Bioorganic & Medicinal Chemistry 22 (2014) 4629-4636

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Synthesis and antifungal activity of substituted salicylaldehyde hydrazones, hydrazides and sulfohydrazides

Gregory L. Backes^a, Donna M. Neumann^{a,b}, Branko S. Jursic^{c,d,*}

^a Louisiana State University Health Sciences Center, Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, United States

^b Department of Ophthalmology, LSUHSC, New Orleans, United States

^c Department of Chemistry, University of New Orleans, New Orleans, LA 70148, United States

^d STEPHARM, LLC., PO Box 24220, New Orleans, LA 70184, United States

ARTICLE INFO

Article history: Received 4 June 2014 Revised 7 July 2014 Accepted 15 July 2014 Available online 23 July 2014

Keywords: Salicylaldehyde Hydrazones Antifungals Hydrazides

ABSTRACT

Efficient synthetic procedures for the preparation of acid hydrazines and hydrazides were developed by converting the corresponding carboxylic acid into the methyl ester catalyzed by Amberlyst-15, followed by a reaction with hydrazine monohydrate. Sulfohydrazides were prepared from the corresponding sulfonyl chlorides and hydrazine monohydrate. Both of these group of compounds were condensed with substituted salicylaldehydes using gradient concentration methods that generated a large library of hydrazone, hydrazide and sulfohydrazide analogs. Antifungal activity of the prepared analogs showed that salicylaldehyde hydrazones and hydrazides are potent inhibitors of fungal growth with little to no mammalian cell toxicity, making these analogs promising new targets for future therapeutic development.

© 2014 Elsevier Ltd. All rights reserved.

Opportunistic fungal infections are common and potentially life-threatening infections.¹ For example, invasive fungal infections from Candida spp. are a significant cause of morbidity and mortality in at-risk populations, particularly transplant recipients, cancer patients and those infected with HIV and AIDS.^{2,3} Further, invasive Candida spp. infections rapidly develop resistance to currently marketed antifungal agents,⁴ making vigilant treatment difficult at best. Clinically, candidiasis incidence is commonly associated with Candida albicans, Candida glabrata and Candida krusei microorganisms most frequently.^{5,6} Currently, the first-line treatment for these infections are azoles, yet the Candida spp. have developed multiple resistance mechanisms to azoles, including overexpression of efflux pumps¹ and point mutations in the ERG11 gene⁷ in Candida albicans. In addition, Candida glabrata develops resistance during prolonged treatment with azole antifungals.⁸ For these reasons, there is a continuous demand for the discovery of novel therapeutics to treat fungal infections, particularly Candida spp. infections.

Hydrazine and hydrazone derivatives are emerging in the literature as novel classes of potential antifungal agents with activity against numerous *Candida* spp. Recently, we reported an extensive collection of substituted pyrimidinetrione derivatives with potent antifungal activity against two human pathogenic species, *Candida* albicans and Candida glabrata.⁹ A number of those derivatives, including phenylhydrazones of 5-acylpyrimidinetrione exhibited potent growth inhibition at or below 10 µM with minimal mammalian cell toxicity, making this class of compounds an interesting alternative for exploration and development to treat fungal infections. In addition, it has also been well documented that some substituted salicylaldehyde hydrazones also possess antimicrobial activity while salicylaldehydes by themselves do not possess antifungal activity.^{10–17} Nonetheless, there are significant drawbacks that have limited development of salicylaldehyde hydrazones as a broad class of antifungal agents. These drawbacks include the lack of appropriately developed synthetic procedures that can produce a range of structural variations within the class of salicylaldehyde hydrazones for antifungal and SAR studies. In this work, we present the efficient synthetic methodology used to generate three structurally diverse groups of salicylaldehyde derivatives; salicylaldehyde phenylhydrazones (group I), benzohydrazides (group II), and sulfohydrazides (group III; Scheme 1). The antifungal activity for Candida albicans and Candida glabrata was assessed for each class of salicylaldehyde derivatives. Finally, mammalian cell toxicity screens were performed against all compounds with MICs of 8 µg/mL or less. In summary, we found that nitro salicylaldehyde hydrazones, in addition to a broad range of unsubstituted, substituted and halogenated salicylaldehyde hydrazides were potent inhibitors of fungal growth with minimal cytotoxicity to liver or kidney cells.

^{*} Corresponding author. Tel.: +1 504 858 0515. E-mail address: bjursic1@uno.edu (B.S. Jursic).

Scheme 1. Three groups of salicylaldehyde hydrazone libraries selected for antifungal studies.

