ORIGINAL ARTICLE

Synthesis of 4-hydroxy- β^3 -homoprolines and their insertion in $\alpha/\beta/\alpha$ -tripeptides

Franca M. Cordero · Carolina Vurchio · Marco Lumini · Alberto Brandi

Received: 26 July 2012/Accepted: 7 September 2012/Published online: 28 September 2012 © Springer-Verlag 2012

Abstract The stereoselective syntheses of 2-cyclopropyland (2*S*)-2-hydroxymethyl-(3*R*,4*S*)-4-hydroxy- β^3 -homoproline are described. The reported amino acids were constructed through 1,3-dipolar cycloaddition of strained alkylidenecyclopropanes with enantiopure pyrroline *N*-oxides derived from malic acid followed by thermal rearrangement of the adducts in the presence of trifluoroacetic acid. The two-step sequence afforded the homoprolines suitably protected to be directly used as building blocks in peptidomimetic synthesis as proved by the synthesis of the two model mixed $\alpha/\beta/\alpha$ tripeptides Phe- β^3 -HPro-Val.

Keywords Cycloaddition · Rearrangement · Peptidomimetics · Heterocycles · Small ring systems

Introduction

 β -Amino acids are a class of interesting compounds frequently found in biologically active products (for example, β -alanine, β -tyrosine, and α -hydroxy- β -phenylalanine are components of the vitamin pantothenic acid, the antibiotic edenine A, and the anticancer Taxol®, respectively) and commonly used as synthetic intermediates and building blocks of peptidomimetics in general and β -peptides in particular (for a selection of recent reviews on β -amino acids, see: Szakonyi and Fülöp 2011; Weiner et al. 2010; Kiss and Fülöp 2010; Seebach et al. 2009; Horne and Gellman 2008; Liljeblad and Kanerva 2006; Kuhl et al. 2005; Steer et al. 2002; Juaristi and López-Ruiz 1999). More recently, the use of β -amino acids as organocatalysts was also reported (Terakado et al. 2005; Mitsumori et al. 2006; Limbach 2006; Davies et al. 2007; Gruttadauria et al. 2008; Tsandi et al. 2009; Hiraga et al. 2011; Yang and Wong 2011).

 β^3 -Homoproline (pyrrolidine-2-acetic acid, β^3 -HPro, 1) (Fig. 1) is of particular interest. For example, this β -amino acid has been used in place of proline to produce biological active mimics that are not degraded by peptidases (Baláspiri et al. 1975; Ondetti and Engel 1975; Szirtes et al. 1986; Aguilar et al. 2007; Katarzyńska et al. 2008). In addition, a variety of derivatives of both (3S)- and (3R)- β^3 -HPro show biological and pharmacological activities (Deutsch et al. 2001; Davies et al. 2004; Fülep et al. 2006; Zhu et al. 2009; Andries et al. 2011) and were used as synthetic intermediates of various aza-heterocycles (Luly and Rapoport 1983; Rabiczko et al. 2002; Ranatunga et al. 2010). Finally, the conformational behavior of β^3 -HPro (Góbi et al. 2010) and the secondary structure of its oligomers were investigated (Abele et al. 1999). Thus, the synthesis and study of these β -amino acids in enantiopure form is an important area within organic chemistry, and new approaches to C-2-substituted derivatives of 1, unavailable by simple homologation of proline, are highly desirable (for some examples of optically active 2-substituted β^3 -homoprolines, see: Yi et al. 2003; Davies et al. 2004; Saavedra et al. 2009; Ranatunga et al. 2010; Benz et al. 2011). We have previously shown that adducts of pyrroline N-oxides 3 with methylenecyclopropane (MCP) and bicyclopropylidene (BCP) such as 4 and 5 undergo a thermal rearrangement with fragmentation in the presence of trifluoroacetic acid (TFA) to N-trifluoroacetyl β^3 -homoprolines 6 and 7, respectively (Fig. 2) (Cordero et al. 2004a, 2009).

<sup>F. M. Cordero (⊠) · C. Vurchio · M. Lumini · A. Brandi
Dipartimento di Chimica "Ugo Schiff", Università degli Studi di
Firenze, Via della Lastruccia 13,
50019 Sesto Fiorentino, FI, Italy
e-mail: franca.cordero@unifi.it</sup>

Fig. 1 Structures of β^3 -homoproline (1) and 4-hydroxy derivatives 2

Fig. 2 Synthesis of *N*-trifluoroacetyl β^3 -homoprolines by 1,3-DC/ATR

Here, we present the application of this two-step sequence 1,3-dipolar cycloaddition (1,3-DC)/acidic thermal rearrangement (ATR) to the synthesis of 4-hydroxy- β^3 -homoprolines **2** (Fig. 1) having a cyclopropane ring (R¹–R² = CH₂–CH₂) and a 2-hydroxyethyl chain on C-2 (R¹ = H, R² = CH₂-CH₂OH) and their incorporation in a $\alpha/\beta/\alpha$ tripeptide.

Results and discussion

The use of an enantiopure 4-hydroxy pyrroline *N*-oxide as building block in the synthesis of β^3 -homoprolines offers valuable opportunities. The presence of a bulky group on nitrone C-4 such as OtBu group can force the dipolarophile to add only on the less hindered nitrone diastereoface (Zorn et al. 1999). As a consequence, complete control of configuration of the isoxazolidine C-3a' and, therefore, of the homoproline C-3 stereocenter could be achieved. Moreover, the presence of the hydroxy group can confer important properties to the final homoproline. In this regard, we just recall the most common posttranslational modification of proline (Pro) into 4-hydroxyproline (HYP) that is an essential stabilizer of collagen structure (Persikov et al. 2000; Berisio et al. 2002; Schumacher et al. 2006; Krane 2008; Gorres and Raines 2010).

Protected 4-hydroxy pyrroline *N*-oxides can be conveniently prepared in enantiopure form from malic acid, a common chiral pool compound available in both the enantiomeric forms (Cicchi et al. 1995; Goti et al. 1997, 1999, 2000; Ohtake et al. 1999; Cordero et al. 2002; Merino et al. 2003; Wu et al. 2009; Delso et al. 2010). The

O-tert-butyl- and *O*-benzyl-protected nitrones used in the synthesis of homoprolines **2** were prepared following previously reported procedures (Cicchi et al. 1995, 2001; Wu et al. 2009) except for the benzylation step. In particular, treatment of diethyl malic ester with benzyl trichloroace-timidate (for benzylation of dimethyl malic ester under similar conditions, see: Keck et al. 1991; Christoffers and Rössler 2000; Bertus et al. 2003; Brimble et al. 2011) in the presence of triflic acid afforded the corresponding benzyl ether **8** in 98 % yield (Scheme 1).

The 1,3-DC of nitrone **9** with BCP afforded exclusively isoxazolidine **10** derived from the addition of the symmetric dipolarophile to the nitrone *Re* face (Scheme 2). The observed diastereoselectivity proves that the 4-OBn group hinders the *Si* face of the pyrroline *N*-oxide with the same efficiency of the bulkier 4-OtBu group when BCP is used as dipolarophile (Zorn et al. 1999). The cycloaddition was carried out at 60 °C to avoid the alternative thermal rearrangement of 5-spirocyclopropaneisoxazolidines that takes place under neutral conditions, affording 4-tetrahydropyridones (Zorn et al. 1999; Brandi et al. 2003; Cordero et al. 2004b). The conversion of nitrone **9** was monitored by TLC and was complete after 2 days.

Isoxazolidine 10 smoothly underwent ATR in the presence of a slight excess (1.5 equiv) of TFA giving homoproline 11 in high yield. The use of the OBn instead of the OtBu protection was found to be highly beneficial, because the yield of ATR increased from 73 to 92 % (Cordero et al. 2009). The cyclopropane ring spirofused at C-3' is found intact on the C-2 carbon of 11 after the rearrangement. In fact, this method is a general access to 2-cyclopropyl- β^3 homoprolines, compounds not easily available by other synthetic approaches but particularly interesting because of the well-known key role played by the cyclopropyl ring on reactivity, conformational freedom, and biological activity of various compounds including amino acids (Gnad and Reiser 2003; Brackmann and de Meijere 2007a, b). Finally, as a result of the anti TS in the cycloaddition step, 4-hydroxyl group on the pyrrolidine ring of 11 is trans oriented with respect to the substituent on C-2 analogously to HYP (Persikov et al. 2000; Berisio et al. 2002; Schumacher et al. 2006; Krane 2008; Gorres and Raines 2010).

Summing up (3R, 4S)-4-hydroxy-2-cyclopropyl- β^3 -homoproline **11** was obtained through the two-step

Scheme 1 Synthesis of O-benzyl nitrone 9

Scheme 2 Synthesis of β -homoproline 11 by 1,3-DC/ATR sequence. Reaction conditions: (a) BCP, toluene, 60 °C, 2 days; (b) TFA (1.5 equiv), CH₃CN, 70 °C (MW), 15 min

sequence 1,3-DC/ATR in 72 % overall yield and with total stereoselectivity.

In principle, the amino acid **11** could be directly used in peptidomimetic synthesis having a free carboxylic group and the nitrogen atom and the 4-OH function orthogonally protected. Actually, it is known that some synthetic amino acids react poorly or do not react at all with natural amino acids under standard reaction conditions. In this regard, a more substituted analog of 11 such as the 4,5-bis(benzyloxy)-6-(benzyloxymethy)-2-cyclopropyl- β^3 homoproline does not undergo intermolecular coupling at the pyrrolidine nitrogen atom. In that case, the lack of reactivity was overcome by reversing the common order of coupling in the synthesis of a mixed $\alpha/\beta/\alpha$ tripeptide and by performing the N-acylation intramolecularly (Cordero et al. 2009). Fortunately, the less substituted 4-benzyloxy-2-cyclopropyl- β^3 -homoproline showed a regular reactivity of the nitrogen atom as proved by the synthesis of the α/β dipeptide 14 (Scheme 3). In particular, acid 11 was esterified with a bulky alcohol such as tert-butanol, and after N-deprotection was coupled with N-Fmoc valine under standard conditions to give 14 in 66 % yield.

Accordingly, the synthesis of an $\alpha/\beta/\alpha$ tripeptide was studied following a standard approach (Scheme 4). Acid 11 smoothly reacted with Val-OMe to give dipeptide 15 in 83 % yield. Reductive removal of the trifluoroacetyl group afforded 16 that was coupled with Boc-Phe to get tripeptide 17 in 31 % yield. The reactivity of dipeptide 16 was poorer compared to ester 13, likely due to the hindrance of the

reactive site caused by the valine residue. This result suggests a reduced flexibility of **16** that could adopt a U-shaped conformation induced by the presence of the cyclopropyl group.

Having established that 2-cyclopropyl- β^3 -homoproline **2** (R = Bn, R¹–R² = CH₂CH₂, Fig. 1) is a suitable building block for peptidomimetic synthesis, we sought to test the versatility of the 1,3-DC/ATR approach to 4-hydroxy- β^3 homoprolines by synthesizing a 2-mono-substituted derivative. The introduction of a 2-hydroxyethyl chain, that is, the lateral chain of Ser, appeared particularly interesting as the amino acid **2** (R¹ = H, R² = CH₂-CH₂OH, Fig. 1) can be considered as a mimetic of the dipeptide Pro-Ser deprived of the amide moiety and, moreover, the primary hydroxyl group could be used to introduce different substituents on C-2.

