Cite this: Chem. Commun., 2011, 47, 6569-6571

www.rsc.org/chemcomm

COMMUNICATION

A one-pot, reductive amination/6-*endo-trig* cyclisation for the stereoselective synthesis of 6-substituted-4-oxopipecolic acids[†]

Lindsay S. Fowler,^a Lynne H. Thomas,^a David Ellis^b and Andrew Sutherland^{*a}

Received 4th April 2011, Accepted 19th April 2011 DOI: 10.1039/c1cc11916h

The first stereoselective synthesis of 2,6-*trans*-6-substituted-4oxo-L-pipecolic acids using a tandem reductive amination/ 6-*endo-trig* cyclisation process is described. The sequential reduction and cyclisation mediated by sodium cyanoborohydride allowed the preparation of a series of highly functionalised 6-alkyl and 6-aryl analogues.

L-Pipecolic acid 1 (Fig. 1), a metabolite of L-lysine,¹ is a cyclic nonproteinogenic a-amino acid found in plants, fungi and human physiological fluids.² It is also a component of a wide range of pharmacologically active compounds such as the immunosuppressive agents rapamycin³ and FK506,⁴ the antitumour antibiotic sandramycin,⁵ the anti-human immunodeficiency virus (HIV) cyclodepsipeptide homophymia A⁶ and the oxytocin antagonists L-366682 and L-366948.7 Derivatives of L-pipecolic acid 1 such as 4-hydroxy- and 4-oxo-L-pipecolic acid are also of considerable biological and medicinal interest. For example, (2S,4R)-4-hydroxypipecolic acid has been isolated from the leaves of Calliandra pittieri and Strophantus scandeus⁸ and is a constituent of the synthetic HIV protease inhibitor palinavir 3,9 while 4-oxo-L-pipecolic acid is a key structural element of the cyclic hexadepsipeptide antibiotic virginiamycin S₁.¹⁰

Due to their widespread presence in nature and their significant medicinal properties, the synthesis of 4-hydroxyand 4-oxo-L-pipecolic acid analogues has been the focus of considerable attention.^{11,12} More recently, methods for the stereoselective synthesis of higher analogues such as 6-substituted-4-hydroxy- and 4-oxopipecolic acids have been reported.^{13–15} In each of these examples, the key step leads to the formation of the 2,6-*cis*-isomer as the major product. As part of a program to identify new biologically active pipecolic acids, we were interested in developing a new approach for the stereoselective synthesis of 2,6-*trans*-6-substituted-4-oxo-L-pipecolic acids such as **2** (Fig. 1). We now report the development of a tandem reductive amination/6-*endo-trig* cyclisation process for the direct preparation of a series of 2,6-*trans*-6-substituted-4-oxo-L-pipecolic acids from α -amino acids bearing an enone side chain as well as the stereoselective reduction of these to the corresponding 4-hydroxy-L-pipecolic acids.

Our research programme began with the preparation of a small library of the required enones bearing either alkyl or aryl side-chains (Scheme 1).¹⁶ Initially, L-aspartic acid (4) was converted to *N*-trityl L-aspartate dimethyl ester **5** in quantitative yield under standard conditions.¹⁷ The corresponding phosphonate ester **6** was prepared in 84% yield by the reaction of **5** with the anion of dimethyl methylphosphonate. Horner–Wadsworth–Emmons reaction of **6** with a range of aldehydes in the presence of potassium carbonate gave exclusively *E*-enones **7–13** in good to excellent yields (57–96%).

The tandem reductive amination/6-*endo-trig* cyclisation was next investigated (Table 1).¹⁸ The process began with removal of the trityl-protecting group from enone 7 using TFA. The resulting amine 14 was reacted with benzaldehyde to give imine 15. A one-pot chemoselective reduction of imine 15 and 6-*endo-trig* cyclisation was then studied. The use of triethylsilane as the reductant in the presence of a Lewis acid (TFA or zinc), returned only starting material (entries 1 and 2). Using the more reactive trichlorosilane allowed the isolation of 4-oxopipecolic acid derivative 16 in 25% overall yield from enone 7 (entry 3). The yield for the three-stage process was improved to 43% using sodium triacetoxyborohydride, however this reaction required 48 h to complete (entry 4). This limitation could be overcome using sodium cyanoborohydride

Fig. 1 L-Pipecolic acid 1 and some derivatives.