1. Chemistry

To our surprise, we could find no simple and high vielding general synthetic procedures applicable to the preparation of large quantities of structurally diverse acid hydrazides^{18–22} even though their application in medicine and medicinal chemistry has been well documented.^{23–27} Several approaches were documented for the preparation of acid hydrazides,¹⁸ including starting with carboxylic acids,²⁸ acid esters,²⁹ acid chlorides,²⁰ amides³⁰ and even N-acylbenzotriazoles.³¹ In general, acid chlorides and acid anhydrides double acylate hydrazines³² and subsequently are not viable intermediates for the preparation of acid hydrazides. On the other hand, single hydrazine acylation with esters seemed to be easier to control. For this reason, we have developed two parallel methods (Methods I and II, Scheme 2) for the preparation of acid hydrazides. The first approach uses thionyl chloride catalyzed acid esterification with ethanol, which is commonly used for the preparation of amino acid hydrazides.³³ Thus, the prepared esters were isolated, purified and used in the next reaction with hydrazine monohydrate to yield the desirable acid hydrazide (Method 1, Scheme 2). The second preparation method utilized Amberlyst-15,³⁴ a strong acid exchange resin catalyst for esterification with methanol. After the reaction was complete, the catalyst was removed by filtration and the same clear methanol solution that contained an ester was mixed with an excess of hydrazine monohydrate to give the targeted acid hydrazide in high isolated yields (Method II, Scheme 2). Additionally, the catalyst is recyclable³⁵ and the reaction could also tolerate the presence of acid sensitive moieties such as phenol, OH, t-butyl, or even the pyridine moiety. In this way Method II was developed as the method of choice for the preparation of a structurally diverse library of acid hydrazides.

Sulfonohydrazides (Scheme 3) were all prepared from the corresponding sulfonyl chloride by modifying procedures outlined by Friedman and co-workers.³⁶ The reaction involved the slow addition of a tetrahydrofuran solution of the corresponding sulfonyl chloride into ice-water cooled aqueous hydrazine. It was important to maintain the reaction mixture temperature close to 0 °C to avoid the formation of the double sulfonation byproduct. It was also important to evaporate tetrahydrofuran at a reduced pressure without heating. Furthermore, we found that this procedure was an appropriate general method for the preparation of sulfonohydrazides, a class of compounds that are becoming

Scheme 3. Preparation of sulfonohydrazides.

increasingly important synthetic intermediates³⁷ for preparation of valuable biologically active compounds.^{38–42}

In general, hydrazones were prepared from the corresponding carbonyl (aldehyde or ketone) compound and the mono and asymmetric double substituted hydrazines⁴³⁻⁴⁶ in refluxing methanol or ethanol without acid or base catalyst (Scheme 4). This reaction was generally completed after three hours. Isolated yields and purification of the final products were simplified when the reaction began as a very diluted reaction mixture (100 ml of methanol per 1 mmol of aldehyde and 1 mmol of substituted hydrazine) and then the reagent concentration was gradually increased by slowly distilling the solvent from the refluxing reaction mixture. Distillation of the solvent was stopped at the point when a solid started to form in the reaction mixture or if the reaction mixture volume was reduced to ~ 5 ml. At room temperature or at -5 °C, all of the prepared compounds crystallized readily. They were further purified by washing with ice cold methanol, ether, or hexane as solvents for which the corresponding products are only slightly soluble. It is important to emphasize that the formation of the hydrazone product was enhanced by gradually increasing the reactant concentration through slow solvent distillation. In this way, the isolated yields of structurally diverse hydrazones was >85% (Scheme 4).

2. Antifungal activity

The antifungal activity of the salicylaldehyde hydrazones, hydrazides and sulfohydrazides described in Schemes 2–4 were evaluated in vitro using *Candida albicans* (ATCC No. 10231) and *Candida glabrata* (ATCC No. 48435). All assays were done in

Scheme 2. Two different pathways for preparation of hydrazides.

 R_1 = H, Cl, Br, CH_3, CH_3O, NO_2, OH, R_2 = H, Cl, Br, CH_3, CH_3O, NO_2, OH R_3 = H, OH, NO_2

 $\begin{array}{l} X = H, \ C_{6}H_{5}, \ C_{6}H_{4}-4-OCH_{3}, \ C_{6}H_{3}-2, 4-(CH_{3})_{2}, \ C_{6}H_{4}-4-NO_{2}, \ C_{6}H_{3}-2, 4-(NO_{2})_{2}, \ COC_{6}H_{5}, \\ COC_{6}H_{4}-4-NO_{2}, \ COC_{6}H_{4}-2-OH, \ COC_{6}H_{4}-4-C(CH_{3})_{3}, \ COC_{6}H_{4}-4-OCH_{3}, \ SO_{2}C_{6}H_{5}, \\ SO_{2}C_{6}H_{4}-4-CH_{3}, \ SO_{2}C_{6}H_{4}-4-OCH_{3}, \ SO_{2}C_{6}H_{4}-4-Br, \ SO_{2}C_{6}H_{4}-NO_{2}, \ SO_{2}-2-naphthyl \\ \end{array}$

Scheme 4. General route for preparation our hydrazone library.

accordance with NCCLS reference documents.⁴⁷ The results of these screenings are summarized in Tables 1–8 as the minimal inhibitory concentrations that inhibited more than 80% fungal growth as compared to the positive controls in 1% DMSO and HEPES buffered RPMI media. All MIC screens were done using a visual scoring method as opposed to spectroscopic methods of analysis, due to the physical properties of many of the compounds altering their absorbance spectra relative to the positive, negative and drug controls.

