Synthesis and Biological Evaluation of the Forssman Antigen Pentasaccharide and Derivatives by a One-Pot Glycosylation Procedure

Hiroshi Tanaka,^{*[a]} Ryota Takeuchi,^[a] Mitsuru Jimbo,^[b] Nami Kuniya,^[b] and Takashi Takahashi^{*[a]}

Abstract: The synthesis and biological evaluation of the Forssman antigen pentasaccharide and derivatives thereof by using a one-pot glycosylation and polymer-assisted deprotection is described. The Forssman antigen pentasaccharide, composed of GalNAc α -(1,3)GalNAc β (1,3)Gal α (1,4)Gal β -

(1,4)Glc, was recently identified as a ligand of the lectin SLL-2 isolated from an octocoral Sinularia lochmodes. The chemo- and α -selective glycosylation of a thiogalactoside with a hemiacetal donor by using a mixture of Tf₂O, TTBP and Ph₂SO, followed by activation of the remaining thioglycoside, provided the trisaccharide at the reducing end in a one-pot procedure. The pentasaccharide was prepared by the α -selective glycosylation of the *N*-

Introduction

Zooxanthellae symbiosis is nearly a standard relationship that corals depend on for energy and nutrients. Recent environmental changes have influenced these relationships and have resulted in the bleaching of coral and a subsequent deterioration in the extent of symbiosis.^[1] A lectin SLL-2 isolated from an octocoral *Sinularia lochmodes* is an important mediator of the symbiotic relationship between corals and symbiotic microalgae (*Symbiodinium*).^[2] Treatment of *Symbiodinium* cells with SLL-2 promotes their transformation

[a] Prof. Dr. H. Tanaka, R. Takeuchi, Prof. Dr. T. Takahashi Department of Applied Chemistry Tokyo Institute of Technology (Japan) Fax: (+81)3-5734-24884
E-mail: thiroshi@apc.titech.ac.jp ttak@apc.titech.ac.jp
[b] Prof. Dr. M. Jimbo, N. Kuniya

- School of Marine Biosciences, Kitasato Universty 1-15-1 kitasato minami-ku Sagamihara-shi Kanagawa, 252-0373 (Japan)
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201203865.

Troc-protected (Troc=2,2,2-trichloroethoxycarbonyl) thioglycoside with a 2azide-1-hydroxyl glycosyl donor, followed by glycosidation of the resulting disaccharide at the C3 hydroxyl group of the trisaccharide acceptor in a onepot process. We next applied the onepot glycosylation method to the synthesis of pentasaccharides in which the galactosamine units were partially and fully replaced by galactose units. Among the three possible pentasaccharides, Gala(1,3)GalNAc and Gala-(1,3)Gal derivatives were successfully prepared by the established method.

Keywords: chemical biology • glycosylation • lectin • oligosaccharides • one-pot An assay of the binding of the synthetic oligosaccharides to a fluorescent-labeled SLL-2 revealed that the NHAc substituents and the length of the oligosaccharide chain were both important for the binding of the oligosaccharide to SLL-2. The inhibition effect of the oligosaccharide relative to the morphological changes of Symbiodinium by SLL-2, was comparable to their binding affinity to SLL-2. In addition, we fortuitously found that the synthetic Forssman antigen pentasaccharide directly promotes a morphological change in Symbiodinium. These results strongly indicate that the Forssman antigen also functions as a chemical mediator of Symbiodinium.

into a non-flagellated coccoid form from a flagellated-swimming form. Frontal affinity chromatography analyses^[3] of interactions between SLL-2 and various pyridylaminated oligosaccharides from various glycolipids and glycoproteins revealed that a pyridylaminated GalNAc $\alpha(1,3)$ GalNAc β -(1,3)Gal α (1,4)Gal β (1,4)Glc, namely the Forssman antigen^[4] 1 acts as a high affinity ligand to SLL-2.^[5] Therefore, the antigen and structurally related oligosaccharides would be expected to function as effective chemical probes for the elucidation, not only of the biological roles of SLL-2, but also the mechanism associated with the symbiotic relationship. However, oligosaccharides from natural sources are limited in terms of structural diversity and can be produced in only limited qualities. In addition, the effect of a glucose unit at the reducing end on their binding affinity is not clear because the pyridiylamination of oligosaccharides results in the formation of an acyclic form in the case of the sugar unit at the reducing end.^[6] Therefore, the chemical synthesis of a Forssman antigen pentasaccharide and related oligosaccharides would be highly desirable in terms of structure-activity relationship studies. Several reports have appeared on the synthesis of the Forssman antigen oligosaccharide, based on a target-oriented strategy.^[7] Therefore, an effective method for the synthesis of the Forssman antigen and relat-

