m, multiplet. Elemental analyses (C, H, N)
were performed using a Heraeus CarloErba 1180 OhéiN/zer (Hanau, Germany).

1. General procedurefor the synthesisof 1:

According to literatur®®*® reaction of different amine (hydrazine or hydda3i with

different ketones in ethanol at refluxing tempermatgives corresponding schiff base derivatives.
Later on, as per the literature, prepared Schifiebaon reaction with thioglycolic acid in DMF

results in the synthesis of 4-thiazolidinone.

2. Synthesisof 3 through CDC strategy:
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Synthesised (1.0 mmol) was mixed wit@ (1.5 mmol) along with CuBr (10.0 mol%), TBHP
(30.0 mol%) in dichloroethane (10.0 ml) in a 25.Dghass tube. The reaction mixture was stirred
at 90°C for 8-10 hour under air until the reactiwsas completed (confirmed by TLC). Finally,
reaction mixture was cooled down at room tempeeasund poured into cold aqueous solution of
NaHCG;. Later on, reaction mixture was subjected to suhextraction by adding 15-20 ml of
dichloromethane. Organic layer was then separatkid (over anhydrous MNa0O,) and
concentrated under reduced pressure. Obtainedueesichs further purified by coloumn
chromatography to give desired product.

2-methyl-2-phenyl-3-(phenylamino)-5-(phenylethynyl)thiazolidin-4-one (3a), white
solid; Yield 70% (305 mg); mp 170-175 °&4 NMR (400 MHz, CDC}) & ppm: 7.58 (dJ) = 4.8
Hz, 2H), 7.29 (m, 3H), 7.24-7.18 (m, 7H), 6.77 (dd= 6.0 Hz,J, = 6.4 Hz, 1H), 7.62 (d)= 5.2
Hz, 2H), 4.52 (s, 1H), 2.52 (s, 1H,,® exchangeable), 2.07 (s, 3HJC NMR (100 MHZ,
CDCl3) 6 ppm: 25.14, 40.01, 67.54, 75.73, 79.42, 115.47,a1 123.80, 126.90, 128.12, 128.53,
128.59, 128.69, 129.28, 131.08, 141.76, 147.304P78nal. Calcd. For G4H,oN,OS: C: 74.97;
H: 5.24; N: 7.29Found: C: 74.92; H: 5.29; N: 7.33RMS-ESI (m/z) calcd for &H,oN.OS [M
+ H]" 384.1296, found 384.1292.

2-(4-methoxyphenyl)-2-methyl-5-(o-tolylethynyl)-3-((4-
(trifluoromethyl)phenyl)amino)thiazolidin-4-one (3b). white solid; Yield 65% (361 mg); mp
150-155 °C*H NMR (400 MHz, DMSO#ds) & ppm: 7.44-7.42 (m, 3H), 7.21-7.11 (m, 5H), 6.90
(d,J=5.2 Hz, 2H), 6.57 (d] = 5.2 Hz, 2H), 4.52 (s, 1H), 3.81 (s, 3H), 2.413ld), 2.13 (s, 3H),
1.79 (s, 1H, BO exchangeable}*C NMR (100 MHZ, CDC}) & ppm: 20.73, 25.14, 40.01, 56.04,
66.99, 75.73, 80.63, 112.52, 124.12, 124.46, 1241925.06, 125.64, 126.78, 127.97, 128.41,
129.24, 131.80, 137.33, 139.44, 152.24, 159.87,4P7T%Anal. Calcd. For G7H3FsN0.S: C:
65.31; H: 4.67; N: 5.64Found: C: 65.34; H: 4.70; F: 11.44; N: 5.6MRMS-ESI (m/z) calcd for
Co7H23F3NL0,S [M + H]" 496.1432, found 496.1436.

