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POTASSIUM CARBONATE–MEDIATED EFFICIENT
AND CONVENIENT SYNTHESIS OF 3-METHYL-1-
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GRAPHICAL ABSTRACT

Abstract Unprecedented cyclization was observed during N-sulfonylation of 3-[1-

(phenylhydrazono)-ethyl]-chromen-2-one in pyridine, affording 3-methyl-1-phenylchro-

meno[4,3-c]pyrazol-4(1H)-ones. To avoid use of noxious pyridine, reaction was tried in

different basic conditions and the best results were obtained with potassium carbonate in

acetone. A wide range of substrates bearing either electron-donating or electron-withdrawing

substituents on phenylhydrazine ring were compatible with the developed methodology.

Rapid access of starting material, 3-acetylcoumarin, excellent yields of products, and

use of environmentally benign base and solvent for the cyclization make this strategy an

efficient and convenient method for synthesis of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-

4(1H)-ones.
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INTRODUCTION

Pyrazole and its derivatives are well explored as anti-inflammatory,[1,2]

antiviral,[3,4] antimalarial,[5,6] HIV-reverse transcriptase inhibitors,[7,8] antimicro-
bial,[9,10] and antitumor agents.[11,12] In particular, 3-methyl-1-phenylchromeno[4,3-c]
pyrazol-4(1H)-ones are well known for their affinity toward benzodiazepine central
receptor and are used as an intermediate to synthesize immunomodulatory drugs.[13]

In the literature, several methods for the synthesis of chromenopyrazoles have been
reported, such as reaction of arylidenechromones and hydrazine in basic media,[14]

nucleophilic rearrangement of 3-cyano-4-[(o-hydroxy)phenyl]-1-phenyl-3-methylpyr-
azole (path a, Scheme 1),[15] and 3-chromonecarboxylic acids (path b, Scheme 1),[16]

intramolecular conjugate substitution of coumarin hydrazones (path c, Scheme 1),[17]

employing catalysts such as Zn[L-proline]2.
[18] However, most of these methods

require the presence of a leaving group (chloro, hydroxyl, and O-tosyl) at C-4 pos-
ition of 3-acetylcoumarin and use of high-boiling solvents, making access to starting
material cumbersome. Other methods using 2-methylchromonecarbonitrile[15] and
3-chromonecarboxylic acids[16] as synthones suffer from the drawback that the prep-
aration of these starting materials requires two to three steps. Recently, a few reports
based on oxidative cyclization of coumarin hydrazones, utilizing catalyst such as cop-
per acetate,[19] CuO=SBA-15,[20] and Cu (SO3)2CF3

[21] have been described in the
literature (path d, Scheme 1). Yang et al. reported cyclization of coumarin hydra-
zones by air oxidation and catalytic oxidation under solvent-free conditions. How-
ever, the air oxidation and solvent-free conditions required long reaction time for
90–94% conversion (12–25 days, in case of air oxidation and 34 h under solvent-free

Scheme 1. Various methods of preparation of chromenopyrazoles.
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conditions). In addition to long reaction time, elevated temperature up to 150 �C is
required under solvent-free conditions that make the overall methodology
inconvenient.[21] Although these methods rule out the requirement of leaving group
at C-4 position of coumarin hydrazones, they suffer from certain drawbacks such as
low to moderate yield of desired compounds, difficulty in separation, and recycling of
homogeneous catalyst. Moreover, in the case of method employing CuO=SBA-15,
special efforts are required for the preparation of catalyst. The approach utilizing
copper catalysts is based on transmetallation followed by conjugate addition of
organocopper reagent. A nucleophilic activation of secondary nitrogen of coumarin
hydrazone to facilitate the cyclization could serve as an alternative approach. We
observed an unexpected cyclization when N-sulfonylation of 2 was attempted in
the presence of methanesulphonyl chloride using pyridine both as a base and a
solvent. The reaction resulted in the formation of 4 instead of 3 (Scheme 2). The
observed cyclization eliminates requirement of a leaving group at C-4 position of
coumarin hydrazone and use of additional metal catalyst, making the overall
synthesis of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones simple and
efficient. Also, the use of noxious agent such as POCl3, which is required for the
synthesis of starting material 3-acetyl-4-hydroxycoumarin, as an additional step
could be avoided.[22]

