
This article was downloaded by: [Tufts University] On: 10 December 2014, At: 09:45 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/gpss20</u>

The Synthesis and Antibacterial Activities of 2,5-Bis[(3aryl)-1,2,4-triazolo[3,4b]-[1,3,4] thiadiazole-6yl]thiophenes

Dejiang Li^a & Heqing Fu^b

^a College of Chemistry and Life Science, China Three Gorges University, Yichang, P. R. China

^b Research Institute of Chemical Engineering, South China University of Technology, Guangzhou, P. R. China

Published online: 12 Aug 2008.

To cite this article: Dejiang Li & Heqing Fu (2008) The Synthesis and Antibacterial Activities of 2,5-Bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophenes, Phosphorus, Sulfur, and Silicon and the Related Elements, 183:9, 2229-2236, DOI: 10.1080/10426500701852794

To link to this article: http://dx.doi.org/10.1080/10426500701852794

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the

Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

The Synthesis and Antibacterial Activities of 2,5-Bis[(3-aryl)-1,2,4-triazolo[3,4-*b*]-[1,3,4] thiadiazole-6-yl]thiophenes

Dejiang Li¹ and Heqing Fu²

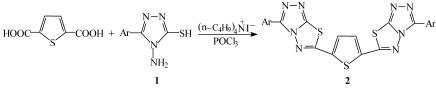
¹College of Chemistry and Life Science, China Three Gorges University, Yichang, P. R. China ²Research Institute of Chemical Engineering, South China University of Technology, Guangzhou, P. R. China

2,5-bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophenes **2** were synthesized in high yields by cyclization of 3-aryl 4-amino-5-mercapto-1,2,4-triazole **1** with thiophene-2,5-dicarboxylic acid in the presence of POCl₃ and tetrabutylammonium iodide as catalyst. The preliminary antibacterial tests showed that most of them were effective against S. aureus, E. coli and B. subtilis. Compounds **2b**, **2c**, **2d**, **2m**, **2n**, and **2o** exhibited promising antibacterial activity. Compounds **2** were screened for their fungicidal activities against Gibberella zeae, Cerospora beticola sacc, Physalospora piricola and Pellicularia sasakii. Compounds **2b**, **2c**, and **2d** showed a high degree of inhibition against Cerospora beticola sacc.

INTRODUCTION

Bis[1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-4-yl]alkanes were reported to possess antibacterial property¹ and bis[1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-3-ylmethoxy] phenylenes possess anticancer activity against a panel of 60 cell lines derived from seven cancer types namely, lung, colon, melanoma, renal, ovarian, CNS and leukemia.² 2,6-Bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]pyridines endowed with good fungicidal activities against *Cerospora beticola sacc* have been reported from our laboratory.³ Prompted by these

Received October 2, 2007; accepted December 3, 2007.


We gratefully acknowledge financial support of this work by the Natural Science Foundation of Hubei Province Education Committee of China (Project No. D200660001).

Address correspondence to Dejiang Li, College of Chemistry and Life Science, China Three Gorges University, Yichang 443002, P. R. China. E-mail: lidejiang999@ yahoo.com.cn

observations and in continuation of our search for bioactive molecules, we designed a facile one-pot method to prepare a series of novel 2,5-bis[(3-aryl)-1,2,4-triazolo[3,4-*b*]-[1,3,4]thiadiazole-6-yl]thiophene by cyclization of 3-aryl-4-amino-5-mercapto-1,2,4-triazoles with thiophene-2,5-dicarboxylic acid. The synthesis, characterization and the results of antibacterial activities screening studies of the newly synthesized compounds are presented in this paper.

RESULTS AND DISCUSSION

The synthesis of 2,5-bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophenes **2** were accomplished in one-step with good yields by condensing 3-aryl-4-amino-5-mercapto-1,2,4-triazoles **1** with thiophene-2,5-dicarboxylic acid in the presence of POCl₃ and tetrabutylammonium iodide as catalyst (Scheme 1) (Table 1). Because of the poor solubility of **1** and thiophene 2,5-dicarboxylic acid in POCl₃, the yield of **2** is very low. For example, the yield of **2a** was 41%. However, where the tetrabutylammonium iodide as phase transfer catalyst were utilized and the mixture was first stirred for 6 h at 55–60°C, then refluxed for 10–14 h at 115–120°C. For example, **2a** was obtained in 87% yield.