Alkoxycarbonyl-methylenecyclopropanes such as **19** are highly regioselective dipolarophiles in nitrone 1,3-DC reactions affording the required 4-alkoxycarbonyl-5-spirocyclopropanoisoxazolidines (Brandi et al. 1988, 1992; Cordero et al. 1993; Mauduit et al. 1998). A mixture of nitrone **18** and **19** gave the diastereomeric adducts **20a** and **20b** in 6:1 ratio and 81 % overall yield by heating at 30 °C overnight (Scheme 5) (see also Pisaneschi et al. 2006a).

By heating in the presence of TFA, the main adduct **20a** was converted into the malic acid derivative **21** that spontaneously undergoes decarboxylation under the reaction conditions affording the 2-unsubstituted β^3 -homoproline **22** in low yield (Scheme 6).

To avoid decarboxylation, the ester group in **20a** was selectively reduced with DIBAL (Scheme 7), and the 4-hydroxymethyl-isoxazolidine **23** and the corresponding acetate **24** were subjected to the ATR process. By heating in the presence of TFA, isoxazolidine **23** gave the expected homoproline **25** along with the N-deprotected amino acid **26** (Scheme 7). ¹H NMR analysis of the crude mixtures obtained under similar reaction conditions (70 °C, 5 min, CH₃CN) except for the amount of TFA showed that the

Scheme 3 Synthesis of the dipeptide 14. Reaction conditions: (a) AcOtBu, HClO₄; (b) NaBH₄, MeOH, rt; (c) Fmoc-Val, DIPEA, PyBrop, DMAP, CH₃CN

Scheme 4 Synthesis of the $\alpha/\beta/\gamma$ tripeptide **17**. Reaction conditions: (a) Val-OMe, EDCI, HOBt, CH₂Cl₂; (b) NaBH₄, MeOH, rt, 1.5 h; (c) Boc-Phe, DIPEA, PyBrop, DMAP, CH₃CN

Scheme 5 1,3-DC of nitrone 18 with dipolarophile 19

Scheme 6 ATR of isoxazolidine 20a

25/26 ratio decreases by increasing TFA. The overall yield of **25** and **26** after chromatography was good (92–94 %) and did not change with the quantity of the acid used suggesting that a partial hydrolysis of **25** occurs under the ATR reaction conditions. The greater instability of the trifluoroacetaride group in **25** compared with other analog *N*-trifluoroacetyl-homoprolines can be rationalized considering an anchimeric assistance of the primary hydroxyl group. At the temperature necessary to induce the ATR process, **25** can undergo an intramolecular *6-exo-trig* trans-acylation with the formation of an easily hydrolysable trifluoroacetyl ester. The complete transformation of **25** into **26** by simple heating at 60 °C in MeOH confirmed this hypothesis (Scheme 7).

ATR of isoxazolidine **24**, having the acetylated hydroxymethyl group, occurred smoothly and with no surprises under standard conditions. Protected β^3 -homoproline **27** was obtained in 90 % yield by heating a solution of protonated **24** at 70 °C for 2 min in a microwave oven (Scheme 7). The two-step 1,3-DC/ATR sequence allowed to obtain **27** in 62 % overall yield with control of the absolute configuration of the two new stereocenters C-2 and C-3.

Scheme 7 Synthesis and ATR of isoxazolidines 23 and 24. [a] Determined by ¹H NMR analysis of the crude mixture. Reaction conditions: (a) DIBAL; (b) Ac₂O, DMAP (cat); (c) TFA (1.1, 1.5 or 2 equiv), CH₃CN, 70 °C (MW), 5 min; (d) TFA (1.5 equiv), CH₃CN, 70 °C (MW), 2 min

It is worth to be noted that the cycloaddition of pyrroline *N*-oxides with 2,3-unsubstituted acrylic acid derivatives affords cycloadducts with the opposite regiochemistry, compared to **20**, leading to 2-hydroxy-3-(pyrrolidin-2-yl)propanoic acid derivatives after reduction of the N–O bond (Argyropoulos et al. 2007; Pisaneschi et al. 2006b; Salvati et al. 2005; Cordero et al. 2005; Sár et al. 2005, 2003). Only in one case, the formation of a little amount of a 2-(2-hydroxyethyl)- β^3 -homoproline was reported (Mao et al. 2010).

The new homoproline **27** could be coupled at both the N- and C-terminus with α -amino acids without problems as showed in Scheme 8. Interestingly, N-acylation of dipeptide **29** occurred with a higher yield compared to the analog reaction on **16** (Schemes 4, 8), validating the constraint effect on the dipeptide conformation exerted by the cyclopropyl ring on C-2 of the β^3 -homoproline.

Conclusions

The two-step sequence 1,3-DC/ATR applied to enantiopure pyrroline *N*-oxides easily derived from malic acid was proved to be a reliable and versatile approach to the interesting class of C-2-substituted 4-hydroxy- β^3 -homoproline. The two synthesized homoprolines **11** and **27** could be directly inserted in mixed $\alpha/\beta/\alpha$ tripeptides showing an acceptable reactivity at both the N- and C-terminus. The pyrrolidine nitrogen atom turned out to be particularly sensible to steric hindrance exerted by vicinal groups especially in the case of 2-cyclopropyl derivatives. These nitrogen reactivity properties indirectly suggest a good propensity of 2-cyclopropyl-homoprolines to induce reverse turns when inserted in peptides, whereas the 2-hydroxymethyl-homoproline can be regarded as a new non-hydrolysable Pro-Ser mimetic.

Scheme 8 Synthesis of the $\alpha/\beta/\alpha$ tripeptide **30**. Reaction conditions: (a) Val-OMe, EDCI, HOBt, CH₂Cl₂; (b) NaBH₄, MeOH, rt, 1 h; (d) Cbz-Phe, DIPEA, PyBrop, DMAP, CH₃CN

The possibility of getting these β -amino acids through the process described above constitutes an important first step toward their potential applications in the peptidomimetic field and the study of the secondary structure of amino acid sequences containing them. Studies for the evaluation of biological and organocatalytic activity of the synthesized 4-hydroxy- β^3 -homoprolines and peptides are in progress.

Experimental

General

Chemicals were purchased from Sigma-Aldrich and Alfa Aesar. BCP was synthesized as previously reported (de Meijere et al. 2002). Reactions anhydrous conditions were carried out under an atmosphere of nitrogen and the solvents were appropriately dried before use. Chromatographic purifications were performed on silica gel 60 (0.040-0.063 mm, 230-400 mesh ASTM, Merk) using flash-column technique; Rf values refer to TLC carried out on 0.25-mm silica gel plates with the same eluant indicated for column chromatography unless otherwise stated. All evaporations were carried out at reduced pressure. NMR spectra were recorded on Varian GEMINI 200, GEMINI 300, MERCURY 400, and INOVA 400 spectrometers using CDCl₃ solutions, unless otherwise stated, and were referenced internally to solvent reference frequencies. Assignments were made on the basis of ¹H–¹H COSY, HMQC, HSQC, and HMBC experiments. Mass spectra: MS (EI) were recorded on a QP5050 Shimadzu spectrometer with a GC (70-eV ionizing voltage); MS (ESI) were recorded on a LCQ Fleet Ion Trap Mass Spectrometer with Surveyor Plus LC System (Thermo Scientific) operating in positive (⁺ESI) and negative (⁻ESI) ion mode by direct infusion of a methanolic solution of the sample. Melting points (mp) were determined on an electrothermal apparatus and are not corrected. Polarimetric measurements were taken on a JASCO DIP-370. IR spectra were recorded with a PerkinElmer Spectrum BX FT-IR System spectrophotometer. Elemental analyses were performed with a PerkinElmer 2400 analyzer. Microwave-assisted reactions were carried out in a CEM DiscoverTM singlemode microwave reactor with IR temperature sensor using an irradiation power of 150 W with simultaneous cooling.

Diethyl (2*S*)-2-(*benzyloxy*)*succinate* (8) Triflic acid (0.415 mL, 4.75 mmol) was added to a mixture of diethyl malate (753 mg, 3.96 mmol), benzyl trichloroacetimidate (2.0 g, 7.92 mmol), and 3 Å molecular sieves in anhydrous Et_2O (33 mL) under nitrogen atmosphere. The mixture was stirred for 15 h at rt, filtered, and washed with a saturated

aq. Na₂CO₃ solution. The organic solution was dried over Na₂SO₄, filtered, and concentrated. Purification of the residue by chromatography (petroleum ether/AcOEt = 10/1) afforded 8 (1.088 g, 98 %) as a colorless oil. 8: $R_f = 0.31$ (petroleum ether/AcOEt = 10/1). $[\alpha]_D^{23} = -59.9$ $(c = 6.8, \text{ CHCl}_3)$. ¹H-NMR (400 MHz): $\delta = 7.38-7.27$ (m, 5H, Ar–H), 4.77 (d, J = 11.4 Hz, 1H, CH₂Ph), 4.55 (d, J = 11.4 Hz, 1H, CH₂Ph), 4.39 (dd, J = 7.7, 5.2 Hz, 1H, CHOBn), 4.27-4.10 (m, 4H, CH₃CH₂O), 2.82 (A part of an ABX system, J = 16.0, 5.2 Hz, 1H, OCHCHH), 2.76 (B part of an ABX system, J = 16.0, 7.7 Hz, 1H, OCHCHH), 1.30 (t, J = 7.1 Hz, 3H, CH_3) 1.24 (t, J = 7.1 Hz, 3H, CH₃). ¹³C-NMR (50 MHz): $\delta = 171.3$ (s, CO), 169.9.0 (s, CO), 137.2 (s, Ar), 128.3 (d, 2C, Ar), 128.0 (d, 2C, Ar), 127.8 (d, Ar), 74.6 (d, COCH), 73.0 (t, CH₂Ph), 61.2 (t, CH₂CH₃), 60.9 (t, CH₂CH₃), 38.1 (t, COCH₂CH), 14.21 (q, CH_3), 14.16 (q, CH_3). IR (CDCl₃): v = 3,031, 2,984,1,733, 1,376, 1,275, 1,179, 1,114, 1,028 cm⁻¹. C₁₅H₂₀O₅ (280.32): calcd. C 64.27, H 7.19; found C 64.04, H 7.25.