Chem. Eur. J. 2013, 19, 3177-3187

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

WILEY CONLINE LIBRARY

CHEMISTRY A EUROPEAN JOURNAL

ed oligosaccharides based on a diverse-orientated strategy continues to remain highly desirable.

In a previous study, we reported on an efficient methodology for the synthesis of oligosaccharides based on a one-pot glycosylation procedure and polymer-assisted deprotection.^[8] The one-pot glycosylation procedure involves the sequential chemo- and regioselective glycosylation to directly provide oligosaccharides from several simple building blocks without the need for purifying intermediates and is effective for the synthesis of a single target oligosaccharide as well as oligosaccharide libraries.^[9] Polymer-assisted deprotection involves the deprotection of solid-supported oligosaccharides followed by their release from the solid. This procedure simplifies the manipulation of the highly polar, fully deprotected oligosaccharides and their synthetic intermediates.^[10] Herein we report on the synthesis of the pentasaccharide 2 and derivatives that contain 2-trimethylsilylethyl group at the reducing end by two one-pot glycosylation reactions and polymer-assisted deprotection, and the biological evaluation of the final products.

Results and Discussion

We first planned to prepare the Forssman antigen pentasaccharide 2a with a 2-trimethysilylethyl group at the reducing end and derivatives 2b-d, in which one and/or two galactosides are attached in place of the galactosamine units. The 2-trimethysilylethyl group at the non-reducing end is a lipophilic tag that allows for easy purification and can be chemoselectively removed by treatment with trifluoroacetic acid $(TFA)^{[11]}$ or $LiBF_4^{[12]}$ for further derivatization. Our strategy for the synthesis of the pentasaccharide derivatives 2a-d involved two one-pot glycosylations combined with a polymer-assisted deprotection (Scheme 1). The first one-pot glycosylation involved the chemo- and α -stereoselective glycosylation of the thiogalactoside 10 with the galactoside 6 and the subsequent β -selective glycosystion of **11** with a disaccharide to prepare the common trisaccharide 9 at the reducing end. The methyl substituents on the phenyl group of 10 prevent the thiotransfer of the thioglycoside 10 in this chemoselective glycosylation.^[13] The second one-pot glycosylation is initiated by the chemo- and α -stereoselective glycosylation of galacosamine 7 or galactoside 8 with galactosamine 5 or galactose 6. A subsequent β -selective glycosidation of the resulting disaccharide donors at the C3 hydroxyl group of the trisaccharide acceptor 9 provides the protected Forssman pentasaccharides. Deprotection of the pentasaccharides involving modification of the N-Troc amino and azide groups to N-acetamides and the complete removal of all O-protecting groups was achieved by polymer-assisted deprotection by using the prelinker 3 and the amino functionalized ArgoPore resin 4 (Scheme 1).

Synthesis of the trisaccharide 9 at the reducing end is shown in Scheme 2. We first examined the chemo- and α -selective glycosylation of thioglycoside 10 with the 2*O*-benzylprotected donors **6a–d**. Treatment of donors **6a–d** with a

ChemPubS

Europe

Scheme 1. Strategy for the synthesis of the pentasaccharides 2.

different leaving group and 2,6-dimethylphenylthioglycoside **10** with the corresponding requisite activating reagents provided the disaccharide **12** with good α -selectivity (Table 1). Glycosidation of the activated hemiacetal **6a** with Tf₂O, 2,4,6-tri-*tert*-butylpyrimidine (TTBP), and Ph₂SO resulted in

Table 1.	α -Selective	galactosylation	at C4	position	of glucose	10

Entry	Donor	Conditions	Yield [%]	$\alpha/\beta^{[a]}$
1	6a	Tf ₂ O, TTBP, Ph ₂ SO -78 to -30 °C, 4.0 h	92	95:5
2	6b	MeOTf, RT, 4.0 h	85	95:5
3	6c	AgOTf, -78 to -40 °C, 2.5 h	43	95:5
4	6 d	TMSOTf, -78°C, 2.0 h	74	95:5

[a] The ratio was determined based on the ¹H NMR spectra.