Of the analogs tested, none of the salicylaldehyde sulfohydrazides showed antifungal activity through 125 µg/mL, regardless of the nature of the aromatic ring attached (Table 8). Similarly, limited fungal growth inhibition was observed with 2-(*p*-nitrophenylhydrazonomethyl)phenols presented in Scheme 4 (Table 3). In contrast, however, virtually every salicylaldehyde hydrazone and hydrazide synthesized, regardless of whether the aromatic ring substitutions included halogens, electron donating or electron withdrawing moieties, showed antifungal activity through fungal growth inhibition (Tables 1, 2 and 4–7). The most potent inhibitors of fungal growth included the nitrobenzohydrazides **SA6** and **SA49**, Table 5 and the halogenated benzohydrazide **SA10**, Table 4, each of which had antifungal activity at a concentration below 2 µM for both fungal species tested.

To further test the mammalian cell toxicity of the salicylaldehyde analogs presented, we screened selected compounds against liver and kidney cells to establish toxicity parameters. All analogs presented in this manuscript with antifungal activity of less than or equal to 8 μ g/mL were further subjected to in vitro mammalian cell toxicity studies using mammalian kidney cells and human liver cells (Vero (kidney) cells-ATCC No. CRL-1651 and Hep G2 (liver) ATCC No. HB-8065). Multiple concentrations of the analog were used, including the concentration at which fungal inhibition was observed as well as at 5×, 10× and 100× the minimum inhibition concentration. Cytotoxicity studies were performed in accordance with Promega CellTiter 96 Non-RadioactivCell Proliferation Assay

Table 1

Isolated yield and antifungal activity of 2-(hydrazonomethyl)phenols

(cat. # G4000). Representative compounds are presented in Figure 1. Briefly, all cytotoxicity studies were done using a negative control (wells of either kidney or liver cells in the absence of the analog), a positive control (wells of either kidney or liver cells treated with a known cytotoxic agent known as saponin) and the serial dilutions of the novel analogs. All control (negative) wells were normalized to 100% viable cells to accurately show the percentage of either liver or kidney cells that remain alive and viable following overnight incubation with either saponin or the analogs tested. Of the analogs assayed, SA1, SA6, SA10 and SA55 had minimal reductions in viable kidney and liver cells, where the only marked cell death was observed at concentrations $100 \times$ greater than the established MIC (Fig. 1). In contrast, the two most potent analogs, SA48 and SA49 exhibited toxicity toward kidney cells, with an ~20% reduction in viable cells even at the MIC relative to the negative control (Fig. 1). While this was a somewhat discouraging finding. more studies are currently underway to determine the mechanism of toxicity and possible ways to reduce kidney toxicity associated with these two analogs. Nonetheless, the majority of analogs tested showed minimal cytotoxicity in our in vitro assays. All results from the toxicity screenings outside of Figure 1 are provided in Supplemental information.

3. Chemistry experimental

Thin-layer chromatographic analysis (TLC) was performed using silica gel on aluminum foil glass plates and was detected under ultraviolet (UV) light. The ¹H and ¹³C NMR spectra were run on Varian 400 MHz Unity instruments in CDCl₃ or in DMSO d_6 . Solvent signals were use as internal NMR chemical shift references. If necessary, products were purified by short silica gel (40–70 mm) filtration. Silica gel was purchased from Sorbent Technologies. Substituted phenylhydrazines were prepared from corresponding anilines by following the preparation procedure outlined in Vogel.⁴⁸ All reagents and solvents were purchased from Sigma– Aldrich and were analytical grade.

3.1. Typical procedure for preparation of aryl hydrazides. Preparation Method I (see Scheme 2)

Preparation of 3,4,5-trihydroxybenzohydrazide (H1-Supplemental material). A methanol (300 ml) suspension of 3,4,5-trihydroxybenzoic acid and (17 g; 0.1 mol) and the strongly acidic ion-exchange resin Amberlyst-15 (5 g) was stirred with refluxing for three days. The insoluble catalyst was separated by filtration, and washed with methanol (3×10 ml). The combined methanol filtrates were mixed with hydrazine hydrate (20 ml; 20.5 g; 0.4 mol) and refluxed for 3 h. The volume of the reaction mixture

reparation Method III		нн
	H ₂ NNH ₂ xH ₂ O (3 eq) methanol 3 hrs refluxing	$\begin{array}{c} R_1 \\ \rightarrow \\ R_2 \end{array} \\ R_2 \\ R_2 \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ R_2 \\ R_2 \\ R_1 \\ R_2 \\$
substituted salicylaldehyde		2-(hydrazonomethyl)phenols

Entry	R ₁	R ₂	Compound	Yield (%)	MIC ₈₀ C. albicans (µg/mL)	MIC ₈₀ C. glabrata (µg/mL)
1	Н	Н	SA1	92	16	4
2	Н	$C(CH_3)_3$	SA50	93	125	62
3	Cl	Н	SA19	94	62	31
4	Cl	Cl	SA28	96	16	62
5	Br	Br	SA23	91	16	8
6	NO_2	Н	SA33	85	NA	31

