Bioorganic & Medicinal Chemistry Letters 20 (2010) 4444-4446

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Derivatives of tetrahydroisoquinoline: Synthesis and initial evaluation of novel non-peptide antagonists of the $\alpha_{IIb}\beta_3$ -integrin

Andrei A. Krysko*, Olga L. Krysko, Tatyana A. Kabanova, Sergei A. Andronati, Vladimir M. Kabanov

Department of Medicinal Chemistry, A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lustdorfskaya Doroga, 65080 Odessa, Ukraine

ARTICLE INFO

Article history: Received 14 May 2010 Revised 8 June 2010 Accepted 8 June 2010 Available online 15 June 2010

Keywords: Fibrinogen receptor antagonists $lpha_{IIb}\beta_3$ RGD mimetics 1.2.3,4-Tetrahydroisoquinoline Platelet aggregation

ABSTRACT

The novel RGDF mimetics were synthesized with the use of 4-(1,2,3,4-tetrahydroisoquinoline-7-yl)amino-4-oxobutyric or 5-(1,2,3,4-tetrahydroisoquinoline-7-yl)amino-5-oxopentanoic acids as a surrogate of Arg-Gly motif. The synthesized compounds have demonstrated a high potency to inhibit platelet aggregation in vitro and to block FITC-Fg binding to $\alpha_{\rm Hb}\beta_3$ on washed human platelets.

© 2010 Elsevier Ltd. All rights reserved.

Key events of thrombotic disorders, which result in various cardiovascular diseases including unstable angina, myocardial infarction, and arterial re-occlusion following coronary angioplasty procedures, are the activation and aggregation of platelets.¹ The clinical trials of monoclonal antibody c7E3 (ReoPro[®]),² the peptide Integrilin[®],³ and the non-peptides Tirofiban (Aggrastat[®])⁴ and Lamifiban⁵ have demonstrated the utility of fibrinogen receptor (glycoprotein IIb/IIIa, $\alpha_{3IIb}\beta_3$) antagonists for the treatment of thrombotic disorders. Furthermore, RGD mimetic prodrugs Xemilofiban, Orbofiban⁶ and Sibrafiban⁷ succeeded in treatment of unstable angina events (Fig. 1). Fragments with the residues of *p*-benzamidine, piperidine, *p*-benzguanidine, etc., and β -alanines with different substituents in β -position are successfully applied as bioisosteres of arginine and Asp-Phe moieties, correspondingly, for the design of non-peptide fibrinogen receptor antagonists mimicking RGDF sequence.^{8,9}

Previous reports from our laboratories described the discovery of the novel series of RGDF mimetics as non-peptide fibrinogen receptor antagonists.^{10,11} These compounds represent derivatives of isoindoline 1^{10} or tetrahydroisoquinoline 2 (Fig. 2).¹¹ As an extension of this work, the synthesis of new tetrahydroisoquino-

Figure 1. Structures of Xemilofiban, Orbofiban, and Sibrafiban.

* Corresponding author.

E-mail address: peptides@physchem.od.ua (A.A. Krysko).

Scheme 1. Reagents: (a) succinic or glutaric anhydride, 90–95%; (b) (i) Et₃N, HBTU or HATU; (ii) β-amino acid methyl ester, Et₃N, 65–70%, two steps; (c) (i) 1 M NaOH, H₂O; (ii) 1 M HCl, H₂O, 60–74%, two steps; (d) HCl (gas)/DCM, 95–98%.

line based $\alpha_{IIb}\beta_3$ antagonists and study of their antiaggregative properties were carried out. With the aim to improve an antiplatelet activity, β -aryl substituted β -alanines were proposed for imitation of Asp-Phe moiety. We used DCC/SuOH method for the preparation of previously reported RGD mimetics **7a** (n = 1, R = H) and **7b** (n = 1, $R = C_6H_5$). This method was employed at the stage when acid **4a** (n = 1) was coupled with sodium salts of appropriate β -alanines.^{11a} The target

Figure 2. Structures and in vitro activities of $\alpha_{IIb}\beta_3$ antagonists of series **1** and **2**. ^aConcentration required to reduce ADP-induced human platelet aggregation response by 50%. ^bConcentration required to reduce binding of FITC-Fg to $\alpha_{IIb}\beta_3$ on the suspension of washed human platelets by 50%.