Chem. Eur. J. 2013, 19, 3177-3187

Scheme 2. Stepwise, one-pot synthesis of trisaccharide 13.

the highest yield of the disaccharide **12** among the compounds tested (Table 1, entry 1).^[14] The resulting disaccharide **12** was activated with *N*-iodosuccinimide (NIS) and a catalytic amount of TfOH in the presence of 1.5 equivalents of acceptor **11** to give the trisaccharide **13** in 75% yield with good β -selectivity. The one-pot synthesis of trisaccharide **13** from the three building blocks **6a**, **10**, and **11** was next examined. Treatment of the hemiacetal **10a** and thioglycoside **11** with Tf₂O, TTBP, and Ph₂SO, followed by the addition of 2.0 equivalents of acceptor **11** and NIS resulted in the stereoselective formation of the trisaccharide **13** in 54% yield based on **10**. The chloroacetyl group of the trisaccharide **13** was removed by treatment with thiourea to give the alcohol **9** in 94% yield, which was used as the acceptor in the next one-pot glycosylation.

The synthesis of the pentasaccharide **17** was examined next (Scheme 3). We first examined the chemo- and α -selective glycosylation of thioglycoside **7**^[15] with the 2-azido-glycosyl donors **5a–c** with a different leaving group (Table 2). Glycosylation of the thioglycoside **7** with glycosyl bromide

Table 2. α-Selective galactosylation at the C3 position of glucose 12.

Entry	Donor	Conditions	Yield [%]	$\alpha/\beta^{[a]}$
1	5a	Tf ₂ O, TTBP, Ph ₂ SO -78 to -30°C, 4.0 h	77	92:8
2	5b	AgOTf, -78 to -40 °C, 3.0 h	57	63:37
3	5c	TMSOTf, -78°C, 2.0 h	66	74:26

[a] The ratio was determined based on the ¹H NMR spectra.

Chem. Eur. J. 2013, 19, 3177-3187

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

- 3179

Scheme 3. Stepwise, one-pot synthesis of pentasaccharide 16.

and imidate 5b or 5c provided an anomeric mixture of the disaccharide 15 (Table 2, entries 2 and 3). On the other hand, activation of the hemiacetal 5a with Tf₂O, Ph₂SO, and TTBP in the presence of thioglycoside 7 provided the disaccharide 15 in 92% yield with excellent α -selectivity ($\alpha/\beta =$ 92:8; Table 2, entry 1). The disaccharide 15 was activated by reaction with NIS and a catalytic amount of TfOH in the presence of trisaccharide 9 to give the pentasaccharide 16 in 92% yield. The one-pot synthesis of pentasaccharide 16 from the three building blocks 5a, 7, and 9 was then examined. Treatment of the hemiacetal 5a and thioglycoside 7 with Tf₂O, TTBP, and Ph₂SO, followed by the addition of 1.2 equivalents of acceptor 9 and NIS resulted in the stereoselective formation of the trisaccharide 16 in 52% yield based on 7. The chloroacetyl group of the trisaccharide was removed by treatment with thiourea to give the alcohol 17 in 96% yield.

The one-pot synthesis of pentasaccharides 2c-d following the established method was examined (Scheme 4). Treatment of the hemiacetal 6a and thioglycosides 7 and 8 with Tf₂O, TTBP, and Ph₂SO provided the disaccharides 18 and 19, respectively. The successive addition of 1.2 equivalents of acceptor 9 and NIS to the reaction mixture provided the trisaccharide 20 and 22 in 46 and 41 % overall yields based

Scheme 4. One-pot synthesis of pentasaccharides 20 and 22.

on 7 and 8, respectively. The chloroacetyl group of the trisaccharides 20 and 22 was removed by treatment with thiourea to afford the alcohol 21 and 23 in 86 and 88% yields. However, the synthesis of pentasaccharide 2b through a one-pot glycosylation failed because the glycosylation of the benzoate acceptor 8 with the azide donor 6a did not proceed under these reaction conditions (Scheme 5). Increasing the reaction temperature and prolonging the reaction time resulted in the decomposition of the substrates 5a and 8.