5-((4-methoxyphenyl)ethynyl)-2-methyl-2-(p-tolyl)-3-(o-tolylamino)thiazolidin-4-one
(30). Pale yellow solid; Yield 72% (367 mg); mp 182-1%% ‘H NMR (400 MHz, DMSO#€) &
ppm: 7.53 (dJ = 6.4 Hz, 2H), 7.14-7.13 (m, 4H), 7.01-6.73 (m,)5BL59 (d,J = 5.6 Hz, 1H),
4.52 (s, 1H), 3.81 (s, 3H), 2.41 (s, 3H), 2.383(4), 2.17 (s, 3H), 1.97 (s, 3H), 1.79 (s, 1BHD
exchangeable)*C NMR (100 MHZ, CDC}) § ppm: 17.35, 21.13, 25.14, 40.01, 56.04, 67.54,
75.73, 79.42, 114.65, 115.64, 115.74, 120.47, P25126.89, 127.20, 129.47, 130.57, 131.46,
136.27, 138.10, 146.29, 159.92, 179.A%al. Calcd. For G7H2eN0,S: C: 73.27; H: 5.92; N:
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6.33; Found: C: 73.24; H: 5.90; N: 6.36HRMS-ESI (m/z) calcd for §H2eN20,S [M + H]
442.1715, found 442.1711.
5-((2-aminophenyl)ethynyl)-3-((2,6-dichlor ophenyl)amino)-2-methyl-2-(p-
tolyl)thiazolidin-4-one (3d), Brown solid; Yield 77% (417 mg); mp 188-192 °&4 NMR (400
MHz, DMSO-tg) 6 ppm: 7.19-7.16 (m, 5H), 7.08-7.04 (m, 3H), 6.6646(m, 2H), 6.53 (dJ =
5.6 Hz, 1H), 5.07 (s, 2H, ® exchangeable), 4.52 (s, 1H), 2.45 (s, 1k @xchangeable), 2.17
(s, 3H);*C NMR (100 MHZ, CDC}) & ppm: 21.13, 25.14, 40.01, 70.93, 75.73, 82.71,38.0
111.93, 116.91, 122.29, 125.52, 127.75, 128.59,471930.01, 131.43, 136.27, 138.10, 143.64,
149.41, 179.42Anal. Calcd. For GsH21ClbN3OS: C: 62.24; H: 4.39; N: 8. Found: C: 62.20; H:
4.40; N: 8.66. HRMS-ESI (m/z) calcd fopdEl21CIoN320S [M + HJ 481.0782, found 481.0787.
2-(4-fluor ophenyl)-2-methyl-3-(o-tolylamino)-5-(o-tolylethynyl)thiazolidin-4-one (3e),
white solid; Yield 65% (318 mg); mp 160-165 &t NMR (400 MHz, CDCI3) ppm: 7.42 (d)
= 4.8 Hz, 1H), 7.27-7.21 (m, 3H), 7.14-7.08 (m, 3AP4-7.01 (m, 3H), 6.76 (dd; = 6.0 Hz,J,
= 6.4 Hz, 1H), 6.69 (d) = 6.0 Hz, 1H), 4.52 (s, 1H), 2.52 (s, 1H;exchangeable), 2.38 (s,
3H), 2.27 (s, 3H), 2.06 (s, 3H}C NMR (100 MHZ, CDC}) & ppm: 17.35, 20.73, 25.14, 40.01,
66.99, 75.73, 80.63, 114.71, 115.74, 120.47, 1241328.78, 126.89, 127.20, 128.41, 129.13,
129.24, 130.57, 131.80, 139.44, 139.77, 146.29,2063.79.42Anal. Calcd. For GeH23FN,OS:
C: 72.53; H: 5.38; N: 6.51Found: C: 72.50; H: 5.40; N: 6.47THRMS-ESI (m/z) calcd for
Co6H23FNLOS [M + HJ 430.1515, found 430.1511.
2-(4-methoxyphenyl)-2-methyl-3-(o-tolylamino)-5-((2-
(trifluoromethyl)phenyl)ethynylthiazolidin-4-one (3f), colourless oil; Yield 70% (408 mg); bp
< 200°C;'H NMR (400 MHz, CDC}) & ppm: 7.53 (d)J = 6.0 Hz, 1H), 7.47 (d] = 6.0 Hz, 1H),
7.31-7.20 (m, 4H), 7.04-7.00 (m, 2H), 6.89 J&; 6.4 Hz, 2H), 6.70 (ddL = 5.6 Hz,J,= 5.4 Hz,
1H), 6.40 (d,J = 6.4 Hz, 1H), 4.52 (s, 1H), 3.81 (s, 3H), 2.203H), 2.08 (s, 3H), 1.38 (s, 1H,
D,O exchangeable)*C NMR (100 MHZ, CDC}) & ppm: 17.35, 25.14, 40.01, 56.04, 68.16,
75.73, 76.12, 112.52, 115.74, 120.47, 122.10, 1241@5.97, 126.89, 127.20, 127.97, 130.57,
130.75, 132.63, 132.64, 135.80, 137.33, 146.29,.8159 179.42; Anal. Calcd. For
Co7H23F3N20O,S: C: 65.31; H: 4.67 N: 5.64ound: C: 65.35; H: 4.70; N: 5.6(HRMS-ESI (m/z)
calcd for G7H23F3N20,S [M + H]"496.1432, found 496.1435.
5-((4-methoxyphenyl)ethynyl)-2-methyl-3-(phenylamino)-2-(thiophen-2-
yl)thiazolidin-4-one (3g), colourless oil; Yield 77% (376 mg); bp 175-180°€t NMR (400
MHz, CDCk) & ppm: 7.48 (d)) = 6.4 Hz, 2H), 7.18 (dd} = 6.0 Hz,J, = 6.2 Hz, 2H), 7.05-6.86