(3a'R,4'S)-4'-(Benzyloxy)tetrahydrodispiro[cyclopropane-

1,2'-pyrrolo[1,2-b]isoxazole-3',1''-cyclopropane] (10) Α mixture of nitrone 9 (152 mg, 0.795 mmol) and BCP (140 mg, 1.75 mmol) in toluene (0.8 mL) was heated at 60 °C in a Sovirel tube for 2 days. The solvent was evaporated and the crude product was purified by chromatography (petroleum ether/AcOEt = 3/1) to give 10 (168 mg, 78 %) as a pale yellow oil. **10**: $R_{\rm f} = 0.30$ (petroleum ether/AcOEt = 3/1). $[\alpha]_{D}^{23} = +26.7$ (c = 0.8, CHCl₃). ¹H-NMR (400 MHz): $\delta = 7.37-7.27$ (m. 5H, Ar-H), 4.51 (A part of an AB system, J = 11.8 Hz, 1H, CHHPh), 4.42 (B part of an AB system, J = 11.8 Hz, 1H, CH*H*Ph), 4.04 (pseudo dt, J = 5.9, 3.0 Hz, 1H, 4'-H), 3.56 (d, J = 2.8 Hz, 1H, 3a'-H), 3.46–3.40 (m, 2H, 6'-H), 2.25 $(dddd, J = 13.3, 8.9, 7.7, 5.9 \text{ Hz}, 1\text{H}, 5'-\text{H}_a), 1.91 (dddd, J)$ J = 13.3, 5.9, 4.9, 3.2 Hz, 1H, 5'-H_b), 0.86–0.68 (m, 4H, c-Pr), 0.66–0.60 (m, 1H, c-Pr), 0.48–0.37 (m, 1H, c-Pr), 0.25–0.13 (m, 2H, c-Pr) ppm. ¹³C-NMR (100 MHz): $\delta = 138.0$ (s, Ar), 128.4 (d, 2C, Ar), 127.7 (d, Ar), 127.6 (d, 2C, Ar), 83.8 (d, C-4'), 78.4 (d, C-3a'), 71.1 (t, CH₂Ph), 66.3 (s, C-2'), 56.3 (t, C-6'), 30.9 (s, C-3'), 30.9 (t; C-5'), 11.4 (t, c-Pr), 10.1 (t, c-Pr), 4.63 (t, c-Pr), 4.59 (t, c-Pr) ppm. IR (CDCl₃): v = 3,080, 3,032, 3,002, 2,946, 1,454,1,357, 1,179, 1,071, 1,027 cm⁻¹. MS (EI): m/z (%) = 271 (1) [M⁺], 256 (1), 242 (1), 180 (15), 166 (2), 152 (13), 108 (6), 91 (100), 69 (14), 41 (25). C₁₇H₂₁NO₂ (271.35): calcd. C 75.25, H 7.80, N 5.16; found C 75.37, H 8.15, N 4.89.

I-[(2R,3S)-3-(*Benzyloxy*)-1-(*trifluoroacetyl*)*pyrrolidin*-2-*yl*] *cyclopropanecarboxylic acid* (**11**) A mixture of **10** (126 mg, 0.464 mmol) and TFA (55 L, 0.7 mmol) in CH₃CN (11.8 mL) was heated in the microwave reactor at 70 °C for 15 min. The reaction mixture was concentrated

and purified by chromatography (hexane/Et₂O = 1/1) to give 11 (153 mg, 92 %) as a pale yellow oil. 11: $R_{\rm f} = 0.32$ (hexane/Et₂O = 1/1). $[\alpha]_{D}^{23} = +28.2$ (c = 0.8, CHCl₃). ¹H-NMR (400 MHz): $\delta = 7.38-7.27$ (m, 5H, Ar-H), 4.65 (A part of an AB system, J = 12.0 Hz, 1H, CHHPh), 4.59 (B part of an AB system, J = 12.0 Hz, 1H, CHHPh), 4.35– 4.32 (m, 1H, 2-H), 4.29-4.25 (m, 1H, 3-H), 3.96-3.86 (m, 1H, 5-H_a), 3.81-3.73 (m, 1H; 5-H_b), 2.28 (pseudo ddt, J = 13.3, 5.4, 8.2 Hz, 1H, 4-H_a), 2.10–2.00 (m, 1H, 4-H_b), 1.48 (ddd, J = 9.8; 7.4; 4.5 Hz, 1H, c-Pr), 1.31 (ddd, J = 9.7; 7.4; 4.5 Hz, 1H, c-Pr), 1.14 (ddd, J = 9.8; 7.4; 4.5 Hz, 1H, c-Pr), 0.96 (ddd, J = 9.7; 7.4; 4.5 Hz, 1H, *c*-Pr) ppm. ¹³C-NMR (100 MHz): $\delta = 179.5$ (s, CO₂H), 156.8 (q, $J_{CF} = 36.7$ Hz, $COCF_3$), 137.8 (s, Ar), 128.5 (d, 2C, Ar), 127.8 (d, Ar), 127.6 (d, 2C, Ar), 116.3 (q, $J_{\rm CF} = 288.0$ Hz, CF_3), 81.0 (d, C-3), 71.0 (t, CH_2 Ph), 65.7 (d, C-2), 46.3 (tq, $J_{CF} = 3.8$ Hz, C-5), 31.0 (t, C-4), 23.9 (s, *c*-Pr), 15.9 (t, *c*-Pr), 14.7 (t, *c*-Pr) ppm. ¹⁹F-NMR (188 MHz): $\delta = -77.2$ (s, 3F, CF₃) ppm. IR (CDCl₃): $v = 3,067, 2,912, 1,693, 1,454, 1,431, 1,205, 1,152 \text{ cm}^{-1}.$ MS (⁺ESI) m/z = 380.2 [M + Na]⁺. MS (⁻ESI) $m/z = 356.3 \text{ [M - H]}^{-}$. C₁₇H₈F₃NO₄ (357.32): calcd. C 57.14, H 5.08, N 3.92; found C 57.41; H 5.17; N 4.23.

tert-Butyl $1-((2R,3S)-3-(benzyloxy)-1-\{N-[(9H-fluoren-9$ ylmethoxy)carbonyl]-L-valyl}pyrrolidin-2-yl)cyclopropanecarboxylate (14) A mixture of β -homoproline 11 (100 mg, 0.28 mmol) and HClO₄ (60 %, 11 μ L, 0.1 mmol) in AcOtBu (0.56 mL) was stirred at rt for 20 h, cooled at 0 °C, and treated dropwise with a saturated aq. NaHCO₃ solution (2.5 mL). After 10 min, the mixture was extracted with CH_2Cl_2 (4 × 3 mL). The combined organic phases were washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated. Filtration through silica gel (hexane/Et₂O = 15/1) gave *tert*-butyl ester **12** (31 mg, 27 %) as a yellow oil. { $R_f = 0.34$ (*n*-hexane/Et₂O = 15/1). ¹H-NMR (200 MHz): $\delta = 7.39-7.28$ (m, 5H, Ar–H), 4.67 (A part of an AB system, J = 11.8 Hz, 1H, OCHHPh), 4.59 (B part of an AB system, J = 11.8 Hz, 1H, OCHHPh), 4.41 (br s, 1H, 2-H), 4.29-4.22 (m, 1H, 3-H), 4.01-3.68 (m, 2H, 5-H), 2.42-2.20 (m, 1H, 4-H_a), 2.16-1.95 (m, 1H, 4-H_b), 1.41 [s, 9H, C(CH₃)₃], 1.38–1.23 (m, 1H, c-Pr), 1.13– 1.00 (m, 1H, c-Pr), 0.99–0.84 (m, 1H, c-Pr), 0.84–0.70 (m, 1H, *c*-Pr) ppm. MS (⁺ESI) $m/z = 436.16 [M + Na]^+$ }. NaBH₄ (5.7 mg, 0.15 mmol) was added to a solution of 12 (31 mg, 0.075 mmol) in MeOH (1.5 mL) at 0 °C. The reaction mixture was stirred at rt for 6 h, treated with wet Na₂SO₄, stirred for further 20 min, and then filtered on Celite[®]. The solution was dried over Na₂SO₄, filtered, and concentrated to give pyrrolidine 13 (25 mg) as a yellow oil which was used without further purification. $\{R_{\rm f} = 0.12\}$ (hexane/Et₂O = 1/1). ¹H-NMR (200 MHz): $\delta = 7.40$ – 7.22 (m, 5H, Ar-H), 4.59 (A part of an AB system,

J = 11.8 Hz, 1H, OCHHPh), 4.49 (B part of an AB system, J = 11.8 Hz, 1H, OCHHPh), 3.92 (pseudo dt, J = 4.9, 4.3 Hz, 1H, 3-H), 3.12–2.88 (m, 3H, 2-H, 5-H_a, 5-H_b), 2.34 (br s, NH), 1.96–1.82 (m, 2H, 4-H), 1.40 [s, 9H, C(CH₃)₃], 1.20–1.00 (m, 2H, c-Pr), 0.99–0.76 (m, 2H, c-Pr) ppm. MS (⁺ESI) m/z = 318.04 [M + H]⁺, 340.12 $[M + Na]^+$. 0PyBroP (70 mg, 0.150 mmol), DIPEA (26 L, 0.150 mmoli) and DMAP (4.6 mg, 0.038 mmol) were added to a mixture of 13 (25 mg, 0.075 mmol) and Fmoc-Val (51 mg, 0.150 mmol) in CH₃CN (0.4 mL) cooled at 0 °C. The reaction mixture was stirred at rt for 4 days and then concentrated. Purification by chromatography (hexane/AcOEt = 7/3) gave 14 (31.5 mg, 66 %) as a white waxy solid. 14: $R_f = 0.2$ (hexane/AcOEt = 4/1). $\left[\alpha\right]_{D}^{23} = -6.5$ (c = 0.5, CHCl₃). Mixture of conformers [A major, B minor (detectable signals)]: ¹H-NMR (400 MHz): $\delta = 7.80-7.71$ (m, 2H, Ar-H), 7.64–7.57 (m, 2H, Ar-H), 7.43-7.35 (m, 2H, Ar-H), 7.35-7.21 (m, 7H, Ar-H), 5.61 (br d, J = 9.1 Hz, NH, A), 4.87 (s, 1H, 2-H, B), 4.73 (A part of an AB system, J = 12.0 Hz, 2H, OCHHPh, B), 4.65 (B part of an AB system, J = 12.0 Hz, 2H, OCHHPh, B), 4.62 (A part of an AB system, J = 11.8 Hz, 1H, OCHHPh, A), 4.58 (B part of an AB system, J = 11.8 Hz, 1H, OCHHPh, A), 4.47–4.11 (m, 5H, 3-H, CH-iPr, OCH₂Fmoc, CHFmoc), 4.33 (br s, 1H, 2-H, A) 3.94–3.83 (m, 1H, 5-H_a) A), 3.77–3.60 (m, 1H, 5-H_b, A and 5-H_a, B), 3.45–3.36 (m, 1H, 5-H_b, B), 2.35–2.22 (m, 1H, 4-H_a), 2.10–1.93 (m, 2H, CHMe₂, 4-H_b), 1.46 [s, 9H, C(CH₃)₃, B], 1.40 [s, 9H, $C(CH_3)_3$, A], 1.34–1.19 (m, 2H, *c*-Pr), 0.99 (d, J = 6.7 Hz, 3H, CH_3), 0.90 (d, J = 6.7 Hz, 3H, CH_3), 0.95–0.79 (m, 2H, c-Pr, A), 0.77-0.66 (m, 1H, c-Pr, B), 0.46-0.37 (m, 1H, *c*-Pr, B) ppm. ¹³C-NMR (50 MHz): $\delta = 172.3$ (s, CO, A), 172.0 (s, CO, B), 171.9 (s, CO, B), 171.8 (s, CO, A), 156.3 (s, OCONH, A), 155.8 (s, OCONH, B), 143.9 (s, Ar), 143.8 (s, Ar), 141.2 (s, 2C, Ar), 138.1 (s, Ar), 128.3 (d, 2C, Ar), 127.5 (d, 5C, Ar), 127.0 (d, 2C, Ar),125.1 (d, 2C, Ar), 119.8 (d, 2C, Ar), 83.0 (d, C-3, B), 81.7 (d, C-3, A), 81.4 (s, CMe₃, B), 80.7 (s, CMe₃, A), 70.8 (t, OCH₂Ph, A), 70.5 (t, OCH₂Ph, B), 67.0 (t, OCH₂Fmoc, A), 66.8 (t, OCH₂Fmoc, B), 64.5 (d, C-2, A), 61.1 (d, C-2, B), 57.5 (d, CH-*i*Pr, B), 57.2 (d, CH-iPr, A), 47.2 (t, C-5, A), 47.0 (d, CHFmoc), 46.0 (t, C-5, B), 32.2 (d, CHMe₂, B), 31.6 (d, CHMe₂, A), 30.8 (t, C-4), 28.1 [q, 3C, C(CH₃)₃], 25.7 (s, c-Pr, B), 25.2 (s, c-Pr, A), 19.8 (q, CHCH₃), 17.1 (q, CHCH₃) 13.8 (t, c-Pr, A), 13.2 (t, c-Pr, A), 12.2 (t, c-Pr, B), 09.2 (t, c-Pr, B) ppm. IR (CDCl₃): v = 3427, 3068, 2970, 1715, 1643, 1507, 1143 cm⁻¹. MS (⁺ESI) $m/z = 661.39 [M + Na]^+$. C₃₉H₄₆N₂O₆ (638.79): calcd. C, 73.33; H, 7.26; N, 4.39; O, 15.03; found C, 72.99; H, 7.30; N, 4.08; O, 15.63.

