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ABSTRACT

A facile and efficient protocol for the construction of 3-substituted 5-amino-1,2,4-thiadiazoles has been
developed through the electro-oxidative intramolecular dehydrogenative N-S bond formation of imidoyl
thioureas. Various 1,2,4-thiadiazole derivatives were synthesized in good to excellent yields with broad
substrate scope and excellent functional group tolerance under catalyst- and oxidant-free electrolytic

conditions at room temperature.

INTRODUCTION

Sulfur-containing compounds are ubiquitous structural
motifs in natural products, biologically active compounds,
materials and synthetic intermediates.! Among them, the
1,2,4-thiadiazole derivatives, which have a wide of
biological and pharmaceutical properties.” Therefore, the
synthesis of 1,2,4-thiadiazole derivatives have received
considerable attention. Traditionally, 1,2,4-thiadiazole
derivatives can be achieved by the oxidative cyclization of
thioamides and thiourea with various metal-catalysts and
oxidants.> Gong developed an N-S bond formation
reaction for the synthesis of 5-amino-1,2,4-thiadiazoles via
intramolecular

copper-catalyzed dehydrogenative of

imidoyl thiourea.* Muthusubramanian reported a

hypervalent iodine(Ill)-mediated intramolecular oxidative
N-S bond formation of imidoyl thiourea for the synthesis
of  5-amino-1,2,4-thiadiazoles.> Later, I,-mediated
intramolecular oxidative cyclization for the synthesis of 5-
amino-1,2,4-thiadiazoles has also been achieved by
Chang.® However, most of these methods require
stoichiometric oxidants, bases and transition-metal
catalysts (scheme 1). In this context, the development of
environmentally friendly, atom economy and effective

methods without metal catalyst or external oxidant for the

synthesis of 5-amino-1,2,4-thiadiazoles are highly
desirable.
Electrochemical anodic oxidation, which is

environmentally friendly, atom-economical and emerging

powerful synthetic methodology’ has attracted much
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attention in the construction of carbon-carbon® or carbon-
heteroatom® or heteroatom-heteroatom!'® bonds for the
synthesis of various functional molecules. However, the
electrochemical oxidative N-S bond formation is still rare.
Yuan reported an electrochemical oxidation of S-H/N-H
cross-coupling reaction to produce sulfonamides.!' More
recently, an environmentally method for the synthesis of
sulfonamides from amines and thiols was developed via
oxidative N-S  bond
formation.'? Encouraged by previous studies on N-S bond

microflow  electrochemical

formation reaction'3*¢ and our interest in the
electrochemical'?d, herein, we disclose an electrochemical
oxidative intramolecular N-S bond formation for the
construction of 3-substituted 5-amino-1,2,4-thiadiazoles
under catalyst, metal and oxidant-free conditions.

Previous works

)'\JI\H j\ R chemical oxidani Ry _’_</N:/\S\ R
R H H N H

Gong et al: Cu(OTf),, Cs,CO3
Muthusubramanian et al: PIFA
Chang et al: 15, K,CO3

This work P}E
S

NH N=g

)J\ )J\N/R undivided cell N R1"‘</N/)\N,R

Ri H H anodic oxidant
catalyst and oxidant free

Scheme 1. Synthesis of 5-amino-1,2,4-thiadiazoles
RESULTS AND DISCUSSION

In the initial experiment, imidoyl thiourea 1a was selected
as model substrate to investigate the optimization of the
reaction conditions. As shown in table 1, in an undivided
cell (a two-necked round-bottomed flask) with a carbon
rod anode and Pt plate cathode, when 10 mA constant
current and 0.03 M n-BuyNBF, electrolyte was used in 10
mL MeCN at room temperature, the desired 5-amino-
1,2,4-thiadiazole 2a was isolated in 85% yield (table 1,
entry 1). Encouraged by this result, various electrolytes
were also tested such as LiClOy4, n-BuyNPF¢ and KI, no
further improved the yield of 2a was observed (table 1,
entries 2-4). Further, the product yield of 2a was dropped
to 53% when 5 mA constant current was used (table 1,
entry 5). And, when the constant current was increased
from 10 mA to 15 mA, no significant effect of the yield