The procedure used for the polymer-assisted deprotection of the protected oligosaccharides **17**, **21**, and **23** is shown in Scheme 6. Acetalization of pentasaccharides **17**, **21**, and **23** with the prelinker **3** under acidic conditions, followed by amidation of the remaining activated ester with amine **4** attached to an ArgoPore resin provided the solid-supported protected oligosaccharides **24–26**. The esters and carbamate were removal under basic conditions. The azide group was reduced to an amine by treatment with trimethylphosphine. The amino groups were converted into acetamides. The benzyl ethers and benzylidene acetals were removed under Birch reduction conditions. Finally, exposure of the solid-

Scheme 5. Chemo- and α -stereoselective glycosylation of **8** with hemiace-tal **6a**.

supported pentasaccharides to a mixed solution (1 M HCl aq. CH₂Cl₂/MeOH) provided the fully deprotected pentasaccharides **2a**, **2c**, and **2d** in 43, 34 and 43% overall yields based on **17**, **21**, and **23**, respectively. Partial hydrolysis of the 2-trimethylsilylethyl glycosides occurred when TFA was used as an acid instead of HCl.

A biological evaluation of the pentasaccharides 2a, 2c and 2d, and the related oligosaccharides 27–31 was carried out (Figure 1).^[15] We first examined the use of a fluores-

Figure 1. Structure of Forssman antigen-related oligosaccharides 27-31.

cence enhancement assay to analyze the interaction between the synthetic oligosaccharides and FITC-labeled SLL-2. Figure 2 shows the relative fluorescent intensity of a mixture of FITC-labeled SLL-2 and the oligosaccharide based on the FITC-labeled SLL-2. The affinity of the oligosaccharides for SLL-2 was dependent on the number of sugar units in the oligosaccharide. The pentasaccharide **5** exhibited the strongest binding affinity. Modification of the GalNAc unit to a Gal unit reduced the binding affinity to SLL-2. These

3180

Scheme 6. Polymer-assisted deprotection of 17, 21, and 23.

results indicate that SLL-2 not only recognized the acetamide group at the non-reducing end of the Forsmann antigen, but also the sugar units at the reducing end. In addition, α -GalNAc **31** showed a stronger affinity than β -GalNAc **30**, comparable to that of tetrasaccharide **27**. A hydrophobic interaction of the 2-trimethysilylethyl group with the SLL-2 binding pocket might be responsible for the enhanced binding affinity of the monosaccharide unit.

We next examined the inhibition of the SLL-2-induced morphological change caused by oligosaccharides **2a**, **2c**, **2d**, and **27–31**. SLL-2 promotes a morphological change in symbiotic microalgae from the motile form to a coccoid

Figure 2. A fluorescence enhancement assay for analysis of the interaction between the synthetic oligosaccharides 2a, 2c, 2d, and 27-31 and FITC-labeled SLL-2. The error bar indicates standard deviation (n=3).

Figure 3. Inhibitory effect of the oligosaccharides on the SLL-2-induced morphological change of CS-156. The black bars and the white bars indicate CS-156 that was cultured with or without SLL-2, respectively. The error bar represents the standard deviation (n > 3).

form. Figure 3 provides information on the inhibitory effect of the oligosaccharides on the SLL-2-induced morphological change in CS-156. The inhibitory effects of the oligosaccharides were dependent on their binding affinity for SLL-2, except for the original pentasaccharide **2a.** These results clearly indicate that the binding site of the oligosaccharides to SLL-2 is comparable to that of the native ligand on *Symbiodinium*. On the other hand, it should be noted that the Forssman pentasaccharide **2a** directly initiates a morphological change in CS-156. These unexpected results suggest that CS-156 might have receptors for the Forssman pentasaccharide, which promote this morphological change. However, the mechanism of this phenomenon is not currently clear. Additional biological studies are required to clarify this aspect of the process.