(m, 3H), 6.80-6.76 (m, 3H), 6.66 (& 5.2 Hz, 2H), 4.52 (s, 1H), 3.79 (s, 3H), 2.471(4, D,O
exchangeable), 2.17 (s, 3HJC NMR (100 MHZ, CDC4) & ppm: 29.61, 40.01, 56.04, 67.54,
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76.69, 79.42, 114.65, 115.47, 115.64, 121.01, B5126.38, 126.82, 129.20, 131.46, 147.36,
154.70, 159.92, 182.3%nal. Calcd. For GgH2oN20,S;: C: 65.69; H: 4.79; N: 6.6& ound: C:
65.67; H: 4.77; N: 6.61HRMS-ESI (m/z) calcd for £H20N-0,S, [M + H]™ 420.0966, found
420.0962.
2-(furan-2-yl)-2-methyl-5-(phenylethynyl)-3-((4-
(trifluoromethyl)phenyl)amino)thiazolidin-4-one (3h), brownish solid; Yield 80% (396 mg);
mp 185-190°C*H NMR (400 MHz, CDC}) § ppm: 7.49-7.42 (m, 4H), 7.32-7.20 (m, 4H), 6.58
(d,J=5.4 Hz, 2H), 6.32-6.31 (m, 2H), 4.52 (s, 1H),8(&, 3H), 1.97 (s, 1H, I® exchangeable);
3C NMR (100 MHZ, CDC}) & ppm: 23.83, 40.01, 67.54, 71.20, 79.42, 104.40,71, 114.12,
123.80, 124.46, 125.06, 125.64, 128.53, 128.59,0831140.65, 152.24, 155.63, 182.2Mal.
Calcd. For GaHi7F3N20,S: C: 62.44; H: 3.87; N: 6.3Found: C: 62.40; H: 3.90; N: 6.30
HRMS-ESI (m/z) calcd for §H17FaN>O,S [M + H]* 442.0963, found42.0960.
N-(2-methyl-4-oxo-2-phenyl-5-(phenylethynyl)thiazolidin-3-yl)benzamide (3i), white
solid; Yield 65% (302 mg); mp 175-180°&) NMR (400 MHz, CDCY) & ppm: 7.72 (d,) = 5.6
Hz, 2H), 7.46-7.45 (m, 3H), 7.39-7.21 (m, 8H), 6(631H), 4.52 (s, 1H), 2.17 (s, 3HJC NMR
(100 MHZ, CDC¥§) 6 ppm: 25.14, 40.01, 67.54, 76.90, 79.42, 123.86,A2, 128.12, 128.28,
128.48, 128.53, 128.59, 131.08, 132.03, 132.71,7641165.41, 180.41Anal. Calcd. For
CosH2oN20,S: C: 72.79; H: 4.89; N: 6.7%ound: C: 72.76; H: 4.92; N: 6.79HRMS-ESI (m/z)
calcd for GsH2oN20,S [M + H]"412.1245, found12.1248.
N-(5-((2-aminophenyl)ethynyl)-2-(4-methoxyphenyl)-2-methyl-4-oxothiazolidin-3-yl)-
4-methylbenzamide (3j), brown solid; Yield 72% (383 mg); mp 163-168 °¢4 NMR (400
MHz, CDCk) 6 ppm: 7.77 (dJ = 6.0 Hz, 2H), 7.37 (s, 1H), 7.29-7.24 (m, 4HL976.99 (m, 4H),
6.67 (dd,J; = 6.4 Hz,J,= 6.2 Hz, 1H), 6.55 (d, J= 5.8 Hz, 1H), 5.41 (s, ZHO exchangeable),
4.52 (s, 1H), 3.79 (s, 3H), 2.14 (s, 3H), 2.098(); *C NMR (100 MHZ, CDC}) § ppm: 21.13,
25.14, 40.01, 56.04, 70.93, 76.90, 82.71, 110.230,98, 112.52, 116.91, 127.97, 128.29, 128.80,
130.01, 131.25, 131.43, 137.33, 142.80, 149.41,87%9165.41, 180.41Anal. Calcd. For
Co7H25N30sS: C: 68.77; H: 5.34; N: 8.9Found: C: 68.75; H: 5.39; N: 8.88. HRMS-ESI (m/z)
calcd for G7H25N30sS [M + H]"471.1617, found71.1620.
3-hydroxy-N-(5-((4-methoxyphenyl)ethynyl)-2-methyl-4-oxo-2-(p-tolyl)thiazolidin-3-
yl)benzamide (3k), yellow solid; Yield 70% (378 mg); mp 190-195 °&j NMR (400 MHz,
CDCI3) § ppm: 7.47-7.37 (m, 4H), 7.31-7.27 (m, 3H), 7.1847(m, 3H), 6.86 (dJ = 6.0 Hz,
1H), 6.86 (dJ = 5.8 Hz, 2H), 4.52 (s, 1H), 3.89 (s, 1H), 3.803), 2.33 (s, 3H), 2.09 (s, 3H);
3C NMR (100 MHZ, CDC}) & ppm: 21.13, 25.14, 56.00, 67.54, 76.90, 79.92,3114114.65,
115.64, 120.70, 122.16, 125.52, 129.47, 130.49,4631133.27, 136.27, 138.10, 157.29, 159.92,
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165.80, 180.41Anal. Calcd. For G7H24N204S: C: 68.63; H: 5.12; N: 5.9Found: C: 68.60; H:
5.10; N: 5.95. HRMS-ESI (m/z) calcd fop#El24N20,4S [M + H]" 472.1457, found 72.1459.