was observed (table 1, entry 6). Next, the effect of the
solvents was screened, aqueous MeCN was unsuitable for
the electrooxidized N-S bond formation reaction (table 1,
entry 7). Using EtOH and DMSO as solvents isolated the
corresponding product 2a in 28% and 47% yields,
respectively (table 1, entries 8-9). This result demonstrated
that MeCN was the best solvent for this transformation.
Graphite and platinum electrode were tested, no
improvement yield of 2a can be achieved (table 1, entries
10-11). Using graphite as the anode and nickel foam as the
cathode, the yield of desired product 2a decreased from 85%
to 75% (table 1, entry 12). Additionally, no product was
obtained in the absence of current after the reaction (table
1, entry 13).

Table 1. Optimization of reaction conditions?

Q)TN)SL /©/ undivi:ﬁcell N=-S Q/

N R (+)CI(-)Pt, I =10 mA @AN/)\N
n-BuyNBF4, MeCN, rt
1a 2a
Variation from the standard Yield
Entry ..
conditions [%]
1 none 85
2 LiClOy instead of n-BuNBF, 42
3 n-BuyNPF; instead of #n- 56
BuyNBF,
4 KI instead of n-BusNBF, 51
5b I=5 mA instead of /=10 mA 53
(3.7 F/mol)
6> I=15 mA instead of /= 10 mA 82
(2.8 F/mol)
7 MeCN/H,O (4:1) instead of Trace
MeCN
EtOH instead of MeCN 28
DMSO instead of MeCN 47
10 (+)C/(—)C instead of (+)C/(—)Pt 66
11 (+)Pt/(—)Pt instead of 72
(+)C/(—)Pt
12 (+)C/(—)Ni instead of 75
(+)C/(—)Pt
13 no electric current, 24 h N. R.

aReaction conditions: carbon rod anode, Pt plate
cathode (1cmx1cm), undivided cell, 7= 10 mA (Janode
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=10 mA/cm?), 1a (0.3 mmol), n-BuyNBF, (0.3 mmol),
MeCN (10 mL), under air atmosphere at room
temperature for 2.5 h, 3.1 F/mol. ®Until complete

consumption of 1a.

With the optimized protocol in hand, we explored the
scope of the electrochemical N-S bond formation reaction
with various imidoyl thioureas 1 synthesized from
different amidines with 4-methylphenyl isothiocyanate. As
shown in table 2, a variety of imidoyl thioureas 1 with
electron-donating groups, electron-withdrawing groups
and halogens on the aryamidines side were investigated
which were converted to the desired products 2a-2f in
good yields. In addition, 4-pyridine (1g), 3-pyridine (1h)
and pyrazole (1i) of imidoyl thioureas, were also
compatible and produced the desired products 2g, 2h and
2i in 80-86% yield. Importantly, alkyl of imidoyl thioureas
were tolerated in this transformation, and the
corresponding products 2j and 2k were generated in 89%
and 88% yield, respectively.

Table 2. Substrate Scope of 5-Amino-1,2,4-thiadiazole

Synthesis?
)"ﬂ* i /©/ undivided cell
Ry™ NN

H H

1

. 3

Vi

(+)C/(-)Pt, 1= 10 mA

n-BuyNBF,4, MeCN, rt

: SRR s/
MeO

2a, 85% 2b, 87%

N=S, Q N-S Q
[ D [ PN

2¢,83%

N=S Cj
| )N

N H
Br

2d, 82% 2e, 78% 21,75%
w 5w
AN , ’ /*u A
_ @
2g, 86% 2h, 82% 2i, 80%
S : />\N
zJ, 8% 2k, 88%
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aReaction conditions: carbon rod anode, Pt plate
cathode (1cmx1cm), undivided cell, 7= 10 mA (Janoge
=10 mA/cm?), 1 (0.3 mmol), n-BuyNBF, (0.3 mmol),
MeCN (10 mL), under air atmosphere at room
temperature for 2.5 h, 3.1 F/mol.