SCHEME 1

The IR spectral data of compounds **2** showed bands at 1615–1645 cm⁻¹, 1235–1260 cm⁻¹, and 700–720 cm⁻¹ due to C=N, N–N=C and C–S–C, respectively. The ¹H NMR spectra of **2** exhibited multiple signals in the δ 8.40–7.60 range accounting for hydrogen of aryl group. The ¹³C NMR spectra displayed the characteristic signals of all carbons. With compound **2a** as an example, it exhibited multiple signals in the δ 8.39–8.37, 8.09–7.78 ranges accounting for the 12 hydrogens of phenyl and thiophene group. The EI-MS for compounds **2** exhibited molecular ion peaks. With compound **2a** as an example, it showed a strong molecular ion peak M⁺ with m/z 484 and 33% relative abundance.

Compounds **2** were screened for their antibacterial activities against *E. coli*, *S. aureus*, and *B. subtilis* employing the cup-plate method at the concentration of 100 μ g/mL in the nutrient agar. The preliminary results indicated that most of compounds were effective against *S. aureus*, *E. coli and B. subtilis* (see Table II).

Entry	Ar	Condition	Yield (%) ^a	M.p. (°C)
2a	Ph	115–120°C/13 h	87	>300
2b	2-Cl—Ph	115–120°C/11 h	72	>300
2c	3-Cl—Ph	115–120°C/12 h	85	>300
2d	4-Cl—Ph	115–120°C/12 h	76	>300
2e	2-CH ₃ —Ph	115–120°C/14 h	64	>300
2f	3-CH ₃ —Ph	115–120°C/14 h	67	>300
$2\mathbf{g}$	4-CH ₃ -Ph	115–120°C/13 h	70	>300
2h	3-Br—Ph	115–120°C/12 h	68	>300
2i	4-Br—Ph	115–120°C/13 h	70	>300
2j	2-I—Ph	115–120°C/12 h	65	>300
2k	3-I Ph	$115-120^{\circ}C/11h$	71	>300
21	4-I—Ph	115–120°C/12 h	77	>300
2m	4-OCH ₃ —Ph	115–120°C/13 h	80	>300
2n	4-Pyridyl	115–120°C/10 h	71	>300
2o	3-Pyridyl	115–120°C/10 h	65	>300

 TABLE I Preparation of 2,5-Bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]

 thiadiazole-6-yl]thiophene 2 from 3-Aryl-4-amino-5-mercapto-1,2,

 4-triazoles 1

^aPurified yields of **2a-2o** based on thiophene-2,5-dicarboxylic acid.

Compounds **2** were screened for their fungicidal activities against Gibberella zeae, *Cerospora beticola sacc*, *Physalospora piricola* and *Pellicularia sasakii*. Among all the compounds tested, **2b**, **2c** and **2d** showed a high degree of inhibition against *Cerospora beticola sacc* (see Table III).

Compd.	S . $aureus$	E. coli	B. subtilis
2a	52	47	78
2b	94	75	95
2c	92	87	96
2d	94	91	97
2e	34	42	46
3f	68	40	75
2g	56	25	31
2 h	54	43	70
2i	75	52	81
2j	36	32	52
2k	35	46	57
21	41	32	36
2m	90	68	85
2n	95	97	94
2o	93	95	96

TABLE II The Antibacterial Activities ofCompounds 2 (100 mg/L, Relative Inhibition %)

Entry	Gibberella zeae	Cerospora beticola sacc	Physalospora piricola	Pelliculario sasakii
2a	30	75	62	40
2b	56	95	82	81
2c	63	96	79	90
2d	74	97	81	82
2e	30	79	68	32
2f	35	76	62	42
2g	39	71	56	25
2h	41	76	55	43
2i	35	85	43	39
2j	31	87	50	43
2k	31	84	51	30
21	28	81	52	32
2m	38	76	32	40
2n	52	92	76	51
2o	61	90	73	55