Conclusion

We have described the synthesis of the Forssman antigen pentasaccharide **2a** and its derivatives **2c** and **2d** by two one-pot glycosylation reactions and polymer-assisted deprotection and their biological evaluation. The chemo-and α stereoselective glycosylation of thioglycosides with the hemi-

www.chemeurj.org

acetal donors 6a and 5a by using a mixture of Tf₂O, TTBP, and Ph₂SO was effective for formation of α-glycosidic linkage in one-pot glycosylation. However, the chemoselective and α -selective glycosylation of thioglycoside 8 containing a benzoate at the C2 position with the 2-azide glycoside 6a did not proceed due to the low reactivity the 2-azide glycosyl donor 6a. An analysis of the interaction between the synthetic oligosaccharides 2a, 2c, 2d, and 27-31 and the FITC-labeled SLL-2 by a fluorescence assay revealed that the NHAc substituents and the length of the oligosaccharide chains were important for the binding of the oligosaccharide to SLL-2. The inhibition effect of the oligosaccharide, relative to the morphological changes of Symbiodinium by SLL-2, was comparable to their binding affinity to SLL-2. In addition, we fortuitously discovered that the synthetic pentasaccharide 2a directly promotes the morphological change in Symbiodinium. These results strongly indicate that the Forssman antigen also functions as a chemical mediator of Symbiodinium. A biological study to elucidate the mechanism of the morphological change derived from the pentasaccharide 2a is currently in progress.

Experimental Section

General procedure: NMR spectra were recorded on a JEOL Model EX-270 (270 MHz for ¹H, 67.8 MHz for ¹³C) or a JEOL Model ECP-400 (400 MHz for ¹H, 100 MHz for ¹³C) in the indicated solvent. Chemical shifts were reported in part per million (ppm) relative to the signal (0.00 ppm) for internal tetramethylsilane solutions in CDCl₃. ¹H NMR spectral data are reported as follows: CDCl₃ (7.26 ppm), CD₂Cl₂ $(5.32 \text{ ppm}), \text{ [D}_{6}\text{]acetone} (2.04 \text{ ppm}), \text{ [D}_{6}\text{]DMSO} (2.50 \text{ ppm}), \text{ CD}_{3}\text{OD}$ (3.30 ppm) or D₂O (HOD (4.7015 ppm at 303 K, 4.5977 ppm at 313 K, 4.5541 ppm at 318 K, 4.3168 ppm at 343 K)). ¹³C NMR spectral data are reported as follows: CDCl₃ (77.0 ppm), CD₂Cl₂ (53.8 ppm), [D₆]acetone (29.8 ppm), [D₆]DMSO (39.5 ppm), CD₃OD (49.8 ppm) or D₂O ([D₆]acetone (206.0 ppm) as an internal standard). Infrared spectra (IR) were recorded on a Perkin-Elmer Spectrum 1. Only the strongest and/or structurally important absorbances are reported as the IR data given in cm⁻¹. Optical rotations were measured on a JASCO model P-1020 polarimeter. All reactions were monitored by using thin layer chromatography carried out on Merck precoated TLC plates (60F-254) by using UV light and p-anisaldehyde H₂SO₄ ethanol solution or 10% ethanolic phosphomolybdic acid. Column chromatography separations were performed by using silica gel (Merck, silica gel). Flash column chromatography separations were performed by using silica gel (KANTO, silica gel 60N, spherical, neutral, 40-100 µm). ESI-TOF Mass spectra were measured with AppliedBioSystems Mariner TK-3500 Biospectrometry Workstation mass spectrometers and Waters LCT Premier XE. HRMS (ESI-TOF) were calibrated with angiotensin I (SIGMA), bradykinin (SIGMA), and neurotensin (SIGMA) as an internal standard. Gel permeation chromatography (GPC) for qualitative analysis were performed on Japan Analytical Industry Model LC908 (recycling preparative HPLC) by using a polystylene gel column (JAIGEL-1H, 20 mm×600 mm). The detection of products was achieved by using a UV detector (Japan Analytical Industry Model 310) and refractive index detector (Japan Analytical Industry Model RI-5)