Furthermore, the imidoyl thioureas 3 from
isothiocyanates with benzamidine were investigated the
compatibility of the electrochemical dehydrogenative N-S
bond formation protocol in table 3. The imidoyl thioureas
3 from aryl isothiocyanates with various functional
groups such as, Me, i-Pr, t-Bu, OMe, OEt, F and CI were
tolerated and afford the 1,2,4-thiadiazoles 4a-4k in good
yields. Generally, the imidoyl thioureas 3 with electron-
donating groups (Me, OMe, OEt) shown higher reactivity
than electron-withdrawing groups (F, Cl). Additionally,
imidoyl thioureas 31 and 3m from naphthyl and benzyl
isothiocyanate underwent the reaction smoothly and
produce the 41 and 4m in 85% and 78% yield,
respectively. Moreover, 2-alkyl substituted desired
products 4n and 40 have been synthesized under the
electrochemical conditions in good yields. However, a
complex mixture of 4p was obtained, when imidoyl
thiourea with alkenyl group was tested.

Table 3. Substrate Scope of 5-Amino-1,2,4-thiadiazole
Synthesis?

NH S P}E
J\ R undivided cell
N N~ ,R
H H (+)C/(-)Pt, 1 = 10 mA
3 n-BuyNBF,, MeCN, rt
4c, 83%

[)/ ’\N/>\H / N)\H

4i, 86%
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Y(I)

4j, 83% 4k, 74% 41, 85%

//@ N=S, % N-S

N.‘SN/>/NH |N/>\NH | />\N
ij [ : [j/ N H

4m, 78% 4n, 84% 40, 80%

: i'\f—’\?‘Nl{I\{

4p, complex
mixture
aReaction conditions: carbon rod anode, Pt plate
cathode (1cmx1cm), undivided cell, I = 10 mA (Janode
=10 mA/cm?), 3 (0.3 mmol), n-BuyNBF, (0.3 mmol),
MeCN (10 mL), under air atmosphere at room
temperature for 2.5 h, 3.1 F/mol.

Subsequently, to further illustrate the scalability of this
dehydrogenative N-S bond formation protocol, a gram-
scale reaction was evaluated in scheme 2. To our delight,
5 mmol of 1a was treated under the electrochemical
conditions in 100 mL MeCN, and the desired product 2a
was isolated in 74% yield.

NH S P}E]
)L /©/ undivided cell N=S
kbbb )
NN (+)CIC)PL, 1= 10 mA @AN/)\H
n-BuyNBF4, MeCN, rt

1a 2a, 74%,0.988 g

Scheme 2. Gram-scale experiments

According to the previous work!* and experimental
results!®, a plausible mechanism for this dehydrogenative
N-S bond formation is proposed in scheme 3. The imidoyl
thiourea 3a could isomerize to the thioiminol A which was
then oxidized at the anode to formed the radical
intermediate B via single electron transfer (SET) process.
The radical intermediate B afford in an anodic was
supported by the CV experiments (scheme 4). Then, the
radical cation B underwent radical cyclization to produce
the intermediate C. Finally, the desired product 4a was
obtained by oxidative rearomatization of the intermediate
C.

|
te -
NH SH

©)LN/)\H© :Q)Nrﬂiﬁﬁj H,
A 3a

2H*

spoue
T
L
»
spoyjes

NH -S e oS
HN '\?’ HN” N » NH
N _H N
SREE S - 0
Scheme 3. Proposed Reaction Mechanism
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Scheme 4. Cyclic voltammograms, scan rate: 25 mV/s.

A) 1a (0.3 mmol) + n-BuyNBF, (0.3 mmol) in MeCN (10
mL); B) n-BuyNBF, (0.3 mmol) in MeCN (10 mL)

In summary, we have demonstrated an efficient and
atom-economic protocol for the construction of 3-
substituted 5-amino-1,2,4-thiadiazoles via
electrochemical oxidative dehydrogenative of N-S bond
formation. This electrochemical strategy provides a
simple and efficient method for the synthesis of 1,2,4-
thiadiazole derivatives in good to excellent yields with
broad substrate scope under mild conditions, which
avoids use of metal catalysts and stoichiometric oxidants.