Table 2

Antifungal activity of 2-(phenylhydrazonomethyl)phenols

Entry	R ₁	R ₂	Compound	Yield (%)	MIC ₈₀ C. albicans (µg/mL)	MIC ₈₀ C. glabrata (µg/mL)
1	Н	Н	SA2	89	16	16
2	CH ₃	Н	SA46	92	62	8
3	Н	(CH ₃) ₃ C	SA38	97	NA	NA
4	CH ₃ O	Н	SA42	92	31	31
5	Cl	Н	SA20	93	31	31
6	Cl	Cl	SA29	92	125	125
7	Br	Н	SA15	91	31	31
8	Н	Br	SA51	87	8	16
9	Br	Br	SA24	88	NA	62
10	NO ₂	Н	SA34	91	31	16
11	NO ₂	NO ₂	SA55	83	2	4

Table 3

Antifungal activity of 2-(p-nitrophenylhydrazonomethyl)phenols

Entry	R ₁	R ₂	Compound	Yield (%)	MIC ₈₀ C. albicans (µg/mL)	MIC_{80} C. glabrata (µg/mL)
1	Н	Н	SA4	94	125	4
2	CH_3	Н	SA47	93	NA	NA
3	Н	(CH ₃) ₃ C	SA39	89	NA	NA
4	Cl	Н	SA21	92	NA	62
5	Cl	Cl	SA30	93	NA	62
6	Br	Н	SA16	91	NA	NA
7	Н	Br	SA52	85	NA	NA
8	Br	Br	SA25	88	NA	62
9	NO ₂	Н	SA35	85	125	62
10	NO ₂	NO ₂	SA56	82	125	125

was reduced to ~30 ml and left at room temperature for 1 h and then at -5 °C. The formed white precipitate was separated by filtration, washed with ice cold methanol (3 × 5 ml), followed by ice cold ether (3 × 10 ml) and dried on air to give pure product (17.1 g; 93%). ¹H NMR (DMSO-*d*₆) δ 9.34 (1H, br s, NH), 6.79 (2H, s, 2-H), and 4.33 (2H, br s, NH₂) ppm. ¹³C NMR (DMSO-*d*₆) δ 167.1, 146.1, 136.9, 124.3, and 107.2 ppm.

3.2. Typical procedure for preparation of aryl sulfonohydrazides. Preparation Method II (see Scheme 3)

Preparation of 4-nitrobenzenesulfonohydrazide (H5). A water (300 ml) solution of hydrazine hydrate (12.5 g; 0.25 mol) was cooled in ice-water bath to ~5 °C. The temperature was then maintained below 8 °C, while the tetrahydrofuran (50 ml) solution of 4-nitrobenzenesulfonyl chloride (5.54 g, 0.025 mol) was slowly added with stirring. After the addition was completed the reaction mixture was stirred at room temperature for thirty minutes and tetrahydrofuran was evaporated at reduced pressure. The white solid product was separated by filtration, washed with water

 $(3 \times 15 \text{ ml})$ and dried on air overnight to give pure product (4.86 g; 89%). ¹H NMR (DMSO-*d*₆) δ 8.67 (1H, br s, NH), 8.39 (2H, d, *J* = 7.6 Hz, 3-H), 8.04 (2H, d, *J* = 7.6 Hz, 2-H), and 4.30 (2H, br s, NH₂) ppm. ¹³C NMR (DMSO-*d*₆) δ 150.4, 144.8, 129.9, and 124.9 ppm.

3.3. Typical procedure for preparation of hydrazinomethylphenols. Preparation Method III (see Scheme 4)

Preparation of 2-(hydrazonomethyl)-4-nitrophenol (**SA33**). A mixture of methanol (300 ml), 2-hydroxy-5-nitrobenzaldehyde (250 mg; 1.5 mmol), and hydrazine monohydrate (130 mg; 4.5 mmol) was refluxed for three hours. The solvent was evaporated to a solid residue. This residue was mixed with hot methanol (10 ml) and sonicated at 60 °C for a few minutes. The resulting mixture was mixed with water (~100 ml) and then cooled in ice bath. The resulting insoluble product was separated by filtration, washed with cold water (3 × 5 ml) and dried under reduced pressure to give pure product (230 mg; 85%). ¹H NMR (DMSO-*d*₆) δ 12.0

Table 4

Antifungal activity of N'-(2-hydroxybenzylidene)benzohydrazides

Entry	R ₁	R ₂	Compound	Yield (%)	MIC ₈₀ C. albicans (µg/mL)	MIC ₈₀ C. glabrata (µg/mL)
1	Н	Н	SA5	87	2	1
2	CH ₃	Н	SA48	92	1	1
3	Н	$C(CH_3)_3$	SA40	89	NA	NA
4	CH ₃ O	Н	SA44	91	4	0.5
5	Cl	Н	SA10	95	0.5	0.5
6	Cl	Cl	SA31	91	8	16
7	Br	Н	SA17	93	2	2
8	Н	Br	SA53	94	4	2
9	Br	Br	SA26	86	8	31
10	NO ₂	Н	SA36	87	16	16
11	NO ₂	NO ₂	SA57	81	NA	NA