N-(2-(4-fluor ophenyl)-2-methyl-4-oxo-5-(phenylethynyl)thiazolidin-3-yl)-4-
methoxybenzamide (31), white solid; Yield 70% (359 mg); mp 180-185°€t NMR (400 MHz,
CDCl3) 6 ppm: 7.66 (dJ = 6.0 Hz, 2H), 7.39 (d] = 6.2 Hz, 2H), 7.21-7.14 (m, 5H), 7.03-7.01
(m, 4H), 6.77 (s, 1H, BD exchangeable), 4.52 (s, 1H), 3.81 (s, 3H), 2518K);**C NMR (100
MHZ, CDCls) 6 ppm: 25.14, 40.01, 56.04, 67.54, 76.90, 79.42,111,3114.71, 123.80, 127.02,
128.53, 128.59, 128.99, 129.13, 131.08, 139.77.986265.26, 165.41, 180.4Anal. Calcd. For
CoeH21FN2O3S: C: 67.81; H: 4.60; N: 6.0&o0und: C: 67.85; H: 4.62; N: 6. 1MHRMS-ESI (m/z)
calcd for GgH21FN20sS [M + H]"460.1257, found60.1253.

4-br omo-N-(2-methyl-2-(4-nitr ophenyl)-4-oxo-5-(phenylethynyl)thiazolidin-3-
yl)benzamide (3m), yellow solid; Yield 65% (383 mg); mp 215-220°84 NMR (400 MHz,
CDCl3) 6 ppm: 8.11 (dJ = 5.8 Hz, 2H), 7.75 (d] = 5.0 Hz, 2H), 7.59 (d] = 5.6 Hz, 2H), 7.51
(m, 4H), 7.30 (ddJ, = 5.0 Hz,J, = 5.2 Hz, 1H), 7.22 (dd}, = 6.0 Hz,J, = 5.8 Hz, 2H), 4.52 (s,
1H), 4.36 (s, 1H, BO exchangeable), 2.19 (s, 3H€ NMR (100 MHZ, CDC}) & ppm: 25.14,
40.01, 67.54, 76.90, 79.42, 122.85, 123.80, 125129,.96, 128.53, 128.59, 131.19, 132.05,
133.61, 144.26, 148.35, 165.41, 180.Abal. Calcd. For GsH;18BrN3O,S: C: 55.98; H: 3.38 N:
7.83;Found: C: 55.95; H: 3.40; N: 7.8HRMS-ESI (m/z) calcd for &H1gBrNz0,S [M + H]
535.0201, foun&35.0205.