EXPERIMENTAL SECTION

General methods: 'H (400 MHz), *C{'H} (101 MHz)
spectra were recorded on a Bruker 400MHz spectrometer
in CDCl; or DMSO-dg using TMS as internal standard.
HRMS was recorded on a Bruker micrOTOF-Q II. Melting
uncorrected. The Pt plate

points  are electrode

(Iemx1emx0.15¢cm), Ni plate electrode
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1

2

2 (Iecmx1.5cmx0.15cm) and carbon rod electrode
5 (0.4cmx6cm) were obtained from Shanghai yueci
6 Electronic Technology Co., Ltd, China.

7 General procedure for synthesis of imidoyl thioureas 1
g or 3:% 5 Amidine (0.3 mmol), isothiocyanate (0.33 mmol),
10 and K,CO; (0.45 mmol, 62 mg) in 2 mL dichloromethane,
1 and stirred for 20 h at room temperature. Upon completion
1; of the reaction, the mixture was washed with water, and
1;‘ extracted with ethyl acetate (3%20 mL ). The combined
1? organic layers were dried over anhydrous Na,SO,,
18 concentrated, and afford the target products without further
19 purification.

20 General procedure for synthesis of 2 or 4: In 25 mL two-
;; necked round bottom flask, with carbon rod anode, Pt plate
23 cathode (1cmx1cm), 0.3 mmol imidoyl thiourea 1 or 3, n-
24 BuyNBF, (0.3 mmol, 99 mg) and MeCN (10 mL). The
;2 mixture was magnetic stirred with constant current 10 mA
27 at room temperature for 1-2 hour. Upon completion of the
28 reaction, the mixture was concentrated in vacuo and the
gg residue was purified by column chromatography
31 (EtOAc/n-Hexane=1:10) to afford the desired products 2
32 or 4.

33 3-phenyl-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (2a).5
gg White solid, mp 154-156 °C, yield: 85% (68 mg). 'H NMR
36 (400 MHz, CDCl3) 4 8.77 (s, 1H), 8.24 — 8.14 (m, 2H), 7.48
37 —17.39 (m, 3H), 7.16 (d, J= 8.1 Hz, 2H), 7.11 — 7.03 (m, 2H),
gg 2.33 (s, 3H). BC{'H} NMR (101 MHz, CDCl;) & 181.6,
40 169.5, 136.8, 134.6, 133.0, 130.4, 130.2, 128.7, 128.1, 119.1,
41 21.0.

jé N, 3-di-p-tolyl-1,2,4-thiadiazol-5-amine (2b).6 White solid,
44 mp 180-183 °C, yield: 87% (73 mg). 'H NMR (400 MHz,
45 CDCl;) 8 8.35 (d, J=19.8 Hz, 1H), 8.18 —8.01 (m, 2H), 7.25
46 —7.15 (m, 4H), 7.13 — 7.08 (m, 2H), 2.39 (s, 3H), 2.35 (s, 3H).
j; BC{'H} NMR (101 MHz, CDCl;) & 181.2, 169.5, 140.3,
49 136.7, 134.4, 130.4, 130.3, 129.3, 127.9, 118.9, 21.5, 20.9.
50 3-(4-methoxyphenyl)-N-(p-tolyl)-1,2,4-thiadiazol-5-

g; amine (2¢). White solid, mp 145-147 °C, yield: 83% (74
53 mg). 'H NMR (400 MHz, CDCl;) 6 8.97 (2brs, 1H), 8.12 (d,
54 J=28.9 Hz, 2H), 7.14 (d, J= 7.9 Hz, 2H), 7.07 (d, J= 8.3 Hz,
gg 2H), 6.91 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 2.32 (s, 3H).
57 BC{'H} NMR (101 MHz, CDCl;) & 181.5, 169.2, 161.2,
58 136.9, 134.4, 130.4, 129.7, 125.9, 119.1, 114.0, 55.5, 21.0.
Zg HRMS (ESI-TOF) m/z caled for CigH gNsOS [M+H]*