TABLE III The Fungicidal Activities of 2 (50 mg/L, Relative Inhibition %)

CONCLUSION

In conclusion, tetrabutylammonium iodide is an efficient catalyst for the synthesis of 2,5-bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophene by reaction of 3-aryl-4-amino-5-mercapto-1, 2, 4triazoles with thiophene-2,5-dicarboxylic acid. Among all the compounds tested, **2b**, **2c**, **2d**, **2n** and **2o** showed were effective against *S. aureus, E. coli, and B. subtilis.* Hence, **2b**, **2c**, **2d**, **2m**, **2n**, and **2o** stand to be a promising antibacterial agent. Among all the compounds tested, **2b**, **2c**, and **2d** showed a high degree of inhibition against *Cerospora beticola sacc.*

EXPERIMENTAL

Melting points were determined on an X_4 melting point apparatus and were uncorrected. The IR spectra were recorded on a Nicolet Nexus 470 FT-IR spectrophotometer using KBr discs in the range 4000–4400 cm⁻¹. ¹H NMR spectra were recorded on a Varian Mercury-Plus (400 MHz) spectrometer in CF₃COOD or pyridine- d_5 solution using TMS as an internal reference, and ¹³C NMR spectra were recorded on a Varian Mercury-Plus (100 MHz) spectrometer in CF₃COOD or pyridine- d_5 solution using TMS as an internal reference. MS spectra were recorded on a Finnigan Trace GC-MS spectrometer. Elemental Analyses were taken on a Perkin-Elemer-2400-CHN Elemental Analysis Instrument.

The General Procedure for the Preparation of 3-Aryl-4amino-5-mercapto-1,2,4-triazoles from Aromatic Carboxylic Acids by Four Steps According to the Literature³⁻⁵

The General Procedure for the Preparation of 2,5-Bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophene 2

A mixture of compound 3-aryl-4-amino-5-mercapto-1,2,4-triazole (2.2 mmol), thiophene-2,5-dicarboxylic acid (0.182 g, 1.0 mmol), the phase transfer catalyst tetrabutylammonium iodide (0.185 g, 0.5 mmol), and POCl₃ (7 mL) was stirred for 6 h at 55–60°C, and then refluxed for 10–14 h at 115–120°C. Excess POCl₃ was removed under reduced pressure. The concentrated mass was cooled, poured into crushed ice, and neutralized with potassium carbonate. The separated solid was filtered, washed with water, ethanol, and then dried. The crude material was recrystallized (ethanol-pyridine), giving the pure products **2a-o**.

2,5-Bis[(3-phenyl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6yl]thiophene (2a)

Yellow powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.39–8.37 (m, 4H, Ar–H), 8.09–7.78 (m, 8H, Ar–H); ¹³C NMR (100 MHz, ppm): 164.1, 159.3, 152.5, 147.4, 145.6, 138.1, 128.6, 127.4, 122.3; IR (KBr, cm⁻¹): 1630, 1244, 712; MS-EI (*m*/*z*): 484 (M⁺, 33%), 327 (30%), 309 (15%), 152 (100%), 103 (29%). Elemental anal. calcd. for C₂₂H₁₂N₈S₃: C, 54.53; H, 2.50; N, 23.12. Found: C, 54.71; H, 2.52; N, 23.01.

2,5-Bis[(3-o-chlorophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2b)

Pale yellow powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.38–8.34 (m, 4H, Ar–H), 8.07–7.66 (m, 6H, Ar–H); ¹³C NMR (100 MHz, ppm): 160.6, 157.8, 147.9, 146.3, 142.7, 138.2, 132.9, 128.7, 128.5, 126.7, 125.1; IR (KBr, cm⁻¹): 1621, 1234, 708. MS-EI (*m*/*z*): 556 (M+4, 3%), 554 (M+2, 14%), 552 (M⁺, 22%), 361 (15%), 343 (14%), 152 (100%), 102 (16%). Elemental anal. calcd. for C₂₂H₁₀N₈S₃Cl₂: C, 47.74; H, 1.82; N, 20.24. Found: C, 47.89; H, 1.76; N, 20.08.