Table 5

Antifungal activity of N'-(2-hydroxybenzylidene)-4-nitrobenzohydrazide

substituted salicylaldehyde

Entry	R ₁	R ₂	Compound	Yield (%)	MIC ₈₀ C. albicans (µg/mL)	MIC ₈₀ C. glabrata (µg/mL)
1	Н	Н	SA6	92	0.5	0.5
2	CH ₃	Н	SA49	95	0.5	0.125
3	Н	(CH ₃) ₃ C	SA41	93	31	125
4	CH ₃ O	Н	SA45	89	125	2
5	Cl	Н	SA22	94	16	62
6	Cl	Cl	SA32	89	31	125
7	Br	Н	SA18	91	1	2
8	Н	Br	SA54	93	31	31
9	Br	Br	SA27	87	1	125
10	NO ₂	Н	SA37	87	NA	16
11	NO ₂	NO ₂	SA58	83	NA	NA

(1H, br s, OH), 8.22 (1H, d, J = 2.8 Hz, 6-H), 7.98 (1H, s, CH=N), 7.96 (1H, d of d, J₁ = 8.8 Hz, J₂ = 2.4 Hz, 4-H), 7.25 (2H, br s, NH₂), and 6.95 (1H, d, J = 9.2 Hz, 3-H) ppm. ¹³C NMR (DMSO- d_6) δ 162.6, 140.4, 138.1, 124.7, 123.5, 121.5, and 117.1 ppm.

3.4. Typical procedure for preparation phenylhydrazones. Preparation Method IV (see Scheme 4)

Preparation of 3,5-dichloro-6-((2-phenylhydrazono)methyl)phenol (SA29). A methanol (50 ml) solution of 3,5-dichloro-2hydroxybenzaldehyde (191 mg; 1 mmol) and phenylhydrazine (1.08 mg; 1 mmol) was refluxed for 4 h. Solvent was evaporated to an oily residue that crystalized upon cooling. This residue was dissolved in hot hexane (~100 ml) and left at room temperature. The formed crystalline product was separated by filtration, washed with hexane $(3 \times 10 \text{ ml})$ and dried on air to give pure product (260 mg; 92%). ¹H NMR (DMSO- d_6) δ 11.50 (1H, br s, OH), 10.81 (1H, s, NH), 8.07 (1H, s, CH=N), 7.54 (1H, d, J = 2.0 Hz, salicylic 6-H), 7.42 (1H, d, *I* = 2.0 Hz, salicylic 4-H), 7.26 (2H, *I* = 7.6 Hz, phenyl 3-H), 6.96 (2H, d, *J* = 8.4 Hz, phenyl 2-H), and 6.82 (1H, t, *J* = 7.3 Hz, phenyl 4-H) ppm. ¹³C NMR (DMSO- d_6) δ 151.0, 144.5, 136.8, 130.1, 128.6, 126.7, 124.0, 123.7, 121.9, 120.6, and 112.6 ppm.

3.5. Typical procedure for preparation of benzohydrazones. Preparation Method V (see Scheme 4)

Preparation of N'-(2-hydroxy-5-methoxybenzylidene)-4-nitrobenzohydrazide (SA45). A methanol (100 ml) mixture of 4-nitrobenzohydrazide (181 mg; 1 mmol) and 5-methoxysalicylaldehyde (152 mg; 1 mmol) was refluxed for 4 h. The solvent volume was reduced to ~ 10 ml by atmospheric evaporation followed by evaporation at reduced pressure to yield a white solid residue. The solid was mixed with ether (20 ml) and sonicated with refluxing for 10 min. The suspension was left at room temperature for 30 min. An insoluble white precipitate was separated by filtration, washed with ether $(3 \times 5 \text{ ml})$ and dried on air to give pure product (280 mg; 89%). ¹H NMR (DMSO- d_6) δ 12.31 (1H, br s, OH) 10.52 (1H, s, NH), 8.64 (1H, s, CH=N), 8.34 (2H, d, J=8.4 Hz,

Table 6

5-substituted salicylaldehyde

N'-(2-hydroxybenzylidene)hydroxybenzohydrazide

Entry	R	ОН	Compound	Yield (%)	MIC ₈₀ C. albicans (µg/mL)	MIC ₈₀ C. glabrata (µg/mL)
1	Н	2	SA83	94	16	8
2	CH ₃	2	SA143	92	16	NA
3	CH ₃ O	2	SA123	89	16	16
4	Cl	2	SA96	95	8	NA
5	Br	2	SA109	91	8	62
6	Н	4	SA84	92	NA	4
7	CH3	4	SA144	91	NA	1
8	CH₃O	4	SA127	87	NA	4
9	Cl	4	SA97	89	NA	62
10	Br	4	SA110	91	125	62

Table 7

Antifungal activity of N'-substituted 4-(hydrazonomethyl)benzene-1,3-diol

Entry	R	Compound	Yield (%)	MIC ₈₀ C. albicans (µg/mL)	MIC ₈₀ C. glabrata (µg/mL)
1	Н	SA8	85	62	31
2	C ₆ H ₅	SA9	95	31	2
3	$4 - (O_2 N) C_6 H_4$	SA11	87	N/A	1
4	2,4-(O ₂ N) ₂ C ₆ H ₃	SA68	93	NA	NA
5	C ₆ H ₅ CO	SA12	91	31	1
6	$4-(O_2N)C_6H_4CO$	SA13	88	NA	0.5