Methyl N-({1-[(2R,3S)-3-(benzyloxy)-1-(trifluoroacetyl) pyrrolidin-2-yl]cyclopropyl}carbonyl)-L-valinate (15) A mixture of β -homoproline 11 (65 mg, 0.182 mmol), N-(3-

dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDCI, 70 mg, 0.364 mmol), and 1-hydroxybenzotriazole (HOBt, 49 mg, 0.364 mmol) in dry CH₂Cl₂ (0.750 mL) was stirred at 0 °C for 20 min. In a separate flask, a mixture of Val-OMe HCl (55 mg, 0.328 mmol) and Et₃N (0.037 mL, 0.364 mmol) in CH₂Cl₂ (0.650 mL) was stirred for 15 min and then added to the activated β -homoproline. The reaction mixture was stirred at rt for 23 h and then filtered through a short pad of silica gel $(CH_2Cl_2/MeOH = 60/1)$ to give 15 (71 mg, 83 %) as a yellow oil. 15: $R_{\rm f} = 0.33$ (CH₂Cl₂/MeOH = 60/1). ¹H-NMR (400 MHz): $\delta = 7.37 - 7.25$ (m, 5H, Ar-H), 6.43 (br d, J = 8.4 Hz, NH), 4.60 (A part of an AB system, J = 11.7 Hz, 1H, OCHHPh), 4.52 (B part of an AB system, J = 11.7 Hz, 1H, OCH*H*Ph), 4.45–4.40 (m, 1H, 3-H), 4.44 (dd, J = 8.4, 4.9 Hz, 1H, CH-*i*Pr), 4.11 (br s, 1H, 2-H), 3.91-3.82 (m, 1H, 5-H_a), 3.72 (s, 3H, OCH₃), 3.79-3.68 (m, 1H, 5-H_b), 2.27 (pseudo ddt, J = 13.7, 5.2, 8.5 Hz, 1H, 4-H_a), 2.13 (d septet, J = 4.9, 6.9 Hz, 1H, CHMe₂), 2.10-1.99 (m, 1H, 4-H_b), 1.29-1.20 (m, 1H, *c*-Pr), 1.10–0.99 (m, 1H, *c*-Pr), 0.77 (m, 1H, *c*-Pr), 0.91 (d, J = 6.9 Hz, 3H, CH₃), 0.88 (d, J = 6.9 Hz, 3H, CH₃), 0.77 (ddd, J = 9.7; 6.8; 5.3 Hz, 1H, *c*-Pr) ppm. ¹³C-NMR (50 MHz): $\delta = 172.2$ (s, CO), 172.0 (s, CO), 156.8 (q, $J_{\rm CF} = 36.8$ Hz, COCF₃), 137.7 (s, Ar), 128.4 (d, 2C, Ar), 127.8 (d, Ar), 127.7 (d, 2C, Ar), 116.2 (q, $J_{CF} = 287.7$ Hz, CF₃), 81.6 (d, CH-*i*Pr), 71.2 (t, OCH₂Ph), 68.7 (d, C-2), 57.3 (d, C-3), 52.1 (q, OCH₃), 46.3 (dt, $J_{CF} = 3.6$ Hz, C-5), 30.9 (d, CHMe₂), 30.7 (t, C-4), 27.4 (s, c-Pr), 18.8 (q, CHCH₃), 17.7 (q, CHCH₃) 13.0 (t, c-Pr), 11.1 (t, c-Pr) ppm. ¹⁹F-NMR (188 MHz): $\delta = -72.3$ (s, 3F, CF₃) ppm. IR (CDCl₃): v = 3438, 3032 2968, 1738, 1690, 1511, 1438, 1207, 1153 cm⁻¹. MS (⁺ESI) m/z = 493.3 [M + Na]⁺. MS (⁻ESI) $m/z = 469.5 [M - H]^{-}$.

Methyl N-({1-[(2R,3S)-3-(benzyloxy)pyrrolidin-2-yl]cyclo*propyl*{*carbonyl*)-L-*valinate* (**16**) NaBH₄ (10.5 mg, 0.276 mmol) was added at 0 °C to a solution of dipeptide 15 (65 mg, 0.138 mmol) in MeOH (2.8 mL). The reaction mixture was stirred at rt for 1.5 h, treated with wet Na₂SO₄, stirred for further 20 min, and then filtered on Celite[®]. The solution was dried over Na₂SO₄, filtered, and concentrated to give 16 (47 mg, 82 %) as a yellow oil which was used in the next step without further purification. 16: $R_f = 0.47$ $(CH_2Cl_2/MeOH = 25/1)$. ¹H-NMR (400 MHz): $\delta = 9.77$ (br d, J = 8.2 Hz, NHCO), 7.37–7.23 (m, 5H, Ar–H), 4.54 (A part of an AB system, J = 11.6 Hz, 1H, OCHHPh), 4.47 (dd, J = 8.2, 4.6 Hz, 1H, CH-*i*Pr), 4.46 (B part of an AB system, J = 11.6 Hz, 1H, OCHHPh), 4.06 (ddd, J = 7.8, 5.7, 3.0 Hz, 1H, 3-H), 3.69 (s, 3H, CH₃O), 3.15 (pseudo dt, J = 2.3, 9.5 Hz, 1H, 5-H_a), 3.01 (pseudo dt, J = 7.6, 9.5 Hz, 1H, 5-H_b), 2.57 (d, J = 5.7 Hz, 1H, 2-H), 2.12 (dqq, J = 4.6, 7.4, 7.2 Hz, 1H, CHMe₂), 2.08–1.96

(m, 1H, 4-H_a), 1.94–1.81 (m, 1H, 4-H_b), 1.47 (ddd, J = 9.5, 6.6, 3.9 Hz, 1H, *c*-Pr), 0.96 (ddd, J = 9.5, 6.6, 3.7 Hz, 1H, *c*-Pr), 0.89 (d, J = 7.2 Hz, 3H, CHCH₃), 0.87 (d, J = 7.4 Hz, 3H, CHCH₃), 0.80 (ddd, J = 9.3, 6.6, 3.9 Hz, 1H, *c*-Pr), 0.60 (ddd, J = 9.3, 6.6, 3.7 Hz, 1H, *c*-Pr), 0.60 (ddd, J = 9.3, 6.6, 3.7 Hz, 1H, *c*-Pr), ppm. ¹³C-NMR (100 MHz): $\delta = 173.6$ (s, CO), 172.8 (s, CO), 138.1 (s, Ar), 128.4 (d, 2C, Ar), 127.7 (d, Ar), 127.6 (d, 2C, Ar), 81.7 (d, C-3), 72.0 (t, OCH₂Ph), 70.4 (d, C-2), 57.4 (d, CH·IPr), 51.8 (q, OCH₃), 44.4 (t, C-5), 31.3 (t, C-4), 30.8 (d, CHMe₂), 23.7 (s, *c*-Pr), 19.4 (q, CHCH₃), 18.0 (q, CHCH₃), 15.0 (t, *c*-Pr), 09.9 (t, *c*-Pr) ppm. IR (CDCl₃): $\nu = 3,348, 3,174, 3,031, 2,967, 1,738, 1,653, 1,541, 1,437, 1,259, 1,211, 1,095$ cm⁻¹. MS (⁺ESI) *m*/*z* = 375.22 [M + H]⁺, 397.28 [M + Na]⁺. MS (⁻ESI) *m*/*z* = 373.61 [M - H]⁻.

Methyl N-[(1-{(2R,3S)-3-(benzyloxy)-1-[N-(tert-butoxycarbonyl)-L-phenylalanyl]pyrrolidin-2-yl}cyclopropyl)carbon*yl*]-*L*-*valinate* (17) Following the same procedure as for 14, tripeptide 17 (23 mg, 31 %) was obtained as a white waxy solid starting from 16 (46 mg, 0.122 mmol) and Boc-Phe (49 mg, 0.183 mmol) (reaction time, 5 days). 17: $R_{\rm f} = 0.44$ $(CH_2Cl_2/CH_3CN = 15/1)$. Mixture of conformers [A major, B minor (detectable signals)]: ¹H-NMR (400 MHz): $\delta = 7.37 - 7.01$ (m, 10H, Ar-H), 7.15 (br d, J = 7.6 Hz, Val-*N*HCO, A), 7.09 (br d, J = 7.3 Hz, Val-*N*HCO, B), 5.31 (br d, J = 9.5 Hz, Phe-*N*HCO, B), 5.26 (br d, J = 8.8 Hz, Phe-NHCO, A), 4.91-4.81 (m, 1H, CHCH₂Ph, B), 4.80-4.70 (m, 1H, CHCH₂Ph, A), 4.67 (br s, 1H, 2-H, A), 4.59 (d, J = 11.7 Hz, 1H, OCH*H*Ph), 4.53–4.32 (m, 2H_A + 3H_B, OCHHPh, CH-iPr, A + B and 3-H, B), 4.22 (br s, 1H, 2-H, B), 4.15–4.08 (m, 1H, 3-H, A), 3.86–3.76 (m, 1H, 5-H_a, A), 3.73 (s, 3H, OCH₃, B), 3.69 (s, 3H, OCH₃, A), 3.69–3.59 (m, 1H, 5-H_a, B), 3.38–3.27 (m, 1H, 5-H_b, B), 3.24–3.13 (m, 1H, 5-H_b, A), 3.05–2.80 (m, 2H, CHCH₂Ph), 2.19–1.83 (m, 3H, CHMe₂, 4-H), 1.38 [s, 9H, C(CH₃)₃, A], 1.35 [s, 9H, C(CH₃)₃, B], 1.19–1.08 (m, 1H, *c*-Pr, A), 0.92 (d, J = 6.8 Hz, 3H, CH_3), 0.91 (d, J = 6.8 Hz, 3H, CH_3), 0.80–0.73 (m, 1H, *c*-Pr, A), 0.58–0.46 (m, 1H, c-Pr, B), 0.46–0.28 (m, 2H, c-Pr, A) ppm. ¹³C-NMR (100 MHz): $\delta = 172.9$ (s, C = O), 172.5 (s, C = O, 172.2 (s, C = O), 154.9 (s, OCONH), 138.0 (s, Ar), 136.4 (s, Ar), 129.4 (d, 2C, Ar), 128.5 (d, 2C, Ar), 128.3 (d, 2C, Ar), 127.7 (d, Ar), 127.6 (d, 2C, Ar), 126.9 (d, 1C, Ar), 83.5 (d, C-3, B), 81.9 (d, C-3, A), 79.7 (s, CMe₃), 70.7 (t, OCH₂Ph), 60.0 (d, C-2), 57.6 (d, CH-iPr), 53.1 (d, CHCH₂Ph), 52.0 (q, OCH₃), 46.4 (t, C-5, A), 45.6 (t, C-5, B), 39.9 (t, OCH₂Ph), 30.9 (d, CHMe₂), 30.5 (t, C-4), 28.3 [q, 3C, C(CH₃)₃], 27.3 (s, *c*-Pr), 19.0 (q, CHCH₃), 18.0 (q, CHCH₃), 12.5 (t, c-Pr, A), 10.1 (t, c-Pr, A), 09.8 (t, c-Pr, B), 08.7 (t, c-Pr, B) ppm. IR (CDCl₃): v = 3,435, 3,318, 3,031, 2,970, 1,739, 1,703, 1,647, 1,498, 1,437, 1,368, 1,166 cm⁻¹. MS (⁺ESI) m/z = 644.32 [M + Na]⁺. MS (⁻ESI) m/z = 620.55 $[M - H]^{-}$.