2,5-Bis[(3-m-chlorophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2c)

Pale yellow powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.33–8.27 (m, 4H, Ar–H), 8.18–8.12 (m, 3H, Ar–H), 7.85–7.78 (m, 3H, Ar–H);¹³C NMR (100 MHz, ppm): 162.1, 158.3, 156.4, 153.3, 148.7, 139.1, 126.7, 135.1, 129.3, 128.9, 124.5; IR (KBr, cm⁻¹): 1620, 1231, 711. MS-EI (*m/z*): 556 (M+4, 4%), 554 (M+2, 10%), 552 (M⁺, 19%), 361 (12%), 343 (21%), 152 (100%), 102 (4%). Elemental anal. calcd. for C₂₂H₁₀N₈S₃Cl₂: C, 47.74; H, 1.82; N, 20.24. Found: C, 47.91; H, 1.85; N, 20.11.

2,5-Bis[(3-p-chlorophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2d)

Yellow powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.38–8.35 (m, 4H, Ar–H), 8.10 (s, 2H, Ar–H), 7.80–7.77 (m, 4H, Ar–H);¹³C NMR (100 MHz, ppm): 159.2, 157.3, 155.1, 148.7, 145.6, 136.1, 134.5, 129.7, 127.5; IR (KBr, cm⁻¹): 1631, 1246, 715. MS-EI (*m/z*): 556 (M+4, 4%), 554 (M+2, 21%), 552 (M⁺, 25%), 361 (18%), 343 (25%), 152 (100%), 102 (5%). Elemental anal. calcd. for C₂₂H₁₀N₈S₃Cl₂: C, 47.74; H, 1.82; N, 20.24. Found: C, 47.60; H, 1.79; N, 20.38.

2,5-Bis[(3-o-methylphenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2e)

Yellow powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.37–8.34 (m, 2H, ArH), 8.19–8.15 (m, 3H, Ar–H), 7.62–7.57 (m, 5H, Ar–H), 2.58 (s, 6H, 2CH₃); ¹³C NMR (100 MHz, ppm): 156.1, 153.3, 149.1, 142.7, 140.5, 138.7, 135.4, 129.1, 128.2, 126.4, 123.2, 20.79 (CH₃); IR (KBr, cm⁻¹): 1642, 1251, 718. MS-EI (*m*/*z*): 512 (M⁺, 25%), 341 (12%), 323 (51%), 152 (100%). Elemental anal. calcd. for C₂₄H₁₆N₈S₃: C, 56.23; H, 3.14; N, 21.86. Found: C, 56.05; H, 3.18; N, 21.98.

2,5-Bis[(3-m-methylphenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2f)

Pale yellow powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.41–8.38 (m, 3H, ArH), 8.21–8.16 (m, 2H, Ar–H), 7.79–7.74 (m, 5H, Ar–H), 2.57 (s, 6H, 2CH₃); ¹³C NMR (100 MHz, ppm): 153.7, 150.5, 148.7, 145.3, 140.2, 137.6, 128.1, 126.3, 123.2, 21.5(CH₃); IR (KBr, cm⁻¹): 1628, 1236, 714. MS-EI (*m*/*z*): 512 (M⁺, 39%), 341 (28%), 323 (40%), 152 (100%). Elemental anal. calcd. for C₂₄H₁₆N₈S₃: C, 56.23; H, 3.14; N, 21.86. Found: C, 56.41; H, 3.20; N, 21.71.