Table 8

Lack of antifungal activity for N'-(2-hydroxybenzylidene)sulfonohydrazides

5-sabstituted salicylaldehyde

N'-(2-hydroxybenzylidene)sulfonohydrazide

R

Entry	R ₁	R ₂	Compound	Yield (%)	MIC ₈₀ C. albicans (µg/mL)	MIC ₈₀ C. glabrata (µg/mL)
1	Н	C ₆ H ₅	SA75	91	NA	125
2	Н	$4 - (CH_3)C_6H_4$	SA74	93	NA	NA
3	Н	4-(CH ₃ O)C ₆ H ₄	SA73	88	NA	125
4	Н	$4-BrC_6H_4$	SA76	94	NA	NA
5	Н	$4 - (O_2 N)C_6 H_4$	SA77	85	NA	NA
6	Н	2-Naphthyl	SA78	77	NA	NA
7	CH_3	C ₆ H ₅	SA135	88	NA	NA
8	CH ₃	$4-(CH_3)C_6H_4$	SA134	89	NA	NA
9	CH ₃	4-(CH ₃ O)C ₆ H ₄	SA133	92	NA	NA
10	CH ₃	$4-BrC_6H_4$	SA136	93	NA	NA
11	CH ₃	$4 - (O_2 N) C_6 H_4$	SA137	88	NA	NA
12	CH ₃	2-Naphthyl	SA138	75	NA	NA
13	OCH ₃	C ₆ H ₅	SA132	91	NA	NA
14	OCH ₃	$4-(CH_3)C_6H_4$	SA131	93	NA	NA
15	OCH ₃	4-BrC ₆ H ₄ r	SA130	89	NA	NA
16	OCH ₃	$4 - (O_2 N) C_6 H_4$	SA128	87	NA	NA

Table 8	B (con	tinued)
---------	---------------	---------

Entry	R ₁	R ₂	Compound	Yield (%)	MIC ₈₀ C. albicans (µg/mL)	MIC ₈₀ C. glabrata (µg/mL)
17	OCH ₃	2-Naphthyl	SA129	74	NA	NA
18	Cl	C ₆ H ₅	SA88	93	NA	NA
19	Cl	4-(CH ₃)C ₆ H ₄	SA86	95	NA	NA
20	Cl	4-(CH ₃ O)C ₆ H ₄	SA87	93	NA	NA
21	Cl	$4-BrC_6H_4$	SA89	91	NA	NA
22	Cl	$4 - (O_2 N) C_6 H_4$	SA90	88	NA	NA
23	Cl	2-Naphthyl	SA91	83	NA	NA
24	Br	C ₆ H ₅	SA101	93	NA	NA
25	Br	4-(CH ₃)C ₆ H ₄	SA100	91	NA	NA
26	Br	4-(CH ₃ O)C ₆ H ₄	SA99	92	NA	NA
27	Br	$4-BrC_6H_4$	SA102	90	NA	NA
28	Br	$4 - (O_2 N) C_6 H_4$	SA103	88	NA	NA
29	Br	2-Naphthyl	SA104	78	NA	NA
30	NO ₂	C ₆ H ₅	SA119	88	NA	NA
31	NO ₂	$4-(CH_3)C_6H_4$	SA120	89	NA	NA
32	NO ₂	4-(CH ₃ O)C ₆ H ₄	SA121	83	NA	NA
33	NO ₂	$4-BrC_6H_4$	SA118	86	NA	NA
34	NO ₂	4-(02N)C6H4	SA117	79	NA	NA
35	NO ₂	2-Naphthyl	SA116	72	NA	NA

Figure 1. Evaluation of mammalian cell toxicity of select active compounds. Cytotoxicity was determined using non-cancerous Vero cells (kidney-african green monkey) and liver cells (Hep-2G) in accordance with Promega CellTiter 96 Non-RadioactivCell Proliferation Assay (cat. # G4000). Compounds were diluted in media and all assays were done in triplicate. Average values are presented, with ±SD. Cells were incubated in the presence of the compounds for 24 h at 37 °C and 5% CO₂. Tetrazolium dye solution was added to each well and allowed to incubate for 1–4 h. Stabilization/stop solution was added and allowed to sit at room temperature for 1 h. Formazan product was scored spectrophotometrically with an automatic plate reader set at 570 nm. 0.1% saponin was used as a control to measure cell death. Wells containing 1% DMSO and no drug were used as a positive control and the average absorption at 570 nm of the control (no drug). Ratios were multiplied by 100 to give the values as a percentage.

benzohydrazide 3-H), 8.15 (2H, d, *J* = 8.4 Hz, benzohydrazide 2-H), 7.14 (1H, d, *J* = 2.4 Hz, salicylic 6-H), 6.90 (1H, d of d, *J*₁ = 8.8 Hz, *J*₂ = 2.4 Hz, salicylic 4-H), 6.84 (1H, d, *J* = 8.8 Hz, salicylic 2-H) and 3.71 (3H, s, OCH₃) ppm. ¹³C NMR (DMSO-*d*₆) δ 152.8, 152.2, 150.0, 148.9, 139.3, 129.9, 124.3, 119.6, 119.3, 118.0, 112.5, and 65.1 ppm.