4-chlor o-N-(2-methyl-4-oxo-2-(thiophen-2-yl)-5-(o-tolylethynyl)thiazolidin-3-
yl)benzamide (3n), pale yellow solid,*H NMR (400 MHz, CDC}) 6 ppm: 7.62 (d,) = 5.8 Hz,
2H), 7.38-7.36 (m, 3H), 7.18-7.09 (m, 4H), 6.95,(@d= 6.0 Hz,J,=6.2 Hz, 1H), 7.84 (d] = 6.2
Hz, 1H), 4.75 (s, 1H, ED exchangeable), 4.52 (s, 1H), 2.36 (s, 3H), 2s18d);**C NMR (100
MHZ, CDCl) 6 ppm: 20.73, 29.61, 40.01, 66.99, 77.21, 80.63,824125.55, 126.38, 126.78,
126.82, 128.41, 128.76, 129.11, 129.24, 131.80,573239.25, 139.44, 154.76, 165.41, 183.56;
Anal. Calcd. For G4H1oCIN,O,.S,: C: 61.73; H: 4.10; N: 6.00Found: C: 61.70; H: 4.40; N:
6.04 HRMS-ESI (m/z) calcd for §H19CIN2O,S; [M + H]" 466.0576, found66.0573.

N-(5-((2-aminophenyl)ethynyl)-2-(fur an-2-yl)-2-methyl-4-oxothiazolidin-3-
yl)benzamide (30), pale yellow solid; Yield 75 % (358 mg); mp 20562C; *H NMR (400 MHz,
CDCl3) 6 ppm: 7.83 (dJ = 6.2 Hz, 2H), 7.44 (dd}, = 6.2 Hz,J, = 6.4 Hz, 1H), 7.36-7.31 (m,
3H), 6.19 (d, 1H), 7.03 (dd, = 5.4 Hz,J,=5.2 Hz, 1H), 6.83 (s, 1H), 6.66 (d#l,= 6.0 Hz,J,=
6.2 Hz, 1H), 6.52 (dJ = 6.0 Hz, 1H), 6.28 (ddl; = 5.8 Hz, J,= 6.0 Hz, 1H), 6.13 (d] = 5.6 Hz,
1H), 4.81 (s, 2H, BO exchangeable), 4.52 (s, 1H), 2.10 (s, 3f0;NMR (100 MHZ, CDC}) &
ppm: 23.83, 40.01, 70.93, 72.14, 82.71, 104.40,38,0111.71, 111.93, 116.91, 128.28, 128.48,
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130.01, 131.43, 132.03, 132.71, 140.65, 149.41,6B55165.41, 183.5;Anal. Calcd. For
Ca3H19N303S: C: 66.17; H: 4.59; N: 10.0Found: C: 66.20; H: 4.62; N: 10.051RMS-ESI (m/z)
calcd for GsH1oN30sS [M + H]"417.1147, found17.1142.