2,5-Bis[(3-p-methylphenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2g)

Yellow powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.30–8.27 (m, 4H, ArH), 8.09 (s, 2H, Ar–H), 7.65–7.62 (m, 4H, Ar–H), 2.60 (s, 6H, 2CH₃);¹³C NMR (100 MHz, ppm): 148.7, 145.4, 142.2, 140.7, 138.2,136.9, 133.1, 129.4, 126.5, 19.8(CH₃); IR (KBr, cm⁻¹): 1640, 1243, 717. MS-EI (*m/z*): 512 (M⁺, 48%), 341 (41%), 323 (50%), 152 (100%). Elemental anal. calcd. for C₂₄H₁₆N₈S₃: C, 56.23; H, 3.14; N, 21.86. Found: C, 56.36; H, 3.01; N, 21.69.

2,5-Bis[(3-m-bromophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2h)

Brown powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.32–8.28 (m, 3H, Ar–H), 8.09–8.05 (m, 3H, Ar–H), 7.71–7.68 (m, 4H, Ar–H); ¹³C NMR

(100 MHz, ppm): 160.2, 157.3, 153.1, 147.6, 145.1, 140.2, 131.2, 130.8, 128.7, 125.5. 123.3; IR (KBr, cm⁻¹): 1619, 1252, 704. MS-EI (*m/z*): 644 (M+4, 5%), 642 (M+2, 5%), 640 (M⁺, 6%), 405 (19%), 387 (42%), 181 (63), 152 (100%). Elemental anal. calcd. for $C_{22}H_{10}N_8S_3Br_2$: C, 41.13; H, 1.57; N, 17.44. Found: C, 41.02; H, 1.63; N, 17.59.

2,5-Bis[(3-p-bromophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2i)

Brown powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.30–8.27 (m, 4H, Ar–H), 8.09 (s, 2H, Ar–H), 7.65–7.62 (m, 4H, Ar–H);¹³C NMR (100 MHz, ppm): 159.4, 156.5, 153.1, 147.2, 142.5, 137.1, 132.2, 128.9, 122.1; IR (KBr, cm⁻¹): 1621, 1230, 708. MS-EI (*m/z*): 644 (M+4, 7%), 642 (M+2, 6%), 640 (M⁺, 7%), 405 (16%), 387 (53%), 181 (72), 152 (100%). Elemental anal. calcd. for C₂₂H₁₀N₈S₃Br₂: C, 41.13; H, 1.57; N, 17.44. Found: C, 41.29; H, 1.49; N, 17.30.

2,5-Bis[(3-o-iodophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2j)

Yellow powder, ¹H NMR (Pyridine- d_5 , 400 MHz): δ 8.31–8.28 (m, 3H, Ar–H), 8.24–8.21 (m, 2H, Ar–H), 7.53–7.49 (m, 5H, Ar–H); ¹³C NMR (100 MHz, ppm):161.3, 157.2, 154.1, 150.2, 147.8, 142.6, 139.9, 130.9, 127.7, 98.6; IR (KBr, cm⁻¹): 1638, 1241, 716. MS-EI (*m*/*z*): 736 (M⁺, 29%), 453 (3%), 435 (11%), 152 (60%), 102 (100%). Elemental anal. calcd. for C₂₂H₁₀N₈S₃I₂: C, 35.88; H, 1.37; N, 15.22. Found: C, 36.05; H, 1.30; N, 15.03.

2,5-Bis[(3-m-iodophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2k)

Yellow powder, ¹H NMR (Pyridine- d_5 , 400 MHz): δ 8.29–8.26 (m, 2H, Ar–H), 8.16–8.12 (m, 5H, Ar–H), 7.67–7.62 (m, 3H, Ar–H),¹³C NMR (100 MHz, ppm):159.4, 155.1, 150.2, 147.6, 145.3, 143.2, 140.9, 138.7, 136.7, 127.4, 96.8; IR (KBr, cm⁻¹): 1627, 1239, 713. MS-EI (*m*/*z*): 736 (M⁺, 31%), 453 (7%), 435 (10%), 152 (48%), 102 (100%). Elemental anal. calcd. for C₂₂H₁₀N₈S₃I₂: C, 35.88; H, 1.37; N, 15.22. Found: C, 36.03; H, 1.42; N, 15.10.