3.6. Typical procedure for preparation sulfonohydrazones. Preparation Method VI (see Scheme 4)

Preparation of N'-(2-hydroxybenzylidene)naphthalene-2-sulfonohydrazide (**SA78**). A methanol (20 ml) solution of salicylaldehyde (122 mg; 1 mmol) and naphthalene-2-sulfonohydrazide (222 mg; 1 mmol) was refluxed for 2 h. Solvent was evaporated at reduced pressure to an oily residue. This residue was mixed with ether (\sim 10 ml) and sonicated at 5 °C for 5 min. Ether solution was decanted and mixed with hexane (\sim 50 ml). The resulting slightly milky mixture was left at room temperature for 1 h. The formed white powdery product was separated by filtration, washed with hexane $(3 \times 5 \text{ ml})$ and dried on air to give pure product (250 mg; 77%). ¹H NMR (DMSO- d_6) δ 11.61 (1H, s, OH), 10.15 (1H, s, NH), 8.55 (1H, s, naphthalene 1-H), 8.19 (1H+1H, d+s, naphthalene 4-H+CH=N), 8.12 (1H, d, *J* = 8.8 Hz, naphthalene 3-H), 8.00 (1H, d, J = 8.00 Hz, naphthalene 8-H), 7.85 (1H, d of d, J_1 = 8.8 Hz, J₂ = 1.6 Hz, naphthalene 5-H), 7.66 (2H, m, naphthalene 6,7-H), 7.44 (1H, d of d, J₁ = 8.0 Hz, J₂ = 1.6 Hz salicylic 6-H), 7.17 (1H, d of t, J_1 = 8.0 Hz, J_2 = 1.6 Hz, salicylic 4-H), 6.80 (1H, d, J = 7.6 Hz, salicylic 3-H), and 6.77 (1H, t, J = 7.2 Hz, salicylic 5-H) ppm. ¹³C NMR (DMSO- d_6) δ 157.2, 146.8, 136.5, 135.1, 132.4, 132.2, 130.1, 130.0, 129.8, 129.1, 128.6, 128.4, 127.9, 123.1, 120.1, 119.7, and 116.8 ppm.

Acknowledgments

This work was supported in part by funding from the Louisiana State Health Sciences Center, School of Medicine, Department of Pharmacology, Louisiana Lions Eye Foundation and by an unrestricted grant from Research to Prevent Blindness, New York, NY (LSU Department of Ophthalmology-LSUHSC).

Supplementary data

Supplementary data (spectroscopic characterization, including electronic images of NMR data, literature data and CAS numbers and additional cytotoxicity screens are provided for all new compounds as well as compounds with biological activity) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmc.2014.07.022.

References and notes

- 1. Eddouzi, J.; Parker, J. E.; Vale-Silva, L. A.; Coste, A.; Ischer, F.; Kelly, S., et al. *Antimicrob. Agents Chemother.* **2013**, *57*, 3182.
- Chakrabarti, A.; Chatterjee, S. S.; Shivaprakash, M. R. Nippon Ishinkin Gakkai Zasshi 2008, 49, 165.
- 3. Chandesris, M. O.; Lanternier, F.; Lecuit, M.; Lortholary, O. *Rev. Prat.* 2007, *57*, 1653.
- 4. El-Cheikh, J.; Venton, G.; Crocchiolo, R.; Furst, S.; Faucher, C.; Granata, A., et al. *Bone Marrow Transpl.* **2013**.
- Cornely, O. A.; Vazquez, J.; De, W. J.; Betts, R.; Rotstein, C.; Nucci, M., et al. Mycoses 2013.
- Cornely, O. A.; Lasso, M.; Betts, R.; Klimko, N.; Vazquez, J.; Dobb, G., et al. J. Antimicrob. Chemother. 2007, 60, 363.
- Xiang, M. J.; Liu, J. Y.; Ni, P. H.; Wang, S.; Shi, C.; Wei, B., et al. *FEMS Yeast Res.* 2013, 13, 386.
- Bennett, J. E.; Izumikawa, K.; Marr, K. A. Antimicrob. Agents Chemother. 2004, 48, 1773.
- Neumann, D. M.; Cammarata, A.; Backes, G.; Palmer, G. E.; Jursic, B. S. Bioorg. Med. Chem. 2014, 22, 813.
- 10. Pelttari, E.; Karhumaki, E.; Langshaw, J.; Elo, H. Z. Naturforsch., C 2007, 62, 483.