One-pot easy access of starting material and formation of desired chromeno-
pyrazole in good yield along with our desire to find a substitute of noxious pyridine
encouraged us to study the cyclization of 3-[1-(phenylhydrazono)ethyl]chromen-
2-ones. Inspired from the unexpected cyclization of coumarin hydrazones into
their corresponding pyrazoles under basic conditions, herein we report an efficient
and environmentally benign synthesis of chromenopyrazoles utilizing the simple
and economic base potassium carbonate in a less hazardous solvent such as acetone.
To the best of our knowledge, this is the first report on the development of a
methodology based on base-induced nucleophilic activation–cyclization of 3-[1-
(phenylhydrazono)ethyl]chromen-2-ones for the synthesis of chromenopyrazoles.

Scheme 2. Synthesis of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-one.
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RESULTS AND DISCUSSION

3-Acetylcoumarin (1) was synthesized by Knoevenagel condensation of com-
mercially available salicylaldehyde and ethyl acetoacetate.[2] It was then converted
into 3-[1-(phenylhydrazono)-ethyl]-chromen-2-one (2) by treating it with phenylhy-
drazine, followed by reaction with methanesulfonyl chloride in pyridine to form
its N-sulfonyl derivative (3). Unprecedently, it underwent cylization to afford 4

(Scheme 2). The cyclization of 2 in the absence of leaving group at C-4 position
was surprising, as cyclization of this class of compounds is generally reported in
the presence of a leaving group at the C-4 position. A similar experiment was repeated
using pyridine in the absence of methanesulfonyl chloride and it again furnished com-
pound 4. While attempting these reactions, it was observed that 2a cyclized to corre-
sponding pyrazole compound 4a (25–30% yield) under base-free conditions when
kept in chloroform for 2 days at room temperature, which is also witnessed in the
literature.[19,21] So, we hypothesize that rate of cyclization might increase under reflux
conditions of solvent. To substantiate our hypothesis, we performed similar reaction
under reflux conditions of acetone, chloroform, and ethanol. However, it was
observed that reaction did not proceed to completion even after refluxing for 24 h
(Table 1, entry 1). Based on the aforementioned finding, we anticipated that base
could act as a driving force by enhancing the nucleophilicity of secondary nitrogen
of coumarin hydrazone and facilitate aromatization. Thus, to gain more understand-
ing of this reaction and obliterate the limitations of the earlier methods, different
bases and solvents were explored to arrive at the best possible yield (Table 1). The
reaction was attempted using triethylamine and piperidine in place of pyridine, but
poor solubility of compound 2a in these bases necessitates the use of solvent. Chloro-
form was selected as a one of the solvents as it facilitated cyclization under base-free
conditions. In addition, other aprotic (acetone) and protic (ethanol) solvents were
tried. It was observed that organic bases gave products in moderate to poor yields
when ethanol was used as a solvent (Table 1, entries 2–7). The competitive proton
abstraction by the base from ethanol and decrease in the nucleophilicity of secondary
nitrogen due to hydrogen bonding with ethanol may account for the poor yield.
Further, aprotic solvents such as chloroform and acetone were explored and the reac-
tion worked quite well with acetone. This may be due to the fact that acetone is a more
polar aprotic solvent as compared to chloroform. Similar results were obtained in the
case of inorganic bases such as potassium carbonate and sodium carbonate (Table 1,
entries 8 and 9). Strong bases such as NaOH and KOH were found to be ineffective
under all solvent conditions, as substantial decomposition, multitude of side pro-
ducts, or poor yields were obtained (Table 1, entries 10 and 11). Competitive proton
abstraction of olefinic and methyl proton by strong bases may account for formation
of complex reaction mixtures. An excellent yield of desired product was obtained
when the reaction was carried out with potassium carbonate in acetone. Further, to
investigate the effect of amount of base on the reaction completion, different amounts
of potassium carbonate were used. The use of stoichiometric amounts of potassium
carbonate has little impact on reaction time and percentage yield (Table 2, entries 1
and 2). However, with catalytic amount, we obtained comparatively lower yield of
4a, with concomitant longer reaction time (Table 2, entry 3). Therefore, we intended
to use 1 equiv of potassium carbonate to examine the substrate scope under optimized
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conditions. As potassium carbonate has gained recognition as favorable environmen-
tally benign alternatives[23,24] and acetone represents class 3 solvent,[25] the present
methodology adds to the development of sustainable chemistry.