Ethyl [(2R,3S)-3-tert-butoxy-1-(trifluoroacetyl)pyrrolidin-2-yl]acetate (22) A mixture of 20a (50.4 mg, 0.178 mmol) and TFA (21 µL, 0.27 mmol) in CH₃CN (5.9 mL) was heated at 80 °C for 1.5 h. The reaction mixture was concentrated and purified by chromatography $(CH_2Cl_2/MeOH = 20/1)$ to give 22 (15 mg, 26 %). 22: $R_{\rm f} = 0.22$ (AcOEt). ¹H-NMR (400 MHz): $\delta = 4.15$ (q, J = 7.1 Hz, 2H, CH₂Me), 3.88 (pseudo q, J = 6.4 Hz, 1H, 3-H), 3.39 (ddd, J = 8.7, 6.4, 4.5 Hz, 1H, 2-H), 3.33–3.18 (m, 2H, 5-H), 2.74 (A part of an ABX system, J = 16.7, 4.5 Hz, 1H, 6-H_a), 2.67 (B part of an ABX system, J = 16.7, 8.7 Hz, 1H, 6-H_b), 2.19–2.10 (m, 1H, 4-H_a), 1.82–1.73 (m, 1H, 4-H_b), 1.26 (t, J = 7.1 Hz, 3H, CH₂CH₃), 1.18 [s, 9H, C(CH₃)₃] ppm. IR (CDCl₃): v = 2,978, 2,934, 1,728, 1,681, 1,392, 1,367, 1,192, $1,145 \text{ cm}^{-1}$.

[(3'S,3a'R,4'S)-4'-tert-Butoxytetrahydro-3'H-spiro[cyclopropane-1,2'-pyrrolo[1,2-b]isoxazol]-3'-yl]methanol

(23) A 1 M solution of DIBAL-H in hexane (3.2 mL, 3.2 mmol) was added dropwise to a solution of the adduct 20a (261 mg, 0.92 mmol) in CH₂Cl₂ (3.1 mL) under nitrogen atmosphere at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and then treated in sequence with MeOH and a saturated aq. sodium and potassium tartrate solution. The aqueous phase was extracted with CH₂Cl₂ and the organic extracts were dried over Na₂SO₄. Evaporation of the solvent and purification by chromatography gave crude 23 (222 mg) which was used in the next step without further purification. Purification of a small amount of the crude compound (50 mg) by chromatography (Et_2O / petroleum ether = 10/1) afforded analytically pure 23 (46 mg, 92 %) as a white solid. **23**: $R_{\rm f} = 0.30$ (Et₂O/ petroleum ether = 10/1). $[\alpha]_{D}^{24} = -47.3$ (c = 0.6, CHCl₃). mp 80-81 °C. ¹H-NMR (400 MHz): $\delta = 4.52$ (q. J = 7.2 Hz, 1H, 4'-H), 3.82 (pseudo dt, J = 2.0, 10.6 Hz, 1H, CHH-OH), 3.72 (t, J = 7.4 Hz, 1H, 3a'-H), 3.49 (ddd, J = 13.7, 8.9, 4.9 Hz, 1H, 6'-H_a), 3.46 (pseudo dt, J = 5.5, 10.4 Hz, 1H, CHH-OH), 3.24 (dt, J = 13.7, 7.6 Hz, 1H, 6'- H_b), 3.19 (ddd, J = 10.4, 7.4, 5.5 Hz, 1H, 3'-H), 2.86 (dd, J = 10.4, 2.4 Hz, 1H, OH), 2.32 (dddd, J = 12.5, 7.6, 7.2,4.9, 1H, 5'-H_a), 1.78 (ddt, J = 12.5, 8.9, 7.6 Hz, 1H, 5'-H_b), 1.27 [s, 9H, C(CH₃)₃], 0.92 (ddd, J = 11.4, 6.7, 5.5 Hz, 1 H, *c*-Pr), 0.77 (ddd, *J* = 11.4, 7.2, 6.1 Hz, 1H, *c*-Pr), 0.70–0.64 (m, 1 H; c-Pr), 0.48 (ddd, J = 10.5, 7.2, 5.5 Hz, 1H, *c*-Pr) ppm. ¹³C-NMR (50 MHz): $\delta = 75.2$ (d, C-3a'), 75.0 (s, CMe₃), 72.6 (d, C-4'), 62.7 (s, C-2'), 60.8 (t, CH₂OH), 54.7 (t, C-6'), 48.9 (d, C-3'), 34.0 (t, C-5'), 28.7 [q, 3C, C(CH₃)₃], 9.2 (t, *c*-Pr), 6.9 (t, *c*-Pr) ppm. IR (KBr): v = 3,158, 2,968, 2,930, 1,367, 1,358, 1,196, 1,172, 1,062,1,035, 1,021, 805 cm⁻¹. MS (EI): m/z (%) = 241 (2.4) $[M^+]$, 184 (4), 154 (9), 126 (11), 112 (17), 98 (9), 82 (12),

68 (23), 57 (100). $C_{13}H_{23}NO_3$ (241.33): calcd. C 64.70, H 9.61, N 5.80; found C 64.98, H 9.66, N 5.68.

[(3'S,3a'R,4'S)-4'-tert-Butoxytetrahydro-3'H-spiro[cyclopropane-1,2'-pyrrolo[1,2-b]isoxazol]-3'-y1]methyl acetate (24) Acetic anhydride (3.4 mL, 38.5 mmol) was added to a solution of crude isoxazolidine 23 (470 mg) and a catalytic amount of DMAP in pyridine (9.5 mL) under nitrogen atmosphere at 0 °C. The reaction mixture was stirred at rt overnight, treated with MeOH (5 mL) at 0 °C for 30 min, and then concentrated. The crude product was dissolved in CH₂Cl₂ (10 mL) and washed with 5 % aq. NaHCO₃ solution (10 mL). The aqueous solution was extracted with CH_2Cl_2 (3 × 15 mL) and the combined organic phases were dried over Na₂SO₄, filtered, and concentrated. Purification by chromatography (Et₂O/hexane = 4/1) gave 24 (486 mg, 88 %) as colorless oil. 24: $R_{\rm f} = 0.30 \,(\text{Et}_2\text{O}/n\text{-hexane} = 4/1). \,[\alpha]_{\rm D}^{23} = -20.5 \,(c = 0.8,$ CHCl₃). ¹H-NMR (400 MHz): $\delta = 4.26-4.21$ (m, 1H, 4'-H), 4.23 (dd, J = 11.3, 6.7 Hz, 1H, CHH-OAc), 4.06 (dd, J = 11.3, 7.6 Hz, 1H, CH*H*-OAc), 3.77 (dd, J = 8.0, 4.2 Hz, 1H, 3a'-H), 3.38-3.23 (m, 2H, 6'-H), 3.10 (pseudo q, J = 7.5 Hz, 1H, 3'-H), 2.18 (dddd, J = 12.8, 9.0, 7.4, 6.4 Hz, 1H, 5'-H_a), 2.05 (s, 3H, $CH_3C = O$), 1.73 (dddd, J = 12.8, 6.9, 4.5, 3.8 Hz, 1H, 5'-H_b), 1.20 [s, 9H, C(CH₃)₃], 0.97–0.91 (m, 1H, c-Pr), 0.82–0.77 (m, 2H, *c*-Pr), 0.59–0.53 (m, 1H, *c*-Pr) ppm. ¹³C-NMR (50 MHz): $\delta = 170.5$ (s, COMe), 76.2 (d, C-3a'), 73.9 (s, CMe₃), 72.2 (d, C-4'), 64.0 (s, C-2'), 62.7 (t, CH₂-OAc), 55.2 (t, C-6'), 45.7 (d, C-3'), 34.6 (t, C-5'), 28.6 [q, 3C, C(CH₃)₃], 20.8 (q, COCH₃), 9.3 (t, *c*-Pr), 6.8 (t, *c*-Pr) ppm. IR (CDCl₃): v = 2,979, 1,738, 1,366, 1,243, 1,235, 1,217, 1,214, 1,210, $1,036 \text{ cm}^{-1}$. MS (EI): m/z (%) = 283 (0.8) [M⁺], 226 (1), 210 (0.3), 198 (0.3), 166 (18), 156 (7), 112 (16), 110 (10), 82 (10), 68 (20), 57 (100). C₁₅H₂₅NO₄ (283.36): calcd. C 63.58, H 8.89, N 4.94; found C 63.21, H 8.82, N 4.62.