2,6-Dimethylphenylthio (2-O-benzyl-4,6-O-benzylidene-3-O-chloroacetyl- α -D-galactopyranoyl)-(1 \rightarrow 4)-2-O-benzoyl-3,6-di-O-benzyl-4-O- β -D-galactopyranoside (12): A mixture of 6a (17.9 mg, 41.2 µmol), Ph₂SO (13.3 mg, 66.0 µmol), TTBP (17.7 mg, 71.4 µmol; azeotroped twice with dry toluene), and pulverized activated MS 4Å (200 mg) in dry CH₂Cl₂ (1.00 mL) was stirred at room temperature for 1 h under argon to remove a trace amount of H2O. Then, the reaction mixture was cooled to -78°C. After 5 min, Tf₂O (8.30 µL, 49.5 µmol) was added to the reaction mixture at the same temperature. After being stirred at -40 °C for 1 h, a solution of 10 (16.7 mg, 27.5 µmol; azeotroped twice with dry toluene) in dry CH₂Cl₂ (1.00 mL) was added at the same temperature. After being stirred for 2 h, the reaction mixture was neutralized with NEt₂ and filtered through a pad of Celite. Then, the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (elution with 99:1 CHCl₃/MeOH) and by using gel permeation chromatography (GPC) to give **12** (25.2 mg, 25.2 μ mol, 92%). $[\alpha]_{D}^{26} = +129$ (c= 1.22, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08$ (d, 2H, J = 7.3 Hz), 7.60 (dd, 1H, J=7.3, 7.7 Hz), 7.50-7.04 (m, 25 H), 5.56 (dd, 1H, J=9.7, 10.2 Hz), 5.50 (dd, 1 H, J = 3.4, 10.6 Hz), 5.41 (s, 1 H), 5.23 (d, 1 H, J =3.9 Hz), 4.84 (d, 1 H, J=12.1 Hz), 4.72 (d, 1 H, J=12.1 Hz), 4.70 (d, 1 H, J = 12.1 Hz), 4.59 (br d, 1 H, J = 3.4 Hz), 4.53 (d, 1 H, J = 9.7 Hz), 4.46 (d, 1H, J=12.1 Hz), 4.34 (brs, 1H), 4.27 (brd, 1H, J=2.9 Hz), 4.26 (d, 1H, J = 11.6 Hz), 4.24 (dd, 1 H, J = 3.9, 10.6 Hz), 4.18 (d, 1 H, J = 11.6 Hz), 4.03 (d, 1H, J=15.0 Hz), 4.02 (dd, 1H, J=7.7, 8.7 Hz), 3.95 (d, 1H, J= 15.0 Hz), 3.63 (brs, 2H), 3.57 (dd, 1H, $J_{2,3}$ =2.9, 10.2 Hz), 3.49 (dd, 1H, J = 5.8, 8.7 Hz), 2.44 ppm (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.6$, 165,2, 144.2, 138.4, 137.9, 137.8, 137.3, 133.1, 131.5, 130.0, 129.9, 129.8, 129.0, 128.4, 128.3, 128.0, 127.7, 127.6, 127.5, 127.4, 127.1, 126.1, 100.7, 100.4, 88.6, 80.4, 74.3, 74.2, 73.8, 73.7, 73.6, 73.2, 71.5, 70.4, 69.0, 67.5, 62.4, 40.8, 22.5 ppm; FTIR (KBr): $\tilde{\nu} = 3421$, 2927, 1732, 1636, 1384, 1265, 1096, 756 cm⁻¹; HRMS (ESI-TOF): m/z calcd for $C_{57}H_{61}NO_{12}SCl$ 1018.3603 [*M*+NH₄]⁺; found: 1018.3598.