_		
Th	blo	1
Id	DIC	

Biological properties of RGDF mimetics 7 with tetrahydroisoquinoline fragment

Compd	n	R	IC ₅₀ ^a , nM (PRP)	IC ₅₀ ^b , nM (FITC-Fg/α _{IIb} β ₃)
7a	1	Н	30.0 ^{11a}	1.2 ^{11a}
7b	1	C ₆ H ₅	13.0 ^{11a}	1.0 ^{11a}
7c	1	$p-C_6H_4-F$	8.9	1.0
7d	1	m-C ₆ H ₄ -F	10000.0	1100.0
7e	1	0-C ₆ H ₄ -F	570.0	5.0
7f	1	p-C ₆ H ₄ -Cl	2000.0	65.0
7g	1	p-C ₆ H ₄ -CH ₃	96.0	0.90
7h	1	p-C ₆ H ₄ -OCH ₃	310.0	3.5
7i	1	$p-C_6H_4-OCH(CH_3)_2$	87.0	-
7j	1	$m, p-C_6H_3-(OCH_3)_2$	64.0	0.63
7k	1		510.0	-
71	1		90.0	0.4
7m	1		5200.0	-
7n	2	$p-C_6H_4-OCH_3$	4200.0	18.0
7 o	2	$m, p-C_6H_3-(OCH_3)_2$	127.0	5.0
7p	2		53.0	0.78
	RGI	DS	31000.0	13000.0

^a Concentration required to reduce binding of FITC-Fg to $\alpha_{Hb}\beta_3$ on the suspension of washed human platelets by 50%. The IC₅₀ values are expressed as the average of at least two determinations. The average error for the IC₅₀ determinations was 15%.

 $^{\rm b}$ Concentration required to reduce ADP-induced human platelet aggregation response by 50%. The IC_{50} values are expressed as the average of at least two determinations. The average error for the IC_{50} determinations was 15%.

compounds **7** described in this Letter were synthesized from the acids **4** and various β -alanines esters using HBTU or HATU as a coupling reagents (Scheme 1). Esters **5** cleavage followed by deprotection gave the desired products **7**. In our study, we have prepared all mimetics only as racemic mixtures in order to reveal potent compounds and to determinate general characteristics of structure-activity relationship.

Biological activity was assessed in vitro by measuring the ability of compounds to inhibit the binding of fluoresceinisothiocyanatelabeled fibrinogen (FITC-Fg)¹² to $\alpha_{IIb}\beta_3$ (in a suspension of human washed platelets).¹³ Functional activity was subsequently determined by measuring the inhibition of ADP induced platelet aggregation in human platelet-rich plasma (PRP) by Born's method.¹⁴ Experimental data (Table 1) evidently show high affinities of the compounds **7** for $\alpha_{IIb}\beta_3$.

Analogue **7c**, which contains a fluorine atom at *para* position of β -phenyl- β -alanine residue, was equipotent with the compound **7b** by affinity and 1.4-fold more active in PRP. Substantial decrease of antiaggregative activity and affinity compared to the lead **7b** was observed for the *meta*-fluorine containing derivative **7d**. For *ortho*-fluorine containing mimetic **7e**, activity in both assays less dramatically decreased related to **7b**. Replacement of the fluorine with chlorine **7f** generally resulted in a diminution of inhibitory properties. Incorporation of a methyl group **7g** negatively impacted antiaggregative activity, while binding affinity was practically unaffected. Introduction of alkoxy substituents to β -phenyl- β -alanine fragment decreased the activity in PRP. It should be mentioned that similar modification for the series **2** afforded more

pronounced increase both in antiaggregative activity and affinity.^{11b} 3,4-Methylenedioxyphenyl derivative **7l** had the highest affinity among the compounds **7** and quite a good antiaggregative properties, while analogous modification for the derivative **1e** resulted in greater growth of antiaggregative activity and affinity related to the **1a**.^{10b} Replacement of succinyl linker with glutaryl one generally had a negative impact on PRP activity and affinity, with the exception of mimetic **7p**, which had IC₅₀ values for PRP activity and affinity comparable to the values for **7l**. Decrease of antiaggregative activity relative to the **7b** was observed for analogue **7m** containing the residue of β -(naphthalen-1-yl)- β -alanine.

In summary, we have investigated modification of β -phenyl substituted β -alanines for non-peptide fibrinogen receptor antagonists based on 7-amino-1,2,3,4-tetrahydroisoquinoline. Introduction of fluorine group to *para* position afforded the potent analogue, while incorporation of this into *meta* and *ortho* positions, as well as replacement of fluorine with chlorine atom, resulted in less active compounds. The trend towards lower activity was also seen with methyl and methoxy substituents in *para* position, and at the replacement of succinyl linker by glutaryl one. The use of β -(3,4-methylenedioxyphenyl)- β -alanines leads to the obtaining of fibrinogen receptor antagonists with high affinity and good antiaggregative activity.