(2S)-2-[(2R,3S)-3-tert-Butoxy-1-(trifluoroacetyl)pyrrolidin-2-yl]-3-hydroxypropanoic acid (25) and (2S)-2-[(2R,3S)-3-tert-butoxypyrrolidin-2-yl]-3-hydroxypropanoic acid (26) A mixture of 23 (31 mg, 0.128 mmol) and TFA (15 µL, 0.26 mmol) in CH₃CN (4.3 mL) was heated in the microwave reactor at 70 °C for 5 min. The reaction mixture was concentrated and purified by chromatography (AcOEt/MeOH from 10/1 to 5/1) to give 25 (23.3 mg, 56 %) and **26** (11.4 mg, 38 %). **25**: $R_{\rm f} = 0.30$ (AcOEt/ MeOH = 10/1). ¹H-NMR (400 MHz, CD₃OD): δ = 4.33– 4.29 (m, 2H, 2-H, 3-H), 3.87-3.70 (m, 3H, 7-H_a, 5-H), 3.65 $(dd, J = 11.0, 4.7 Hz, 1H, 7-H_b), 2.78-2.73 (m, 1H, 6-H),$ 2.30 (ddt, J = 13.6, 4.5, 9.5 Hz, 1H, 4-H_a), 1.98–1.90 (m, 1H, 4-H_b), 1.21 [s, 9H, C(CH₃)₃] ppm. ¹³C-NMR (50 MHz, CD₃OD): $\delta = 176.1$ (s, CO₂H), 158.3 (q, $J_{CF} = 36.4$ Hz, $COCF_3$), 117.7 (q, $J_{CF} = 285.0 \text{ Hz}$, CF_3), 76.0 (s, CMe_3),

73.1 (d, C-3), 67.5 (d, C-2), 62.2 (t, C-7), 49.0 (d, C-6), 46.2 (q, $J_{CF} = 4.6$ Hz, C-5), 33.4 (t, C-4), 28.7 [q, 3C, $C(CH_3)_3$] ppm. ¹⁹F-NMR (188 MHz, CD₃OD): $\delta =$ -76.9 ppm. MS (EI): m/z (%) = 327 (0.2) [M⁺], 271 (4), 253 (10), 236 (11), 218 (5), 202 (3), 182 (11), 178 (7), 166 (10), 140 (5), 126 (5), 96 (6), 69 (21), 57 (100). 26: $R_{\rm f} = 0.19$ (AcOEt/MeOH = 10/1). ¹H-NMR (400 MHz, CD₃OD): $\delta = 4.34$ (pseudo dt, J = 5.6, 3.6 Hz, 1H, 3-H), 4.00 (A part of an ABX system, J = 11.0, 4.7 Hz, 1H, 7- H_a), 3.91 (B part of an ABX system, J = 11.0, 6.9 Hz, 1H, 7-H_b), 3.72 (dd, J = 5.6, 4.1 1H, 2-H), 3.42–3.29 (m, 2H, 5-H), 2.63–2.55 (m, 1H; 6-H), 2.20 (pseudo ddt, J = 13.7, 5.6, 8.3 Hz, 1H, 4-H_a), 1.96–1.83 (m, 1H, 4-H_b), 1.22 [s, 9H, C(CH₃)₃] ppm. ¹³C-NMR (200 MHz, CD₃OD): $\delta = 177.6$ (s, CO₂H), 76.2 (s, CMe₃), 73.4 (d, C-3), 68.2 (d, C-2), 62.8 (t, C-7), 49.0 (d, C-6), 44.7 (t, C-5), 34.3 (t, C-4), 28.9 [s, 3C, C(CH₃)₃] ppm. MS (+ESI) m/z = 254.12 $[M + Na]^+$. MS (⁻ESI) $m/z = 230.27 [M - H]^-$.

(2S)-3-(Acetyloxy)-2-[(2R,3S)-3-tert-butoxy-1-(trifluoroacetyl)pyrrolidin-2-yl]propanoic acid (27) A mixture of 24 (79 mg, 0.279 mmol) and TFA (32 µL, 0.42 mmol) in CH₃CN (9.2 mL) was heated in the microwave reactor at 70 °C for 2 min. The reaction mixture was concentrated and purified by chromatography $(CH_2Cl_2/MeOH = 20/1)$ to give 27 (92.2 mg, 90 %). 27: $R_{\rm f} = 0.29$ (CH₂Cl₂/MeOH = 20/1). $[\alpha]_{D}^{23} = -10.6$ (*c* = 0.8, CHCl₃). ¹H-NMR (400 MHz, CD₃OD): δ = 4.36–4.31 (m, 2H, 2-H, 3-H), 4.35 $(dd, J = 11.2, 8.0 Hz, 1H, 7-H_a), 4.15 (dd, J = 11.2, 5.9 Hz,$ 1H, 7-H_b), 3.89-3.81 (m, 1H, 5-H_a), 3.78-3.69 (m, 1H, 5- $H_{\rm b}$), 3.03 (pseudo dt, J = 5.9, 8.0 Hz, 1H, 6-H), 2.29 (pseudo ddt, J = 13.6, 4.7, 9.2 Hz, 1H, 4-H_a), 2.01 (s, 3H, $COCH_3$, 1.99–1.92 (m, 1H, 4-H_b), 1.21 [s, 9H, $C(CH_3)_3$] ppm. ¹H-NMR (400 MHz): $\delta = 4.42$ (dd, J = 11.3, 7.9 Hz, 1H, 7-H_a), 4.37–4.32 (m, 1H, 2-H), 4.24–4.21 (m, 1H, 3-H), $4.19 (dd, J = 11.3, 6.2 Hz, 1H, 7-H_b), 3.91-3.82 (m, 1H; 5 H_a$), 3.67 (ddd, J = 10.5, 8.8, 4.6 Hz, 1H, 5- H_b), 3.24–3.19 (m, 1H, 6-H), 2.23–2.14 (m, 1H, 4-H_a), 2.05 (s, 3H, COCH₃), 1.96-1.87 (m, 1H, 4-H_b), 1.19 [s, 9H, C(CH₃)₃] ppm. ¹³C-NMR (50 MHz): $\delta = 175.0$ (s, CO₂H), 170.6 (s, COCH₃), $J_{\rm CF} = 37.0$ Hz, $COCF_3),$ 116.1 156.4 (q, (q, $J_{\rm CF} = 287.5 \text{ Hz}, CF_3$, 74.9 (s, CMe₃), 71.3 (d, C-3), 65.6 (d, C-2), 62.0 (t, C-7), 45.5 (q, $J_{CF} = 3.7$ Hz, C-5), 45.4 (t, C-6), 33.0 (t, C-4), 28.3 [q, 3C, C(CH₃)₃], 20.7(q, COCH₃) ppm. ¹⁹F-NMR (188 MHz, CD₃OD): $\delta = -73.7$ ppm. IR $(CDCl_3)$: v = 3,492, 2,977, 2,935, 1,741, 1,714, 1,689,1,449, 1,392, 1,366, 1,243, 1,154 cm⁻¹. MS (EI): m/z(%) = 314 (0.9), 295 (1), 254 (10), 235 (21), 218 (15), 203(11), 184 (7), 175 (7), 161 (15), 57 (100). MS (⁺ESI) $m/z = 392.25 \,[M + Na]^+$. MS (⁻ESI) $m/z = 368.21 \,[M - Mathrmanic Mathrmanii Mathrmanic Mathrmanic Mathrmanic Mathr$ H]⁻. C₁₅H₂₂F₃NO₆ (369.33): calcd. C 48.78, H 6.00, N 3.79; found C 49.12, H 6.33, N 3.73.

Methyl N-{(2S)-3-(acetyloxy)-2-[(2R,3S)-3-tert-butoxy-1-(trifluoroacetyl)pyrrolidin-2-yl]propanoyl}-L-valinate (28) Following the same procedure as for 15, dipeptide 28 (60 mg, 70 %) was obtained as a white waxy solid starting from β -homoproline **27** (60 mg, 0.162 mmol). **28**: $R_{\rm f} = 0.48$ (CH₂Cl₂/MeOH = 5/1). ¹H-NMR (400 MHz): $\delta = 6.30$ (br d, J = 8.6 Hz, NH), 4.62–4.57 (m, 1H, 3-H), 4.46 (dd, J = 8.6, 4.9 Hz, 1H, CH-iPr), 4.36 (dd, J = 11.1, J)9.0 Hz, 1H 7-H_a), 4.24 (dd, J = 11.1, 5.6 Hz, 1H, 7-H_b), 4.17 (dd, J = 5.6, 2.6 Hz, 1H, 2-H), 3.87-3.78 (m, 1H, 5- H_a), 3.72 (s, 3H, OC H_3), 3.59 (ddd, J = 10.6, 7.9, 5.6 Hz, 1H, 5-H_b), 3.38 (pseudo dt, J = 9.0, 5.6 Hz, 1H, 6-H), 2.04 (s, 3H, $CH_3C = O$) 2.19 (pseudo ddt, J = 13.0, 5.1,7.9 Hz, 1H, 4-H_a), 2.11 (dseptet, J = 5.0, 6.9 Hz, 1H, $CHMe_2$), 1.87–1.77 (m, 1H, 4-H_b), 1.19 [s, 9H, C(CH₃)₃], 0.90 (d, J = 6.9 Hz, 3H, CH₃), 0.87 (d, J = 6.9 Hz, 3H, CH₃) ppm. ¹³C-NMR (50 MHz): $\delta = 171.7$ (s, CO₂Me), 170.7 (s, CONH), 170.4 (s, CH₃CO), 156.3 (q, $J_{\rm CF} = 36.8$ Hz, COCF₃), 116.1 (q, $J_{\rm CF} = 287.4$ Hz, CF₃), 74.8 (s, CMe₃), 70.8 (d, C-3), 66.2 (d, C-2), 63.0 (t, C-7), 57.4 (d, CH-iPr), 52.2 (q, OCH₃), 46.4 (d, C-6), 46.0 (dt, $J_{\rm CF} = 3.4$ Hz, C-5), 33.5 (t, C-4), 30.9 (d, CHMe₂), 28.5 [q, 3C, C(CH₃)₃], 20.7 (q, CH₃CO), 18.8 (q, CHCH₃), 17.7 (q, CHCH₃) ppm. ¹⁹F-NMR (188 MHz): $\delta = -72.1$ (s, 3F, CF_3) ppm. IR (CDCl₃): v = 3,420, 2,973, 1,740, 1,687,1,511, 1,438, 1,365, 1,245, 1,206, 1,152 cm⁻¹. MS (EI): m/z (%) = 483 (0.4) [M⁺], 125 (11), 111 (19), 97 (33), 71 (50), 57 (100), 43 (95), 41 (46). MS (⁺ESI) m/z = 483.1 $[M + H]^{+}$.

Methyl N-{(2S)-3-(acetyloxy)-2-[(2R,3S)-3-tert-butoxypyrrolidin-2-yl]propanoyl}-L-valinate (29) NaBH₄ (11.2 mg, 0.295 mmol) was added to a solution of 28 (71.2 mg, 0.147 mmol), in MeOH (2.9 mL) at 0 °C. The reaction mixture was stirred at rt for 1 h, concentrated, cooled at 0 °C, diluted with H₂O (5 mL), and extracted with AcOEt $(4 \times 5 \text{ mL})$. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated. Filtration through a short pad of silica gel (AcOEt) afforded **29** (47 mg, 82 %) as a waxy solid. **29**: $R_{\rm f} = 0.32$ (AcOEt). ¹H-NMR (400 MHz): $\delta = 8.34$ (br d, J = 9.0 Hz, NHCO), 5.85–5.74 (m, 1H, NH), 4.55 (dd, J = 9.0, 5.5 Hz, 1H, CH*i*Pr), 4.41 (d, J = 3.9 Hz, 1H, 3-H), 4.20 (d, J = 11.8 Hz, 1H, 2-H), 3.78–3.61 (m, 2H, 7-H_a, 5-H_a), 3.68 (s, 3H, CH₃O), 3.55 (dm, J = 12.7 Hz, 1H, 7-H_b), 3.45 (pseudo t, J = 9.6 Hz, 1H, 5-H_b), 2.29–2.08 (m, 2H, 4-H_a, CHMe₂), $2.15 (s, 3H, CH_3C = O), 1.95-1.81 (m, 2H, 6-H, 4-H_b), 1.08$ $[s, 9H, C(CH_3)_3], 0.94 (d, J = 7.0 Hz, 3H, CHCH_3), 0.93 (d, J = 7.0 Hz, AH, CHCH_3), 0.93 (d, J = 7.0 H$ J = 7.09 Hz, 3H, CHCH₃) ppm. ¹³C-NMR (50 MHz): $\delta = 173.0$ (s, COMe), 172.5 (s, CONH), 171.6 (s, CO₂Me), 74.5 (s, CMe₃), 72.0 (d, C-3), 63.8 (d, C-2), 58.9 (t, C-7), 57.0 (d, CH-iPr), 51.9 (q, OCH₃), 51.5 (d, C-6), 46.8 (t, C-5), 31.8 (t, C-4), 31.6 (d, CHMe₂), 28.1 [q, 3C, C(CH₃)₃], 22.5 (q, COCH₃), 19.1 (q, CHCH₃), 17.8 (q, CHCH₃) ppm. IR (CDCl₃): v = 3,309, 2,969, 2,891, 1,741, 1,659, 1,619, 1,534, 1,462, 1,437, 1,392, 1,366, 1,259, 1,205, 1,190, 1,096 cm⁻¹. MS (⁺ESI)*m*/*z*= 387.21 [M + H]⁺, 409.45 [M + Na]⁺.