The Journal of Organic Chemistry

298.1009, found 298.1003.
3-(4-fluorophenyl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine
(2d). White solid, mp 198-200 °C, yield: 82% (70 mg). 'H
NMR (400 MHz, DMSO-d;) 6 11.01 (s, 1H), 8.38 — 8.13 (m,
2H), 7.54 (d, J = 8.5 Hz, 2H), 7.42 — 7.34 (m, 2H), 7.26 (d, J
= 8.2 Hz, 2H), 2.32 (s, 3H). *C{'H} NMR (101 MHz,
DMSO-dg) 6 180.0, 168.1, 162.6, 138.1, 132.8, 130.5, 130.4,
130.1,118.5,116.4 (d,J=22.0 Hz), 21.1. ”F NMR (376 MHz,
DMSO-dg) 6 -110.56. HRMS (ESI-TOF) m/z caled for
C;5H3FN3S [M+H]* 286.0809, found 286.0813.
3-(4-chlorophenyl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine
(2e).° White solid, mp 220-222 °C, yield: 78% (70 mg). 'H
NMR (400 MHz, DMSO-d;) 6 11.04 (s, 1H), 8.32 — 8.13 (m,
2H), 7.67 — 7.58 (m, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.26 (d, J
= 8.2 Hz, 2H), 2.32 (s, 3H). *C{'H} NMR (101 MHz,
DMSO-dg) 6 180.2, 168.3, 138.2, 135.7, 133.0, 132.4, 130.7,
130.1, 129.8, 118.8, 21.3.
3-(4-bromophenyl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine
(2£).5 White solid, mp 240-242 °C, yield: 75% (78 mg). 'H
NMR (400 MHz, DMSO-d;) 6 11.02 (s, 1H), 8.19 — 8.09 (m,
2H), 7.79 — 7.74 (m, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.27 (d, J
= 8.3 Hz, 2H), 2.33 (s, 3H). BC{'H} NMR (101 MHz,
DMSO-dg) 6 180.0, 168.0, 137.9, 132.7, 132.4, 132.3, 130.3,
130.0, 124.2, 118.5, 21.0.
3-(pyridin-4-yl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine
(2g).> White solid, mp 240-242 °C, yield: 86% (69 mg).
"H NMR (400 MHz, DMSO-d¢) 6 11.04 (s, 1H), 8.72 (d, J =
6.0 Hz, 2H), 8.02 (d, J = 6.2 Hz, 2H), 7.52 (d, /= 8.5 Hz,
2H), 7.24 (d, J = 7.4 Hz, 2H), 2.28 (s, 3H). BC{'H} NMR
(101 MHz, DMSO-dg) 6 181.2, 167.7, 151.2, 140.0, 138.2,
133.1, 130.3, 122.2, 118.7, 21.1.
3-(pyridin-3-yl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine
(2h).> 78% White solid, mp 238-240 °C, yield: 82% (66
mg). 'H NMR (400 MHz, CDCl3) § 7.76 (s, 1H), 7.27 — 7.11
(m, 8H), 2.35 (s, 3H). *C{'H} NMR (101 MHz, CDCl;) &
181.4, 180.4, 137.3, 136.0, 134.5, 130.2, 130.0, 129.5, 126.5,
125.6, 125.6.
3-(1H-pyrazol-1-yl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine
(2i).> White solid, mp 200-202 °C, yield: 80% (62 mg). 'H
NMR (400 MHz, CDCl3) 6 9.04 (s, 1H), 8.30 (d, /= 5.6 Hz,
1H), 7.53 (s, 1H), 7.28 — 7.12 (m, 4H), 6.46 — 6.35 (m, 1H),
2.36 (s, 3H). BC{'H} NMR (101 MHz, CDCl;) & 183.3,
158.5, 142.9, 136.3, 135.6, 130.4, 128.9, 121.0, 108.0, 21.1.