^a WestCHEM, School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.

E-mail: Andrew.Sutherland@glasgow.ac.uk;

Fax: +44 141 330 4888; Tel: +44 141 330 5936

^b Pfizer Ltd, Sandwich, Kent, CT13 9NJ, UK

[†] Electronic supplementary information (ESI) available: Full experimental procedures, spectroscopic data, NOE experiments and NMR spectra for all compounds synthesised. CIF file for compound **27**. CCDC 817525. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c1cc11916h

Scheme 1 Reagents and conditions: (i) SOCl₂, MeOH, Δ , 100%; (ii) TrCl, Et₃N, CH₂Cl₂, 100%; (iii) (MeO)₂P(O)Me, *n*-BuLi, THF, -78 °C, 84%; (iv) RCHO, K₂CO₃, MeCN, 50 °C, 7 R = PhCH₂CH₂ (93%), 8 R = *i*-Bu, (57%), 9 R = CH₃ (78%), 10 R = Ph (95%), 11 R = 4-MeOC₆H₄ (66%), 12 R = 4-BrC₆H₄ (96%), 13 R = 4-(3'-NO₂C₆H₄)C₆H₄ (59%).

as the reductant which gave 16 in an improved 53% yield after only 1 h (entry 5). It should be noted that despite the presence of the enone, the imine can be reduced selectively to give after cyclisation, the 4-oxopipecolic acid derivative in good yield over the three steps.

Using the optimised conditions for the tandem reductive amination/6-*endo-trig* cyclisation, the scope of this three-step process was explored (Scheme 2). Good yields over the three-steps were obtained for other 6-alkyl-4-oxo-L-pipecolic acid analogues (17 and 18). Electron-rich and electron-deficient aryl substituted enones also underwent the tandem reductive amination/6-*endo-trig* cyclisation, although giving the cyclised products (19, 20 and 21) in slightly lower yields over the three steps. Even the bulky, highly conjugated biaryl enone 13 could be converted to the corresponding 4-oxo-L-pipecolic acid analogue 22 using this approach. However, the low 29% yield demonstrates the limitation of this process.

Scheme 2 Scope of the reductive amination/6-*endo-trig* cyclisation process.

To confirm the stereochemical outcome of the 6-*endo-trig* cyclisations and prepare a series of 4-hydroxy-L-pipecolic acid derivatives, several of the 2,6-*trans*-6-substituted-4-oxo-L-pipecolic acid analogues (**16–19**) were reduced with sodium borohydride (Scheme 3). This gave the corresponding (4*S*)-isomers in high yields. With the 4-hydroxy compounds **23–26** in hand, difference NOE experiments were done by saturation of the H-2, H-4 and H-6 ring hydrogens.¹⁹ As expected, these experiments showed the (2*S*,4*S*,6*R*)-isomers as the major products,²⁰ thereby confirming the initial 2,6-*trans* stereochemical assignment of products from the tandem reductive amination/6-*endo-trig* cyclisation process. During the 6-*endo-trig* cyclisation, the enones likely adopt a Zimmerman–Traxler, chair-like transition state with both the R and *N*-benzyl groups in equatorial positions.²¹

Scheme 3 Reagents and conditions: (i) NaBH₄, MeOH, 0 °C, 23 R = PhCH₂CH₂ (67%), 24 R = *i*-Bu (80%), 25 R = CH₃ (83%), 26 R = Ph (80%).

Scheme 4 Reagents and conditions: (i) 10% Pd/C, ammonium formate, *t*-BuOH, 48%; (ii) 6M HCl, Δ , 100%.