Methyl N-[(2S)-3-(acetvloxy)-2-((2R,3S)-1-{N-[(benzyloxy) carbony[]phenylalanyl]-3-tert-butoxypyrrolidin-2-yl)propanoyl]-L-valinate (30) Following the same procedure as for 14, tripeptide 30 (39 mg, 54 %) was obtained as a white waxy solid starting from 29 (42 mg, 0.109 mmol) and N-Cbz-Phe (49 mg, 0.163 mmol) (reaction time: overnight). **30**: $R_{\rm f} = 0.32$ (CH₂Cl₂/CH₃CN = 2/1). $[\alpha]_{\rm D}^{23} = -13.9$ $(c = 0.74, \text{ CHCl}_3)$. ¹H-NMR (400 MHz): $\delta = 7.37-7.18$ (m, 10H, Ar-H), 7.13-7.07 (m, 2H, Ar-H), 6.82 (br d, J = 8.7 Hz, Val-*N*HCO), 5.32 (br d, J = 8.2 Hz, Phe-*N*HCO), 5.07 (A part of an AB system, J = 12.3 Hz, 1H, OCHHPh), 5.03 (B part of an AB system, J = 12.3 Hz, 1H, OCHHPh), 4.68-4.59 (m, 1H, CHCH₂Ph), 4.45 (dd, J = 8.7, 5.3 Hz, 1H, CH-*i*Pr), 4.39 (dd, J = 10.7, 4.7 Hz, 1H, 7-H_a), $4.36-4.27 (m, 2H, 3-H, 7-H_b) 4.13 (d, J = 5.5 Hz, 1H 2-H),$ 3.65–3.51 (m, 1H, 5-H_a), 3.55 (s, 3H, CH₃O), 3.45–3.33 (m, 1H, 5-H_b), 3.24–3.15 (m, 1H, 6-H), 3.19 (X part of an AXY system, J = 13.8, 5.3 Hz, 1H, CHCHHPh), 3.00 (Y part of an AXY system, J = 13.8, 6.8 Hz, 1H, CHCHHPh), 2.20–2.02 (m, 2H, 4-H_a, CHMe₂), 2.07 (s, 3H, CH₃C = O), 1.84–1.71 (m, 1H, 4-H_b), 1.73 [s, 9H, $C(CH_3)_3$], 0.93 (d, J = 6.8 Hz, 3H, CHC H_3), 0.93 (d, J = 6.8 Hz, 3H, CHC H_3) ppm. ¹³C-NMR (100 MHz): $\delta = 172.1$ (s, CO₂Me), 171.7 (s, Val-CONH), 171.1 (s, Phe-CONH), 170.9 (s, COMe), 155.8 (s, OCONH) 136.2 (s, Ar), 135.7 (s, Ar), 129.3 (d, 2C, Ar), 128.6 (d, 2C, Ar), 128.4 (d, 2C, Ar), 128.1 (d, 2C, Ar), 128.0 (d, 2C, Ar), 127.0 (d, 2C, Ar), 74.6 (s, CMe₃), 72.6 (d, C-3), 66.9 (t, CHCH₂Ph), 64.4 (d, C-2), 64.4 (t, C-7), 57.4 (d, CH-*i*Pr), 54.9 (d, CHCH₂Ph), 52.0 (q, OCH₃), 48.4 (d, C-6), 46.7 (t, C-5), 37.7 (t, OCH₂Ph), 32.8 (t, C-4), 30.5 (d, CHMe₂), 28.4 [q, 3C, C(CH₃)₃], 22.7 (q, COCH₃), 19.1 (q, CHCH₃), 17.9 (q, CHCH₃) ppm. IR (CDCl₃): v = 3,427, 3,065, 3,032, 2,969, 2,935, 1,738, 1,720, 1,674, 1,633, 1,509, 1,437, 1,417, 1,391, 1,347, 1,256, 1,193, 1,081, 1,057, cm⁻¹. MS (⁺ESI) m/z = 690.46 [M + Na]⁺. C₃₆H₄₉N₃O₉ (667.79): calcd. C, 64.75; H, 7.40; N, 6.29; O, 21.56; found C, 64.48; H, 7.03; N, 6.31; O, 22.63.

Acknowledgments Authors thank Ministry of University and Research (MIUR Rome-Italy) for financial support (PRIN2008BRXNTY).

References

Abele S, Vögtli K, Seebach D (1999) Oligomers of β 2- and of β 3homoproline: what are the secondary structures of β -peptides lacking H-bonds? Helv Chim Acta 82:1539–1558

- Aguilar M-I, Purcell AW, Devi R, Lew R, Rossjohn J, Smith AI, Perlmutter P (2007) β -Amino acid-containing hybrid peptides new opportunities in peptidomimetics. Org Biomol Chem 5:2884–2890
- Andries J, Lemoine L, Le Bars D, Zimmer L, Billard T (2011) Synthesis and biological evaluation of potential 5-HT 7 receptor PET radiotracers. Eur J Med Chem 46:3455–3461
- Argyropoulos NG, Panagiotidis T, Coutouli-Argyropoulou E, Raptopoulou C (2007) Asymmetric nitrone cycloadditions and their application to the synthesis of enantiopure pyrrolidine and pyrrolizidine derivatives. Tetrahedron 63:321–330
- Baláspiri L, Penke B, Papp Gy, Dombi Gy, Kovács K (1975) Rationelle synthese von α-L-homoprolin und einiger derivate. Herstellung von 7α-L-homoprolin-bradykinin. Helv Chim Acta 58:969–973
- Benz A, Cardona F, Goti A (2011) Synthesis of a novel tetrahydroxylated β-homoproline. Synlett 2011:231–234
- Berisio R, Vitagliano L, Mazzarella L, Zagari A (2002) Crystal structure of the collagen triple helix model [(Pro–Pro–Gly)₁₀]₃. Protein Sci 11:262–270
- Bertus P, Zhang J-H, Sir G, Weibel J-M, Pale P (2003) Asymmetric synthesis of the cyclopentanones related to NCS and N1999A2 antitumor antibiotics. Tetrahedron Lett 44:3391–3395
- Brackmann F, de Meijere A (2007a) Natural occurrence, syntheses, and applications of cyclopropyl-group-containing α-amino acids. 1. 1-aminocyclopropanecarboxylic acid and other 2,3-methanoamino acids. Chem Rev 107:4493–4537
- Brackmann F, de Meijere A (2007b) Natural occurrence, syntheses, and applications of cyclopropyl-group-containing α-amino acids. 2. 3,4- and 4,5-methanoamino acids. Chem Rev 107:4538–4583
- Brandi A, Carli S, Goti A (1988) High regio- and stereoselective cycloaddition of a nitrone to alkylidenecyclopropanes. Heterocycles 27:17–20
- Brandi A, Cordero FM, De Sarlo F, Gandolfi R, Rastelli A, Bagatti M (1992) The regioselectivity of nitrone and nitrile oxide cycloadditions to alkylidenecyclopropanes. Tetrahedron 48:3323–3334
- Brandi A, Cicchi S, Cordero FM, Goti A (2003) Heterocycles from alkylidenecyclopropanes. Chem Rev 103:1213–1269
- Brimble MA, Finch OC, Heapy AM, Fraser JD, Furkert DP, O'Connor PD (2011) A convergent synthesis of the [4.4]spiroacetal-*γ*-lactones cephalosporolides E and F. Tetrahedron 67:995–1001
- Christoffers J, Rössler U (2000) One-pot generation and conversion of trichloroacetimidates for the racemization-free allylation and benzylation of α-hydroxyesters and the enantiopure synthesis of a chiral diglycole. J Prakt Chem 342:654–658
- Cicchi S, Goti A, Brandi A (1995) A five-membered enantiopure cyclic nitrone from malic acid by regioselective oxidation of cyclic hydroxylamine. Synthesis of (1*S*,7*S*,8*aR*)-octahydro-1,7dihydroxylndolizine. J Org Chem 60:4743–4748
- Cicchi S, Marradi M, Goti A, Brandi A (2001) Manganese dioxide oxidation of hydroxylamines to nitrones. Tetrahedron Lett 42:6503–6505
- Cordero FM, Anichini B, Goti A, Brandi A (1993) Rearrangement of isoxazoline-5-spiro derivatives. Part 10. Regioselective nitrone cycloadditions to methoxycarbonylmethylenecyclopropane: synthesis of precursors of (±)-lupinine, (±)-epilupinine and (±)elaeokanine A. Tetrahedron 49:9867–9876
- Cordero FM, Pisaneschi F, Gensini M, Goti A, Brandi A (2002) Stereodivergent approach to enantiopure hydroxyindolizidines through 1,3-dipolar cycloaddition of 3-hydroxypyrroline *N*-oxide derivatives. Eur J Org Chem 2002:1941–1951
- Cordero FM, De Sarlo F, Brandi A (2004a) 5-Spirocyclopropane isoxazolidines as versatile intermediates in organic synthesis. Monatsh Chem 135:649–669
- Cordero FM, Salvati M, Pisaneschi F, Brandi A (2004b) Novel prospects of the acidic thermal rearrangement of

spiro[cyclopropane-1,5'-isoxazolidines] to β -lactams. Eur J Org Chem 10:2205–2213