3-methyl-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (2§).6
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White solid, mp 144-147 °C, yield: 89% (55 mg). 'H NMR
(400 MHz, CDCl5) & 9.66 (s, 1H), 7.22 (d, J = 8.2 Hz, 2H),
7.19—7.11 (m, 2H), 2.43 (s, 3H), 2.36 (s, 3H). 3C{'H} NMR
(101 MHz, CDCl;) 6 182.3,169.5, 137.0, 134.9, 130.4, 119.8,
20.9, 19.1.
3-cyclopropyl-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (2k).¢
White solid, mp 135-137 °C, yield: 88% (61 mg). 'H NMR
(400 MHz, CDCl;) & 8.64 (s, 1H), 7.12 (d, J = 8.2 Hz, 2H),
7.07 - 7.01 (m, 2H), 2.27 (s, 3H), 2.03 (ddd, /= 13.2, 8.3, 4.9
Hz, 1H), 0.99 (dt, J = 6.2, 3.1 Hz, 2H), 0.89 (dt, J = 8.3, 3.2
Hz, 2H). BC{'H} NMR (101 MHz, CDCl;) § 181.3, 174.9,
137.0, 134.5, 130.4, 119.2, 21.0, 13.7, 9.0.
N,3-diphenyl-1,2,4-thiadiazol-5-amine (4a).> White solid,
mp 174-175 °C, yield: 86% (65 mg). 'H NMR (400 MHz,
CDCl;) & 8.28 (s, 1H), 8.15 — 8.12 (m, 2H), 7.39 — 7.32 (m,
5H), 7.20 - 7.16 (m, 2H), 7.13 — 7.07 (m, 1H). 3C{'H} NMR
(101 MHz, CDCl;) 6 180.8, 169.5, 139.2, 133.0, 130.3, 130.0,
128.7, 128.1, 124.5, 118.5.
3-phenyl-N-(m-tolyl)-1,2,4-thiadiazol-5-amine (4b).?
White solid, mp 108-110 °C, yield: 84% (67 mg). 'H
NMR (400 MHz, CDCl;) § 9.27 (s, 1H), 8.27 — 8.13 (m,
2H), 7.42 (dd, J = 5.1, 1.8 Hz, 3H), 7.26 — 7.20 (m, 1H),
7.00 (dd, J = 8.0, 2.3 Hz, 1H), 6.92 (d, J= 7.6 Hz, 1H), 6.87
(s, 1H), 2.24 (s, 3H). >*C{'H} NMR (101 MHz, CDCl;) §
181.3, 169.3, 140.0, 139.2, 132.9, 130.3, 129.7, 128.7,
128.2,125.3,119.6, 115.3, 21.5.
3-phenyl-N-(o-tolyl)-1,2,4-thiadiazol-5-amine (4¢).°
White solid, mp 167-170 °C, yield: 83% (66 mg). 'H NMR
(400 MHz, CDCLy) 8 8.55 (s, 1H), 8.15 — 8.06 (m, 2H), 7.46
(d,J=7.9 Hz, 1H), 7.42 — 7.23 (m, 4H), 7.18 (td, J= 7.4, 1.2
Hz, 1H), 2.29 (s, 3H). 3C{'H} NMR (101 MHz, CDCL;) &
183.2,169.7, 137.9, 133.0, 131.6, 130.9, 130.1, 128.6, 127.9,
127.7,126.4, 121.3, 17.8.
N-(4-isopropylphenyl)-3-phenyl-1,2,4-thiadiazol-5-amine
(4d).> White solid, mp 130-132 °C, yield: 89% (79 mg). 'H
NMR (400 MHz, CDCls) 5 8.58 (s, 1H), 8.17 — 8.07 (m, 2H),
7.39~7.31 (m, 3H), 7.18 — 7.12 (m, 2H), 7.10 — 7.03 (m, 2H),
2.83 (hept, J= 6.9 Hz, 1H), 1.18 (s, 3H), 1.16 (s, 3H). 3C{'H}
NMR (101 MHz, CDCl;) 6 181.4, 169.5, 145.5, 137.0, 133.0,
130.2, 128.7, 128.1, 127.9, 119.0, 33.7, 24.1.
N-(4-(tert-butyl)phenyl)-3-phenyl-1,2,4-thiadiazol-5-
amine (4e). White solid, mp 145-147 °C, yield: 92% (85
mg). 'H NMR (400 MHz, CDCL;) § 9.21 (s, 1H), 8.23 — 8.15
(m, 2H), 7.42 — 7.31 (m, 5H), 7.13 — 7.07 (m, 2H), 1.30 (s,