Table 1. Optimization of various alkaline and solvents conditions for the cyclization of

3-[1-(phenylhydrazono)ethyl]chromen-2-one (2a)a

Entry Base (1 equiv) Solvent Isolated yield (%)

1 None CHCl3 30

EtOH 20

Acetone 45

2 Pyridineb neat 85

3 Triethylamine CHCl3 40

EtOH 25

Acetone 65

4 DMAP CHCl3 45

EtOH 28

Acetone 60

5 Piperidine CHCl3 32

EtOH 18

Acetone 69

6 DBU CHCl3 40

EtOH 30

Acetone 72

7 DABCO CHCl3 42

EtOH 28

Acetone 75

8 K2CO3 CHCl3 51

EtOH 32

Acetone 97

9 Na2CO3 CHCl3 45

EtOH 22

Acetone 83

10 NaOH CHCl3 No reactionc

EtOH No reactionc

Acetone No reactionc

11 KOH CHCl3 No reactionc

EtOH No reactionc

Acetone No reactionc

aThe reactions were carried out with 2a (0.72mmol) and base (0.72mmol) at 50 �C for 24 h.
b2 equiv were used.
cDesired products were not formed.
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To illustrate the versatility of developed methodology, a variety of phenylhydra-
zines were used as starting materials, and results are depicted in Table 3. Apart from
3-acetylcoumarin, the substrate scope of optimized conditions was also extended to
3-acetyl-7-methoxycoumarin as a starting material. The desired products were formed
in excellent yields in all cases. Almost all substrates containing either electron-
withdrawing or donating groups reacted at nearly the same time (15–18 h) except
for compound 2b, 2e, 2f, and 2o. The short reaction time of 2b and 2e might be
because of easy activation and enhanced nucleophilicity of the nitrogen center due
to strong electron-withdrawing effect of halogen substituents, whereas 2f and 2o took
longer time because of electron-donating substituents, which has a reverse effect. The
observed effect of electronic nature of substituent on the rate of aza-Michael addition
is supported by aza-Michael addition reactions of 4-nitrophthalimide with a,b-
unsaturated ketones, which revealed that activation of Michael donor is enhanced
when substituted with electron-withdrawing groups.[26] The products were isolated

Table 3. Synthesis of various chromenopyrazoles using optimized conditions

Entry Ar R Product Time (h) Isolated yield (%)

1 C6H5-(2a) H 4a 18 95

2 4-CF3-C6H4-(2b) H 4b 10 90

3 4-Cl-C6H4-(2c) H 4c 15 93

4 4-Br-C6H4-(2d) H 4d 15 95

5 2,4-(Cl)2-C6H3-(2e) H 4e 10 90

6 2,5-(CH3)2C6H3-(2f) H 4f 24 89

7 2-CF3-C6H4-(2g) H 4g 15 91

8 4-F-C6H4 (2h) H 4h 14 92

9 C6H5-(2i) OCH3 4i 17 98

10 2-CF3-C6H4-(2j) OCH3 4j 17 92

11 4-CF3-C6H4-(2k) OCH3 4k 15 96

12 4-Cl-C6H4-(2l) OCH3 4l 15 95

13 4-Br-C6H4-(2m) OCH3 4m 15 96

14 4-F-C6H4-(2n) OCH3 4n 15 90

15 2,5-(CH3)2C6H3 (2o) OCH3 4o 24 88

Table 2. Effect of amounts of potassium carbonate on cyclization of 2a

Entry Equiv Time (h) Isolated yield (%)