- Pelttari, E.; Karhumaki, E.; Langshaw, J.; Perakyla, H.; Elo, H. Z. Naturforsch., C 2007, 62, 487.
- Mei, X.; Wang, P.; Caracoti, A.; Ming, P.; Boyd, V.; Murray, R.; et al. Hydrazone, Hydrazide and Thiosemicarbazone Derivatives as Antifungal Agents, [6329379], 2001.
- Young, D. H.; Shaber, S. H.; Avila-Adame, C.; Breaux, N. T.; Ruiz, J. M.; Siddall, T. L.; et al. Fungicidal Compositions Including Hydrazone Derivatives and Copper, [8461078], 2013.
- 14. Miller, G. A.; Greenfield, S. A. Fungicidal Salicylaldehyde Hydrazones and Azines, [3289492], 1972.
- Shi, L.; Ge, H. M.; Tan, S. H.; Li, H. Q.; Song, Y. C.; Zhu, H. L., et al. Eur. J. Med. Chem. 2007, 42, 558.
- Ali, R.; Marella, A.; Alam, T.; Naz, R.; Akhter, M.; Shaquiquzzaman, M., et al. Indones. J. Pharm. 2012, 23, 193.
- 17. Mohammad, A. Int. J. Appl. Biol. Sci. 2014, 1, 23.
- Majumdar, P.; Pati, A.; Patra, M.; Behera, R. K.; Behera, A. K. Chem. Rev. 2014, 114, 2942.
- Goodman, A.; McCall, J. R.; Jacocks, H. M.; Thompson, A.; Baden, D.; Abraham, W. M., et al. *Mar. Drugs* 2014, *12*, 1839.
- Li, B.; Bemish, R. J.; Bill, D. R.; Brenek, S.; Buzon, R. A.; Chiu, C. K. F., et al. Preparation of Pivaloyl Hydrazide in Water. In *Organic Syntheses*; John Wiley & Sons, 2003.
- 21. De Lucca, A. J.; Walsh, T. J.; Daigle, D. J. Antimicrob. Agents Chemother. 1996, 40, 1274.
- Rasras, A. J.; Al-Tel, T. H.; Al-Aboudi, A. F.; Al-Qawasmeh, R. A. Eur. J. Med. Chem. 2010, 45, 2307.
- Dai, R.; Wilson, D. J.; Geders, T. W.; Aldrich, C. C.; Finzel, B. C. Chembiochem 2014, 15, 575.
- 24. Bartzatt, R.; Cirillo, S. L.; Cirillo, J. D. Med. Chem. 2012, 8, 273.
- Narang, R.; Narasimhan, B.; Sharma, S. *Curr. Med. Chem.* 2012, *19*, 569.
 Verma, G.; Marella, A.; Shaquiquzzaman, M.; Akhtar, M.; Ali, M. R.; Alam, M. M. *J. Pharm. Bioall. Sci.* 2014, *6*, 69.
- 27. Kumar, P.; Narasimhan, B. *Mini-Rev. Med. Chem.* **2013**.
- Saha, A.; Kumar, R.; Kumar, R.; Devakumar, C. Indian J. Chem. 2010, 49B, 526.
- Sander, S. R.; Karo, W. Sourcebook of Advanced Organic Laboratory Preparations;
- Academic Press, 1992.
 Ray, S.; Nadini, L. N.; Singh, B.; Prasada, H.; Maharaj, S.; Sarkar, K.; et al. Process for the Synthesis of Isonicotinic Acid Hydrazide, [US 6734309 B1], 2004.
- 31. Katritzky, A. R.; Wang, M.; Zhang, S. *ARKIVOC* **2001**, *9*, 19.
- Rosenbergee, S.; Schmidt, A. Diacyl-hydrazine Stabilizers for Polyolefins, [3884874], 2014.
- 33. Yang, F.; Huang, Z.; Guo, H.; Hong, B.; Zhang, X. Chem. Res. Chin. Univ. 2010, 26, 546.
- 34. Pal, R.; Sarkar, T.; Khasnobis, S. ARKIVOC 2012, 570.
- 35. After reaction was complete, Amberlyst-15 resin was separated by filtration, washed with methanol and dried in the oven at 110 °C overnight. The catalyst was reused with no loss to catalytic activity, 2014.
- 36. Friedman, L.; Litle, R. L.; Reichle, W. R. Org. Synth. 1960, 40, 93.
- 37. El-Sayed, R. A. Phosphorus, Sulfur Silicon 2004, 179, 237.
- Aslan, H. G.; Ozcan, S.; Karacan, N. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2012, 98, 329.
- Siemann, S.; Evanoff, D. P.; Siemann, S.; Marrone, L.; Clarke, A. J.; Viswanatha, T.; Dmitrienko, G. I. Antimicrob. Agents Chemother. 2002, 46, 2450.
- Ozdemir, U. O.; Arslan, F.; Hamurcu, F. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2010, 75, 121.
- Shyam, K.; Penketh, P. G.; Divo, A. A.; Loomis, R. H.; Patton, C. L.; Sartorelli, A. C. J. Med. Chem. 1990, 33, 2259.
- 42. Siddique, M.; Saeed, A. B.; Ahmad, S.; Dogar, N. S. J. Sci. Innov. Res. 2013, 2, 628.
- 43. Belskaya, N. P.; Dehaen, W.; Bakuleva, V. A. ARKIVOC 2010, 275.
- Rauf, A.; Banday, M. R.; Mattoo, R. N. Acta Chim. Slov. 2008, 55, 448.
 Eric, F.; Scriven, E. F.; Keay, J. G.; Zhang, T. Preparation of Hydrazones,
- Dihydrothiadiazoles and Triazinones, [5446163], 1995.
 46. Mlosto, G.; Urbaniak, K.; Jacaszek, N.; Linden, A.; Heimgartner, H. *Heterocycles* 2014, 88, 387.
- Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard; Clinical Laboratory and Standards Institute, 2010. M27–A3, 28
- Arthur, L. Vogel: A Textbook of Practical Organic Chemistry Including Quantitative Organic Analysis, 3rd ed.; Wiley: New York, 1966.