9H). 3C{'H} NMR (101 MHz, CDCl;) § 181.5, 169.4, 147.7,
136.7, 132.9, 130.2, 128.6, 128.1, 126.7, 118.7, 34.5, 31.4.
HRMS (ESI-TOF) m/z caled for CigHN;S [M+H]*
310.1372, found 310.1368
N-(2,4-dimethylphenyl)-3-phenyl-1,2,4-thiadiazol-5-
amine (4f). White solid, mp 132-135 °C, yield: 87% (73
mg). '"H NMR (400 MHz, CDCl;) & 8.60 (s, 1H), 8.07 (d, J=
6.8 Hz, 2H), 7.40 — 7.28 (m, 4H), 7.13 — 7.06 (m, 2H), 2.34
(s, 3H), 2.24 (s, 3H). BC{'H} NMR (101 MHz, CDCL;) &
184.1, 169.8, 136.8, 135.4, 133.0, 132.3, 131.8, 130.0, 128.5,
128.2,127.9,122.6,21.1, 17.7. HRMS (ESI-TOF) m/z calcd
for C¢H16N3S [M+H]* 282.1059, found 282.1054.
N-(4-methoxyphenyl)-3-phenyl-1,2,4-thiadiazol-5-amine
(4g).> White solid, mp 117-120 °C, yield: 84% (71 mg). 'H
NMR (400 MHz, CDCl;) 6 8.47 (s, 1H), 8.20 — 8.12 (m, 2H),
7.41 (dd, J = 5.2, 2.0 Hz, 3H), 7.22 — 7.18 (m, 2H), 6.95 —
6.89 (m, 2H), 3.82 (s, 3H). '*C{'H} NMR (101 MHz, CDCl,)
5182.9,169.7,157.3,133.1, 132.5,130.2, 128.7, 128.1, 122.2,
115.2,55.7.
N-(4-ethoxyphenyl)-3-phenyl-1,2,4-thiadiazol-5-amine
(4h). White solid, mp 135-137 °C, yield: 87% (78 mg). 'H
NMR (400 MHz, CDCl;) 6 8.80 (s, 1H), 8.15 —7.98 (m, 2H),
7.38—7.27 (m, 3H), 7.13 — 7.03 (m, 2H), 6.85 — 6.74 (m, 2H),
3.94 (q,J=7.0 Hz, 2H), 1.34 (t, /= 7.0 Hz, 3H).

BC{'H} NMR (101 MHz, CDCl;) & 183.1, 169.7, 156.7,
133.0, 132.4, 130.2, 128.6, 128.0, 122.2, 115.6, 63.9, 14.9.
HRMS (ESI-TOF) m/z caled for C¢H¢N;OS [M+H]*
298.1009, found 298.1003.
N-(4-fluorophenyl)-3-phenyl-1,2,4-thiadiazol-5-amine
(4i).°> White solid, mp 170-172 °C, yield: 86% (70 mg). 'H
NMR (400 MHz, DMSO-d;) 6 11.08 (s, 1H), 8.30 — 8.17 (m,
2H), 7.79 —7.70 (m, 2H), 7.60 — 7.52 (m, 3H), 7.36 — 7.28 (m,
2H). BC{'H} NMR (101 MHz, DMSO-d) & 180.1, 169.5,
158.8 (d, J=240.4 Hz), 137.3 (d, J = 3.0 Hz), 133.7, 131.2,
129.7,128.5,120.5 (d, /= 8.1 Hz), 117.0 (d, J=23.2 Hz). '°F
NMR (376 MHz, DMSO-dg) 5 -119.75.
N-(4-chlorophenyl)-3-phenyl-1,2,4-thiadiazol-5-amine
(4j).> White solid, mp 194-196 °C, yield: 83% (71 mg).
"H NMR (400 MHz, DMSO-d;) 8 11.12 (s, 1H), 8.20 —
8.18 (m, 2H), 7.72 (d, /= 8.9 Hz, 2H), 7.53 — 7.48 (m,
5H). BC{'H} NMR (101 MHz, DMSO-dj) & 179.6,
169.1, 139.5, 133.2, 130.7, 129.7, 129.2, 128.3, 126.9,
119.7.
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N-(3-chlorophenyl)-3-phenyl-1,2,4-thiadiazol-5-amine
(4K).> White solid, mp 156-158 °C, yield: 74% (64 mg).
'H NMR (400 MHz, CDCI3) 5 8.58 (s, 1H), 8.21 — 8.18
(m, 2H), 7.46 — 7.43 (m, 3H), 7.31 — 7.26 (m, 2H), 7.15 —
7.09 (m, 2H). BC{'H} NMR (101 MHz, CDCl;) & 169.6,
140.3, 135.6, 132.8, 130.9, 130.5, 130.4, 128.8, 128.1,
124.3, 118.6, 116.2.
N-(naphthalen-1-yl)-3-phenyl-1,2,4-thiadiazol-5-amine
(41).> White solid, mp 150-152 °C, yield: 85% (77 mg).