1 1.5 16 92

2 2 12 88

3 0.5 28 85

EFFICIENT SYNTHESIS OF CHROMENOPYRAZOLES 1919
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by employing simple workup such as filtration followed by recrystallization in
methanol. The structural assignments of synthesized compounds were made on the
basis of 1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS).

Keeping in view these observations and related literature,[19,22] a plausible
mechanism of this reaction is depicted in Scheme 3. First, under a reversible mech-
anism, the substrate 2 undergoes intramolecular Michael addition to give intermedi-
ate 3a. Base plays a catalytic role by deprotonating 3a instead of 2, because the NH
proton of 2 is not acidic enough to be abstracted by weak or mild bases. Because of
resonance stabilization, 2 require strong basic conditions to generate an anion, which
is evidenced from the literature.[27,28] Subsequently, resonance stabilization of 3a to
afford dihydro-pyrazolone intermediate 3b is followed by in situ irreversible oxidative
dehydrogenation by oxygen in the air to furnish final compounds.

EXPERIMENTAL

All the chemicals were procured from Sigma Aldrich (U.S.A.), S.D. Fine
Chemicals, and Alfa Aesar (India). Thin-layer chromatography (TLC) was per-
formed on precoated TLC silica-gel 60F254 plates (Merck, Germany). 1H NMR
spectra were recorded on Bruker Avance III 400 spectrometer operating at a fre-
quency of 400.13MHz for protons, and tetramethylsilane (TMS) was used as an
internal standard. Chemical shifts are reported as d values and referenced to CDCl3
(for 1H NMR 7.26 ppm and for 13C NMR 77.00 ppm). HRMS spectra were recorded
on MaXisTM UHR-TOF (Bruker, Singapore). Melting points were determined on a
digital melting-point apparatus (Perfit, India).

Scheme 3. Plausible mechanism of cyclization.

1920 J. GROVER, S. K. ROY, AND S. M. JACHAK

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

en
ne

ss
ee

, K
no

xv
ill

e]
 a

t 1
0:

20
 0

2 
Se

pt
em

be
r 

20
14

 



General Procedure for Synthesis of 3-Methyl-1-phenylchromeno
[4,3-c]pyrazol-4(1H)-ones (4)

The reaction mixture containing 3-acetylcoumarin (3.5mmol) and various
substituted phenylhydrazines (3.7mmol) was refluxed in ethanol (10mL) for 5 h,
and reaction progress was monitored by thin-layer chromatography (TLC). On com-
pletion of the reaction, the solvent was removed from the reaction mixture under
vacuum to afford the corresponding coumarin hydrazones, which were further used
for cyclization without purification. For cyclization, a reaction mixture containing
coumarin hydrazones (1.09mmol) and potassium carbonate (1.09mmol) was
refluxed in acetone (5mL) for 10–24 h. Reaction was monitored by TLC. On com-
pletion, the reaction mixture was filtered and the solvent was removed under reduced
pressure. Finally crystallization was done in methanol to get pure compounds in
excellent yield.

CONCLUSION

In summary, an efficient and novel protocol for the cyclization of 3-[1-(phenyl-
hydrazono)ethyl]-chromen-2-ones into corresponding pyrazoles using potassium
carbonate as catalyst in acetone has been developed. The developed methodology
eliminates the requirement of a leaving group at C-4 position of starting material
3-acetylcoumarin. The nonhazardous experimental conditions, rapid access of start-
ing material, and good yields of desired products made this methodology simple and
economical.
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