To demonstrate that compounds such as **23–26** could be used to access the parent 6-substituted-4-hydroxy-L-pipecolic acids, methyl analogue **25** was deprotected in two steps (Scheme 4). Initially, the benzyl group was removed by transfer hydrogenation to give the corresponding amine in 48% yield. Acid mediated hydrolysis of the methyl ester gave the hydrochloride salt of (2S,4S,6R)-4-hydroxy-6methylpiperidine-2-carboxylic acid (**27**) in quantitative yield. Recrystallisation of compound **27** allowed X-ray structure determination (Scheme 4).²² The structure provides further confirmation of the relative configuration of the stereogenic centres generated during both the tandem reductive amination/6-*endo-trig* cyclisation process and reduction of the ketone.

In summary, a new tandem reductive amination/6-endo-trig cyclisation process has been developed for the stereoselective synthesis of 2,6-trans-6-substituted-4-oxo-L-pipecolic acid derivatives. The substrates for this process, α -amino acids bearing an enone side chain were easily accessed using a Horner–Wadsworth–Emmons reaction resulting in the preparation of a wide range of 4-oxo-L-pipecolic acids with various 6-alkyl and 6-aryl substituents. These highly functionalised compounds have significant potential for the synthesis of a number of biologically and medicinally important targets as demonstrated by their facile reduction to the corresponding (2*S*,4*S*,6*R*)-6-substituted-4-hydroxypipecolic acid derivatives. Work is currently underway to investigate the use of this general strategy for the preparation of pipecolic acid derived natural products.

The authors are grateful to the EPSRC (studentship to L.S.F.), the University of Glasgow and Pfizer Ltd for financial support.

Notes and references

- 1 E. Leistner and I. D. Spenser, J. Am. Chem. Soc., 1973, 95, 4715.
- 2 (a) R. M. Zacharius, J. F. Thompson and F. C. Steward, J. Am. Chem. Soc., 1952, 74, 2949; (b) R. Bernasconi, R. S. G. Jones, H. Bittiger, H. R. Olpe, J. Heid, P. Martin, M. Klein, P. Loo, A. Braunwalder and M. Schmutz, J. Neural Transm., 1986, 67, 175; (c) M. C. Gutiérrez and B. A. Delgado-Coello, Neurochem. Res., 1989, 14, 405.
- (a) D. C. N. Swindells, P. S. White and J. A. Findlay, *Can. J. Chem.*, 1978, **56**, 2491; (b) A. B. Smith, III, K. J. Hale, L. M. Laakso, K. Chen and A. Riéra, *Tetrahedron Lett.*, 1989, **30**, 6963; (c) A. B. Smith, III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W. Leahy and R. E. Maleczka, Jr., *J. Am. Chem. Soc.*, 1997, **119**, 9621; (d) A. B. Smith, III and C. M. Adams, *Acc. Chem. Res.*, 2004, **37**, 365.