N-(2-methyl-2-(4-nitr ophenyl)-4-oxo-5-(phenylethynyl)thiazolidin-3-yl)-4-
(trifluoromethyl)benzamide (3p), colourless solid; Yield 68% (393 mg); mp 225-230%H
NMR (400 MHz, CDC}) 8 ppm: 8.22 (dJ = 5.8 Hz, 2H), 7.85 (d] = 5.6 Hz, 2H), 7.70-7.62 (m,
4H), 7.46 (dJ = 6.0 Hz, 2H), 7.25-7.24 (m, 4H), 4.52 (s, 1HL®(s, 3H);*C NMR (100 MHZ,
CDCl) 6 ppm: 25.19, 40.01, 67.52, 76.90, 79.42, 122.88,8( 124.46, 125.78, 126.48, 128.22,
128.53, 128.59, 131.08, 132.76, 136.66, 144.26,3548165.41, 180.41Anal. Calcd. For
CoeH18F3N30,S: C: 59.43; H: 3.45; N: 8.0F;ound: C: 59.45; H: 3.48; N: 7.98HRMS-ESI (m/z)
calcd for GeH1gFaN304S [M + H]*525.0970, foun&25.0974.

N-(5-((4-methoxyphenyl)ethynyl)-2-methyl-4-oxo-2-phenylthiazolidin-3-yl)-4-
nitrobenzamide (3q), yellow solids; Yield 70% (388 mg); mp 180-185°€t NMR (400 MHz,
CDCl3) 6 ppm: 8.35 (dJ = 6.2 Hz, 2H), 8.00 (d] = 6.0 Hz, 2H), 7.63 (d] = 6.4 Hz, 2H), 7.30-
7.23 (m, 5H), 6.97 (d] = 5.8 Hz, 2H), 6.05 (s, 1H), 4.52 (s, 1H), 3.793H), 2.10 (s, 3H)**C
NMR (100 MHZ, CDC}) 6 ppm: 25.14, 40.01, 56.04, 67.54, 76.90, 79.42,68,4115.64,
124.04, 126.90, 128.12, 128.69, 129.08, 131.46,163841.76, 149.21, 159.92, 165.41, 180.41;
Anal. Calcd. For GgH21N30sS: C: 64.05; H: 4.34; N: 8.6Found: C: 64.07; H: 4.38; N: 8.60.
HRMS-ESI (m/z) calcd for &H2:N30sS [M + H] 487.1202, found87.1205.

N-(2-methyl-4-oxo-2-(p-tolyl)-5-((2-(trifluor omethyl)phenyl)ethynyl)thiazolidin-3-
yl)thiophene-2-car boxamide (3r), yellow oil, *H NMR (400 MHz, CDC}) § ppm: 7.84 (d,J =
6.2 Hz, 1H), 7.63 (dd}; = 6.0 Hz,J, = 6.2 Hz, 1H), 7.50 (d] = 5.8 Hz, 1H), 7.42 (d] = 5.8 Hz,
1H), 7.30- 7.10 (m, 8H), 4.52 (s, 1H), 2.33 (s, 3P4 (s, 3H)*C NMR (100 MHZ, CDCH}) 6
ppm: 21.13, 25.14, 40.01, 68.16, 76.12, 76.90,1®2124.01, 125.52, 125.97, 127.41, 129.02,
129.47, 130.05, 130.75, 132.63, 132.69, 135.80,2736.38.10, 139.24, 156.02, 180.4hal.
Calcd. For GsHigFsN20.S,: C: 59.99; H: 3.83; N: 5.60Found: C: 59.96; H: 3.85; N: 5.63
HRMS-ESI (m/z) calcd for &H19FsN>O,S, [M + H]*500.0840, foun&00.08437.