'"H NMR (400 MHz, CDCl;) 3 9.30 (s, 1H), 8.04 — 7.89 (m,
3H), 7.85 - 7.78 (m, 1H), 7.72 (d, J= 8.3 Hz, 1H), 7.58 (dd,
J=17.4,09 Hz, 1H), 7.48 — 7.36 (m, 3H), 7.23 — 7.15 (m,
1H), 7.10 (t, J = 7.6 Hz, 2H). 3C{'H} NMR (101 MHz,
CDCl;) 6 184.4, 169.9, 135.5, 134.7, 132.9, 130.0, 128.8,
128.4, 127.9, 127.9, 127.3, 127.1, 127.0, 125.87, 121.4,
119.7.

N-benzyl-3-phenyl-1,2,4-thiadiazol-5-amine (4m).> White
solid, mp 100-103 °C, yield: 78% (62 mg). 'H NMR (400
MHz, CDCl;) 6 8.10—8.03 (m, 2H), 7.35—-7.23 (m, 8H), 6.85
(s, 1H), 4.40 (d, J = 5.5 Hz, 2H). 3C{'H} NMR (101 MHz,
CDCl;) 6 184.7, 169.9, 136.2, 133.3, 130.1, 129.0, 128.6,
128.3, 128.0, 127.7, 50.6.
N-(tert-butyl)-3-phenyl-1,2,4-thiadiazol-5-amine (4n).
Yellow liquid, yield: 84% (59 mg). 'H NMR (400 MHz,
CDCl;) 6 9.13 (s, 1H), 8.12 — 8.02 (m, 2H), 7.32 — 7.23 (m,
5H), 7.04 — 7.00 (m, 2H), 1.22 (s, 9H). BC{'H} NMR (101
MHz, CDCl;) 6 181.6, 169.3, 133.3, 129.9, 128.6, 128.0, 53.2,
28.6. HRMS (ESI-TOF) m/z calcd for C,H gN3;S [M+H]*
234.1059, found 234.1063.
N-(sec-butyl)-3-phenyl-1,2,4-thiadiazol-5-amine (40).
Yellow liquid, yield: 80% (56 mg). 'H NMR (400 MHz,
CDCl;) 6 8.16 — 8.03 (m, 2H), 7.35 (dd, J = 5.2, 2.0 Hz, 3H),
5.98 (d, J = 8.5 Hz, 1H), 3.25 (dh, J= 8.3, 6.4 Hz, 1H), 1.52
(qd, J=17.4, 6.3 Hz, 2H), 1.20 (d, J = 6.5 Hz, 3H), 0.89 (t, J
= 7.4 Hz, 3H). ®C{'H} NMR (101 MHz, CDCl;) & 184.0,
170.0, 133.3, 130.0, 128.6, 128.0, 55.3, 29.7, 20.3, 10.5.
HRMS (ESI-TOF) m/z calcd for C;H;¢N3S [M+H]*
234.1059, found 234.1056.

Supporting Information Available: The copies of 'H and
BC{'H} NMR spectra (PDF). This material is available
free of charge via the Internet at http://pubs.acs.org.
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