- 4 (a) H. Tanaka, A. Kuroda, H. Marusawa, H. Hatanaka, T. Kino, T. Goto, M. Hashimoto and T. Taga, J. Am. Chem. Soc., 1987, 109, 5031; (b) D. Romo, S. D. Meyer, D. D. Johnson and S. L. Schreiber, J. Am. Chem. Soc., 1993, 115, 7906; (c) R. E. Ireland, J. L. Gleason, L. D. Gregnas and T. K. A Highsmith, J. Org. Chem., 1996, 61, 6856.
- 5 D. L. Boger, J.-H. Chen and K. W. Saionz, J. Am. Chem. Soc., 1996, 118, 1629.
- A. Zampella, V. Sepe, P. Luciano, F. Bellotta, M. C. Monti, M. V. D'Auria, T. Jepsen, S. Petek, M.-T. Adeline, O. Laprévôte, A.-M. Aubertin, C. Debitus, C. Poupat and A. Ahond, J. Org. Chem., 2008, 73, 5319.
 D. S. Perlow, J. M. Erb, N. P. Gould, R. D. Tung,
- 7 D. S. Perlow, J. M. Erb, N. P. Gould, R. D. Tung, R. M. Freidinger, P. D. Williams and D. F. Veber, *J. Org. Chem.*, 1992, **57**, 4394.
- 8 (a) V. W. Schenk and H. F. Schutte, *Flora*, 1963, **153**, 426; (b) J. T. Romeo, L. A. Swain and A. B. Bleecker, *Phytochemistry*, 1983, **22**, 1615.
- 9 (a) P. C. Anderson, F. Soucy, C. Yoakim, P. Lavallee and P. L. Beaulieu, US Patent 5.545.640, 1996; (b) D. Lamarre, G. Croteau, E. Wardrop, L. Bourgon, D. Thibeault, C. Clouette, M. Vaillancourt, E. Cohen, C. Pargellis, C. Yoakim and P. C. Anderson, Antimicrob. Agents Chemother., 1997, **41**, 965.
- 10 H. Vanderhaeghe, G. Janssen and F. Compernolle, *Tetrahedron Lett.*, 1971, 12, 2687.
- For reviews, see: (a) F. Couty, Amino Acids, 1999, 16, 297;
 (b) C. Kadouri-Puchot and S. Comesse, Amino Acids, 2005, 29, 101.
- For recent examples, see: (a) J. Marin, C. Didierjean, A. Aubry, J.-R. Casimir, J.-P. Briand and G. Guichard, J. Org. Chem., 2004, 69, 130; (b) F. M. Cordero, P. Fantini and A. Brandi, Synlett, 2006, 3251; (c) F. M. Cordero, S. Bonollo, F. Machetti and A. Brandi, Eur. J. Org. Chem., 2006, 3235; (d) E. G. Occhiato, D. Scarpi and A. Guarna, Eur. J. Org. Chem., 2008, 524; (e) S. K. Chattopadhyay, T. Biswas and T. Biswas, Tetrahedron Lett., 2008, 49, 1365; (f) C. Alegret, X. Ginesta and A. Riera, Eur. J. Org. Chem., 2008, 1789; (g) C. A. M. Cariou, B. M. Kariuki and J. S. Snaith, Org. Biomol. Chem., 2008, 6, 3337; (h) C.-S. Sun, Y.-S. Lin and D.-R. Hou, J. Org. Chem., 2008, 73, 6877; (i) E. G. Occhiato, D. Scarpi, A. Guarna, S. Tabasso, A. Deagostino and C. Prandi, Synthesis, 2009, 3611; (j) S. C. Valdez and J. L. Leighton, J. Am. Chem. Soc., 2009, 131, 14638; (k) L. Bartali, A. Casini, A. Guarna, E. G. Occhiato and D. Scarpi, Eur. J. Org. Chem., 2010, 5831.
- 13 W. B. Jatoi, A. Bariau, C. Esparcieux, G. Figueredo, Y. Troin and J.-L. Canet, *Synlett*, 2008, 1305.
- 14 P. Merino, V. Mannucci and T. Tejero, Eur. J. Org. Chem., 2008, 3943.
- 15 N. Purkayastha, D. M. Shendage, R. Fröhlich and G. Haufe, J. Org. Chem., 2010, 75, 222.
- 16 L. S. Fowler, D. Ellis and A. Sutherland, Org. Biomol. Chem., 2009, 7, 4309.
- 17 D. E. Rudisill and J. P. Whitten, Synthesis, 1994, 851.
- 18 A direct 6-endo-trig cyclisation of trityl protected enones 7 and 10 as well as the corresponding free amino and Boc-protected compounds under acid, Lewis acid or base-mediated conditions was initially attempted. However, these reactions either returned starting material or generated a complex mixture of products.
- See supporting information for NOE experiments for compounds 23, 24, 25 and 26[†].
- 20 Due to a reversal of priority at C-6, the absolute configuration of **26** is (2*S*,4*S*,6*S*).
- 21 F. Johnson, Chem. Rev., 1968, 68, 375.
- 22 X-Ray data for 27: $C_7H_{16}O_4ClN$, MW = 213.66, orthorhomic, space group $P2_12_12_1$, Z = 4, T = 100 K, a = 8.2209(2), b = 8.9923(3), c = 13.8130(4) Å, V = 1021.12(5) Å³, *Flack parameter* = 0.10(5), final *R* indices, $R_1 = 0.0283$ for 2188 reflections $I > 2\sigma(I)$, $R_1 = 0.0352$, w $R_2 = 0.0639$ for all data, reflections collected/unique 8583/2148. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Centre, CCDC 817525†.