2-phenyl-3-(phenylamino)-5-(phenylethynyl)thiazolidin-4-one (3s), white solid; Yield
35% (148 mg); mp 170-175 °GH NMR (400 MHz, CDC}) & ppm: 7.43 (d,] = 6.4 Hz, 2H),
7.32-7.26 (m, 5H), 7.25-7.24 (m, 4H), 7.20Jd&; 5.8 Hz, 2H), 6.79 (dd}; = 5.4 Hz,J, = 5.2 Hz,
1H), 6.68 (d,J = 6.0 Hz, 2H), 6.23 (s, 1H), 4.52 (s, 1H), 2.911, DO exchangeable)’*C
NMR (100 MHZ, CDC}) & ppm: 67.94, 68.17, 115.64, 120.74, 123.80, 126120,74, 128.53,
128.59, 128.93, 129.08, 131.08, 139.96, 147.50,8178nal. Calcd. For GsH1gNL,OS: C: 74.57;
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H: 4.90; N: 7.56; O: 4.32; S: 8.6bpund: C: 74.60; H: 4.88; N: 7.58; O: 4.30; S: 8.6dRMS-
ESI (m/z) calcd for ggH1gN,OS [M + HJ 370.1140, foun®70.1144.
N-(4-oxo-2-phenyl-5-(phenylethynylthiazolidin-3-yl)benzamide (3t), white solid;
Yield 45% (203 mg); mp 185-190 °@4 NMR (400 MHz, CDC}) & ppm: 7.87 (d,) = 6.0 Hz,
2H), 7.50 (ddJ; = 6.0 Hz,J, = 5.8 Hz), 7.47 (d) = 6.0 Hz, 2H), 7.44 (d) = 5.8 Hz, 2H), 7.38-
7.28 (m, 5H), 7.27 (dd}, = 5.6 Hz,J, = 5.4 Hz), 7.24 (d) = 5.6 Hz, 2H), 5.93 (s, 1H), 5.51 (s,
1H, D,O exchangeable), 4.52 (s, 1K€ NMR (100 MHZ, CDC}) & ppm: 68.17, 68.66, 83.47,
123.80, 126.70, 127.74, 128.28, 128.48, 128.53,582828.93, 131.08, 132.03, 132.71, 139.96,
160.65, 181.93Anal. Calcd. For G4H1sN,0,S: C: 72.34; H: 4.55; N: 7.0&ound: C: 72.30; H:
4.57; N: 7.05. HRMS-ESI (m/z) calcd fopfEl1sN-0,S [M + H]* 398.1089, foun®98.1085.
2-phenyl-3-(phenylamino)-2-(phenylethynyl)thiazolidin-4-one (4a), white solid; Yield
30% (127 mg); mp 210-215 °&4 NMR (400 MHz, CDC}) & ppm: 7.42-7.43 (m, 4H), 7.32 (@,
= 6.0 Hz, 2H), 7.25 (dd); = 5.6 Hz,J, = 5.8 Hz, 1H), 7.25 (dd}; = 6.0 Hz,J, = 5.8 Hz, 1H),
7.22 (d,J =6.0 Hz, 2H), 7.19-6.69 (m, 5H), 4.34 (s, 1H{Dexchangeable), 3.83-3.80 (d5 8.0
Hz, 2H); *C NMR (100 MHZ, CDC}) & ppm: 35.81, 69.95, 79.06, 115.47, 121.01, 123.33,
127.00, 128.06, 128.51, 128.66, 129.28, 129.81.4131.38.13, 147.36, 175.7Knal. Calcd. For
CosH1sN2OS: C: 74.57; H: 4.90; N: 7.56iound: C: 74.55; H: 4.92; N: 7.5HRMS-ESI (m/z)
calcd for GsH1gNoOS [M + HJ 370.1140, foun870.1145.
N-(4-oxo-2-phenyl-2-(phenylethynyl)thiazolidin-3-yl)benzamide (4b), white solid;
Yield 30% (135 mg); mp 225-230 °G NMR (400 MHz, CDC}) & ppm: 7.88 (d,J = 6.0 Hz,
2H), 7.49 (ddJ, = 5.8 Hz,J, = 5.6 Hz, 1H), 7.47 (d] = 5.8 Hz, 2H), 7.45-7.44 (m, 4H), 7.40 (s,
1H, DO exchangeable), 7.33 (d,= 6.0 Hz, 2H), 7.27-7.25 (m, 5H), 3.70-3.67 Jds 8.0 Hz,
2H); 3C NMR (100 MHZ, CDC}) & ppm: 35.81, 69.95, 79.06, 123.33, 127.00, 128108,28,
128.48, 128.51, 128.66, 129.81, 131.41, s132.03,713 138.13, 165.41, 175.5Anal. Calcd.
For G4H1sN20O,S: C: 72.34; H: 4.55; N: 7.0Found: C: 72.30; H: 4.59; N: 7.00. HRMS-ESI
(m/z) calcd for GsH1gN20,S [M + H]" 398.1089, foun®98.1085.
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