References and notes

- (a) Scarborough, R. M.; Kleiman, N. S.; Phillips, D. R. Circulation **1999**, *100*, 437;
 (b) Kieffer, N.; Phillips, D. R. Annu. Rev. Cell Biol. **1990**, *6*, 329; (c) Andronati, S. A.; Karaseva, T. L.; Krysko, A. A. Curr. Med. Chem. **2004**, *11*, 1183.
- . Faulds, D.; Sorkin, E. M. Drugs **1994**, 48, 583.
- (a) Tcheng, J. E.; Harrington, R. A.; Kottke-Marchant, K.; Kleiman, N. S.; Ellis, S. G.; Kereiakes, D. J.; Mick, M. J.; Navetta, F. I.; Smith, J. E.; Worley, S. J.; Miller, J. A.; Joseph, D.; Sigmon, K. N.; Kitt, M. M.; DuMee, C. P.; Califf, R. M.; Topol, E. J. Circulation 1995, 91, 2151; (b) Scarborough, R. M. Drugs Future 1998, 23, 585.
- (a) Hartman, G. D.; Egbertson, M. S.; Halczenko, W.; Laswell, W. L.; Duggan, M. E.; Smith, R. L.; Naylor, A. M.; Manno, P. D.; Lynch, R. J.; Zhang, G.; Chang, C. T.-C.; Gould, R. J. *J. Med. Chem.* **1992**, 35, 4640; (b) Egbertson, M. S.; Chang, C. T.-C.; Duggan, M. E.; Gould, R. J.; Halczenko, W.; Hartman, G. D.; Laswell, W. L.; Lynch, J. J., Jr.; Lynch, R. J.; Manno, P. D.; Naylor, A. M.; Prugh, J. D.; Ramjit, D. R.; Sitko, G. R.; Smith, R. S.; Turchi, L. M.; Zhang, G. *J. Med. Chem.* **1994**, 37, 2537; (c) Cook, J. J.; Bednar, B.; Lynch, J. J.; Gould, R. J.; Egbertson, M. S.; Halczenko, W.; Duggan, M. E.; Hartman, G. D.; Lo, M.; Murphy, G. M.; Deckelbaum, L. I.; Sax, F. L.; Barr, E. *Cardiovasc. Drug Rev.* **1999**, 17, 199.
- Therous, P.; Kouz, S.; Roy, L.; Knudtson, M. L.; Diodati, J. G.; Marquis, J.; Nasmith, J.; Fung, A. Y.; Boudreault, J.; Delage, F.; Dupuis, R.; Kells, C.; Bokslag, M.; Steiner, B.; Rapold, H. J. Circulation **1996**, *94*, 899.
- (a) Anders, R.; Kleiman, J.; Nicholson, N.; Wazowicz, B.; Burns, D. Cardiovasc. Drug Rev. 2001, 19, 116; (b) Krakat, J.; Mousa, S.; Root, R.; Mousa, S. S. Drugs Future 2009, 34, 27.
- Armstrong, P. W.; Newby, L. K.; Granger, C. B.; Lee, K. L.; Simes, R. J.; Werf, F. V.; White, H. D.; Califf, R. M. *Circulation* **2004**, *110*, 3610.
- (a) Masic, L. P.; Kikelj, D. Tetrahedron 2001, 57, 7073; (b) Masic, L. P. Curr. Med. Chem. 2006, 13, 3627.
- (a) Scarborough, R. M. Curr. Med. Chem 1999, 6, 971; (b) Andronati, S. A.; Krysko, A. A.; Kabanov, V. M.; Karaseva, T. L.; Kabanova, T. A. Acta Pol. Pharm.– Drug Res. 2000, 57, 15; (c) Stefanic, P.; Dolenc, M. S. Curr. Med. Chem. 2004, 11, 945.
- (a) Krysko, A. A.; Chugunov, B. M.; Malovichko, O. L.; Andronati, S. A.; Kabanova, T. A.; Karaseva, T. L.; Kiriyak, A. V. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 5533; (b) Andronati, S. A.; Krysko, A. A.; Chugunov, B. M.; Kabanova, T. A.; Artemenko, A. G. *Russ. J. Org. Chem.* **2006**, *42*, 1174.
- (a) Krysko, A. A.; Malovichko, O. L.; Andronati, S. A.; Kabanova, T. A.; Karaseva, T. L.; Petrus, A. S. *Med. Chem.* **2006**, *2*, 295; (b) Malovichko, O. L.; Petrus, A. S.; Krysko, A. A.; Kabanova, T. A.; Andronati, S. A.; Karaseva, T. L.; Kiriyak, A. V. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 5294; (c) Malovichko, O. L.; Krysko, A. A.; Kabanova, T. A.; Andronati, S. A.; Grishkovets, V. I.; Kachala, V. V.; Panov, D. A. *Med. Chem.* **2009**, *5*, 158.
- 12. Hantgan, R. Biochim. Biophys. Acta 1987, 927, 55.
- 13. Xia, Z.; Wong, T.; Liu, Q.; Kasirer-Friede, A.; Brown, E.; Frojmnvic, M. M. Br. J. Haematol. **1996**, 93, 204.
- 14. Born, G. V. R. Nature 1962, 194, 927.