2,5-Bis[(3-p-iodophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2l)

Yellow powder, ¹H NMR (Pyridine- d_5 , 400 MHz): δ 8.35–8.31 (m, 4H, Ar–H), 8.07 (s, 2H, Ar–H), 7.61–7.58 (m, 4H, Ar–H);¹³C NMR (100 MHz, ppm):157.6, 155.3, 153.1, 149.2, 147.5, 139.1, 129.4, 97.2; IR (KBr, cm⁻¹): 1641, 1254, 717. MS-EI (m/z): 736 (M⁺, 36%), 453 (4%), 435 (12%), 152 (59%), 102 (100%). Elemental anal. calcd. for C₂₂H₁₀N₈S₃I₂: C, 35.88; H, 1.37; N, 15.22. Found: C, 35.71; H, 1.33; N, 15.38.

2,5-Bis[(3-p-methoxyhenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2m)

Pale yellow powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.32–8.29 (m, 4H, Ar–H), 8.07 (s, 2H, Ar–H), 7.51–7.49 (m, 4H, Ar–H), 3.97 (s, 6H, 2OCH₃);¹³C NMR (100 MHz, ppm):162.1, 160.7, 157.7, 148.9, 145.1, 129.1, 126.5, 113.2, 58.7(OCH₃); IR (KBr, cm⁻¹): 1630, 1241, 706. MS-EI (*m*/*z*): 544 (M⁺, 42%), 357 (6%), 339 (8%), 152 (100%). Elemental anal. calcd. for C₂₄H₁₆N₈O₃S₂: C, 52.93; H, 2.96; N, 20.57. Found: C, 51.80; H, 2.89; N, 20.71.

2,5-Bis[(3-(3-4/-pyridyl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophene (2n)

Yellow powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.27–8.24 (m, 4H, Ar–H), 7.78–7.72 (m, 6H, Ar–H); ¹³C NMR (100 MHz, ppm): 164.3, 160.2, 159.1, 148.0, 143.2, 135.7, 123.9; IR (KBr, cm⁻¹): 1621, 1236, 703. MS-EI (*m*/*z*): 486 (M⁺, 21%), 328 (8%), 310 (25%), 152 (100%). Elemental anal. calcd. for C₂₀H₁₀N₁₀S₃: C, 49.37; H, 2.07; N, 28.79. Found: C, 49.50; H, 2.01; N, 28.62.

2,5-Bis[(3-(3–3/-pyridyl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophene (2n)

Yellow powder, ¹H NMR (CF₃COOD, 400 MHz): δ 8.22–8.19 (m, 3H, Ar–H), 8.15–8.12 (m, 3H, Ar–H), 7.68–7.64 (m, 4H, Ar–H); ¹³C NMR (100 MHz, ppm): 161.2, 158.1, 156.9, 153.2, 150.1, 149.3, 146.7, 143.2, 124.8; IR (KBr, cm⁻¹): 1630, 1229, 707. MS-EI (*m*/*z*): 486 (M⁺, 16%), 328 (5%), 310 (30%), 152 (100%). Elemental anal. calcd. for C₂₀H₁₀N₁₀S₃: C, 49.37; H, 2.07; N, 28.79. Found: C, 49.21; H, 2.12; N, 28.92.

REFERENCES

- [1] B. S. Holla, R. Gonsalves, and S. Shenoy, *I l Farmco*, 53, 574 (1998).
- [2] B. S. Holla, K. N. Poojary, B. S. Rao, and M. K. Shivananda, Eur. J. Med. Chem., 37, 511 (2002).
- [3] D. J. Li, D. Q. Long, and H. Q. Fu, Phosphorus, Sulfur, Silicon, Relat. Elem., 181, 2079 (2006).
- [4] D. J. Li, D. Q. Long, and H. Q. Fu, Phosphorus, Sulfur, Silicon, Relat. Elem., 181, 519 (2006).
- [5] D. J. Li, D. Q. Long, and H. Q. Fu, Synth. Commun., 35, 2495 (2005).