- Cordero FM, Pisaneschi F, Batista KM, Valenza S, Machetti F, Brandi A (2005) A new bicyclic dipeptide isostere with pyrrolizidinone skeleton. J Org Chem 70:856–867
- Cordero FM, Salvati M, Vurchio C, De Meijere A, Brandi A (2009) Synthesis of α -cyclopropyl- β -homoprolines. J Org Chem 74:4225–4231
- Davies HML, Hopper DW, Hansen T, Liu Q, Childers SR (2004) Synthesis of methylphenidate analogues and their binding affinities at dopamine and serotonin transport sites. Bioorg Med Chem Lett 14:1799–1802
- Davies SG, Russell AJ, Sheppard RL, Smith AD, Thomson JE (2007) Evaluating β -amino acids as enantioselective organocatalysts of the Hajos–Parrish–Eder–Sauer–Wiechert reaction. Org Biomol Chem 5:3190–3200
- de Meijere A, Kozhushkov SI, Späth T (2002) Bicyclopropylidene. Org Synth 78:142–151
- Delso I, Marca E, Mannucci V, Tejero T, Goti A, Merino P (2010) Tunable diastereoselection of biased rigid systems by Lewis acid induced conformational effects: a rationalization of the vinylation of cyclic nitrones en route to polyhydroxylated pyrrolidines. Chem Eur J 16:9910–9919
- Deutsch HM, Ye X, Shi Q, Liu Z, Schweri MM (2001) Synthesis and pharmacology of site specific cocaine abuse treatment agents: a new synthetic methodology for methylphenidate analogs based on the Blaise reaction. Eur J Med Chem 36:303–311
- Fülep GH, Hoesl CE, Höfner G, Wanner KT (2006) New highly potent GABA uptake inhibitors selective for GAT-1 and GAT-3 derived from (*R*)- and (*S*)-proline and homologous pyrrolidine-2alkanoic acids. Eur J Med Chem 41:809–824
- Gnad F, Reiser O (2003) Synthesis and applications of β -aminocarboxylic acids containing a cyclopropane ring. Chem Rev 103:1603–1623
- Góbi S, Knapp K, Vass E, Majer Z, Magyarfalvi G, Hollósi M, Tarczay G (2010) Is β -homoproline a pseudo- γ -turn forming element of β -peptides? An IR and VCD spectroscopic study on Ac- β -HPro-NHMe in cryogenic matrices and solutions. Phys Chem Chem Phys 12:13603–13615
- Gorres KL, Raines RT (2010) Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 45:106–124
- Goti A, Cicchi S, Fedi V, Nannelli L, Brandi A (1997) Synthesis of enantiopure 3-substituted pyrroline N-oxides by highly regioselective oxidation of the parent hydroxylamines: a mechanistic rationale. J Org Chem 62:3119–3125
- Goti A, Cacciarini M, Cardona F, Brandi A (1999) A convenient access to (35)-3-(triisopropylsilyl)oxy-1-pyrroline *N*-oxide, a useful intermediate for polyfunctionalized enantiopure indolizidine and pyrrolizidine synthesis. Tetrahedron Lett 40:2853–2856
- Goti A, Cicchi S, Cacciarini M, Cardona F, Fedi V, Brandi A (2000) Straightforward access to enantiomerically pure, highly functionalized pyrrolizidines by cycloaddition of maleic acid esters to pyrroline *N*-oxides derived from tartaric, malic and aspartic acids—synthesis of (–)-hastanecine, 7-epi-croalbinecine and (–)-croalbinecine. Eur J Org Chem 2000:3633–3645
- Gruttadauria M, Giacalone F, Lo Meo P, Mossuto Marculescu A, Riela S, Noto R (2008) First evidence of proline acting as a bifunctional catalyst in the Baylis-Hillman reaction between alkyl vinyl ketones and aryl aldehydes. Eur J Org Chem 2008:1589–1596
- Hiraga Y, Widianti T, Kunishi T, Abe M (2011) The cooperative effect of a hydroxyl and carboxyl group on the catalytic ability of novel β -homoproline derivatives on direct asymmetric aldol reactions. Tetrahedron Asymmetry 22:226–237
- Horne WS, Gellman SH (2008) Foldamers with heterogeneous backbones. Acc Chem Res 41:1399–1408

- Juaristi E, López-Ruiz H (1999) Recent advances in the enantioselective synthesis of β -amino acids. Curr Med Chem 6:983–1004
- Katarzyńska J, Mazur A, Bilska M, Adamek E, Zimecki M, Jankowski S, Zabrocki J (2008) Synthesis and immunosuppressive activity of new cyclolinopeptide A analogs modified with βprolines. J Pept Sci 14:1283–1294
- Keck GE, Andrus MB, Romer DR (1991) A useful new enantiomerically pure synthon from malic acid: chelation-controlled activation as a route to regioselectivity. J Org Chem 56:417–420
- Kiss L, Fülöp F (2010) Selective syntheses of functionalized cyclicamino acids via transformation of the ring C–C double bonds. Synlett 2010:1302–1314
- Krane SM (2008) The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 35:703–710
- Kuhl A, Hahn MG, Dumić M, Mittendorf J (2005) Alicyclic β-amino acids in medicinal chemistry. Amino Acids 29:89–100
- Liljeblad A, Kanerva LT (2006) Biocatalysis as a profound tool in the preparation of highly enantiopure β -amino acids. Tetrahedron 62:5831–5854
- Limbach M (2006) β -Homoamino acids as catalysts in enantioselective intra- and intermolecular aldol reactions. Tetrahedron Lett 47:3843–3847
- Luly JR, Rapoport H (1983) Routes to mitomycins. New syntheses of the 2,3,5,8-tetrahydro-5,8-dioxo-1*H*-pyrrolo[1,2-*a*]indole ring system. An efficient synthesis of 7-methoxymitosene. J Am Chem Soc 105:2859–2866
- Mao H, Fieber LA, Gawley RE (2010) Novel modulator of $Na_V 1.1$ and $Na_V 1.2 Na^+$ channels in rat neuronal cells. Med Chem Lett 1:135-138
- Mauduit M, Kouklovsky C, Langlois Y (1998) Cyanomethylene cyclopropane, a useful dipolarophile and dienophile in [2 + 3] and [2 + 4] cycloadditions. Tetrahedron Lett 39:6857–6860
- Merino P, Tejero T, Revuelta J, Romero P, Cicchi S, Mannucci V, Brandi A, Goti A (2003) A comparative study of the stereoselective addition of trimethylsilyl cyanide and diethylaluminum cyanide to chiral cyclic nitrones. Tetrahedron Asymmetry 14:367–379
- Mitsumori S, Zhang H, Cheong PH-Y, Houk KN, Tanaka F, Barbas CF III (2006) Direct asymmetric *anti*-Mannich-type reactions catalyzed by a designed amino acid. J Am Chem Soc 128:1040–1041
- Ohtake H, Imada Y, Murahashi S-I (1999) Regioselective synthesis of nitrones by decarboxylative oxidation of *N*-alkyl-α-amino acids and application to the synthesis of 1-azabicyclic alkaloids. Bull Chem Soc Japan 72:2737–2754
- Ondetti MA, Engel SL (1975) Bradykinin analogs containing β homoamino acids. J Med Chem 18:761–763
- Persikov AV, Ramshaw JAM, Kirkpatrick A, Brodsky B (2000) Amino acid propensities for the collagen triple-helix. Biochemistry 39:14960–14967
- Pisaneschi F, Gensini M, Salvati M, Cordero FM, Brandi A (2006a) 1,3-Dipolar cycloadditions of 2-*tert*-butoxycarbonyl-1-pyrroline *N*-oxide with chiral acrylates and acrylamides. Heterocycles 67:413–420
- Pisaneschi F, Piacenti M, Cordero FM, Brandi A (2006b) Stereoselective synthesis of a new trihydroxyindolizidine lactone. Tetrahedron Asymmetry 17:292–296
- Rabiczko J, Urbańczyk-Lipkowska Z, Chmielewski M (2002) Syntheses of pyrrolizidines and indolizidines from α,β-unsaturated sugar γlactones via Dieckmann condensation. Tetrahedron 58:1433–1441
- Ranatunga S, Liyanage W, Del Valle JR (2010) Synthesis and conformational analysis of bicyclic extended dipeptide surrogates. J Org Chem 75:5113–5125
- Saavedra C, Hernández R, Boto A, Alvarez E (2009) Catalytic, onepot synthesis of β -amino acids from α -amino acids. Preparation of α , β -peptide derivatives. J Org Chem 74:4655–4665

- Salvati M, Cordero FM, Pisaneschi F, Bucelli F, Brandi A (2005) New developments in the synthesis of pyrrolizidinone-based dipeptide isosteres. Tetrahedron 61:8836–8847
- Sár CP, Jeko J, Hideg K (2003) Synthesis of 2-alkenyl-1-pyrrolin-1oxides and polysubstituted nitrones. Synthesis 2003:1367–1372
- Sár CP, Osz E, Jeko J, Hideg K (2005) Synthesis of spiro[pyrrolidine-2,2'-adamantane] nitrones and nitroxides. Synthesis 2:255–259
- Schumacher MA, Mizuno K, Bächinger HP (2006) The crystal structure of a collagen-like polypeptide with 3(*S*)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix. J Biol Chem 281:27566–27574
- Seebach D, Beck AK, Capone S, Deniau G, Grošelj U, Zass E (2009) Enantioselective preparation of β -2-amino acid derivatives for β peptide synthesis. Synthesis 2009:1–32
- Steer DL, Lew RA, Perlmutter P, Smith AI, Aguilar M-I (2002) β -Amino acids: versatile peptidomimetics. Curr Med Chem 9:811–822
- Szakonyi Z, Fülöp F (2011) Monoterpene-based chiral β -amino acid derivatives prepared from natural sources: syntheses and applications. Amino Acids 41:597–608
- Szirtes T, Kisfaludy L, Pálosi E, Szporny L (1986) Synthesis of thyrotropin-releasing hormone analogues. 2. Tripeptides structurally greatly differing form TRH with high central nervous system activity. J Med Chem 29:1654–1658
- Terakado D, Takano M, Oriyama T (2005) Highly enantioselective (*S*)-homoproline-catalyzed Michael addition reactions of ketones to β -nitrostyrenes. Chem Lett 34:962–963

- Tsandi E, Kokotos CG, Kousidou S, Ragoussis V, Kokotos G (2009) Sulfonamides of homoproline and dipeptides as organocatalysts for Michael and aldol reactions. Tetrahedron 65:1444–1449
- Weiner B, Szymanski W, Janssen DB, Minnaard AJ, Feringa BL (2010) Recent advances in the catalytic asymmetric synthesis of β-amino acids. Chem Soc Rev 39:1656–1691
- Wu S-F, Zheng X, Ruan Y-P, Huang P-Q (2009) A new approach to 3-hydroxyprolinol derivatives by samarium diiodide-mediated reductive coupling of chiral nitrone with carbonyl compounds. Org Biomol Chem 7:2967–2975
- Yang H, Wong MW (2011) β-Amino acid catalyzed asymmetric Michael additions: design of organocatalysts with catalytic acid/ base dyad inspired by serine proteases. J Org Chem 76:7399–7405
- Yi JJ, Hua ZM, Rong TG (2003) Synthesis and structure determination of (2S, 2'S)-3-phenyl-2-(pyrrolidin-2'-yl)-propionic acid. Synth Commun 33:3913–3917
- Zhu S, Zhang Q, Gudise C, Wei L, Smith E, Zeng Y (2009) Synthesis and biological evaluation of febrifugine analogues as potential antimalarial agents. Bioorg Med Chem 17:4496–4502
- Zorn C, Anichini B, Goti A, Brandi A, Kozhushkov SI, de Meijere A, Citti L (1999) Studies on the synthesis of aza analogues of illudins by cycloadditions to highly strained methylenecyclopropanes. J Org Chem 64:7846–7855