2-(Trimethylsilyl)ethyl (2-O-benzyl-4,6-di-O-benzylidene-3-O-chloroacetyl-α-D-galactopyranosyl)-(1-4)-(2-O-benzoyl-3,6-di-O-benzyl-4-O-β-Dgalactopyranosyl)- $(1 \rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside (13): A mixture of 12 (45.0 mg, 44.9 µmol), compound 11 (37.1 mg, 67.4 µmol; azeotroped twice with dry toluene) and pulverized activated MS 4Å (120 mg) in dry CH₂Cl₂ (1.20 mL) was stirred at room temperature for 1 h under argon to remove a trace amount of H2O. Then, the reaction mixture was cooled to -78°C. After 5 min, NIS (15.2 mg, 67.4 µmol) and a catalytic amount of TfOH (2.00 uL, 22.5 umol) was added to the reaction mixture at the same temperature. After being stirred for 3.5 h, during which time the solution was allowed to warm to -60°C, the reaction mixture was neutralized with NEt3 and filtered through a pad of Celite. Then, the filtrate was concentrated in vacuo and the residue was purified by column chromatography on silica gel (elution with CHCl₃/ MeOH=99:1) and gel permeation chromatography (GPC) to give 13 (47.8 mg, 33.8 μ mol, 75%). [a]_D²⁵=+88.3 (c=0.890, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ=8.00 (d, 2H, J=8.2 Hz), 7.61-7.07 (m, 38H,), 5.46 (dd, 1H, J=8.2, 10.2 Hz), 5.41 (dd, 1H, J=3.4, 10.6 Hz), 5.38 (s, 1H), 5.20 (d, 1H, J=2.9 Hz), 5.05 (d, 1H, J=11.6 Hz), 4.87 (d, 1H, J= 10.6 Hz), 4.84 (d, 1 H, J=11.6 Hz), 4.82 (d, 1 H, J=8.2 Hz), 4.74 (d, 1 H, J = 12.6 Hz), 4.68 (brs, 2 H), 4.65 (d, 1 H, J = 10.6 Hz), 4.54 (brd, 1 H, J = 10.6 (brd, 1 H, J = 3.4 Hz), 4.52 (d, 1 H, J=12.1 Hz), 4.38 (d, 1 H, J=12.1 Hz), 4.33 (brs, 1 H), 4.31 (d, 1 H, J = 8.2 Hz), 4.26 (d, 1 H, J = 12.1 Hz), 4.24 (d, 1 H, J =12.1 Hz), 4.23 (brs, 1 H), 4.22 (dd, 1 H, J=2.9, 10.2 Hz), 4.21 (d, 1 H, J= 12.1 Hz), 4.18 (dd, 1 H, J=7.3, 8.7 Hz), 3.93 (dt, 1 H, J=7.3, 9.2 Hz), 3.88 (d, 1H, J=15.0 Hz), 3.86 (dd, 1H, J=9.2, 9.7 Hz), 3.80 (d, 1H, J= 15.0 Hz), 3.66 (brd, 1H, J=12.6 Hz), 3.63 (dd, 1H, J=8.7, 9.2 Hz), 3.61 (dd, 1H, J=9.2, 9.7 Hz), 3.58 (brd, 1H, J=12.6 Hz), 3.54 (dd, 1H, J= 6.8, 9.7 Hz), 3.53 (dt, 1 H, J=7.3, 9.2 Hz), 3.44 (dd, 1 H, J=2.9, 10.2 Hz), 3.43-3.31 (m, 4H), 0.99 (dt, 2H, J=7.3, 9.2 Hz), 0.00 ppm (s, 9H, Si- $(CH_3)_3$; ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.4$, 160.1, 139.5, 138.7, 138.4, 138.2, 138.1, 137.8, 137.4, 133.1, 130.0, 129.8, 128.7, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.7, 127.6, 127.5, 127.0, 126.9, 126.1, 102.9, 101.1, 101.0, 100.3, 83.1, 82.0, 79.3, 77.6, 76.5, 75.1, 74.7, 74.3, 73.9, 73.8, 73.5, 73.2, 73.1, 72.2, 71.2, 69.0, 68.5, 67.3, 67.1, 62.6, 60.3, 40.6, 18.4, 14.2, -1.49 ppm; FTIR (neat): $\tilde{\nu}$ =2922, 1732, 1453, 1267, 1096, 736, 698 cm⁻¹; HRMS (ESI-TOF): m/z calcd for $C_{81}H_{93}NO_{18}CISi$: 1430.5851 $[M + NH_4]^+$; found 1430.5850.

One-pot synthesis of 13: A mixture of **6a** (17.5 mg, 40.3 µmol), Ph₂SO (11.3 mg, 55.7 µmol), TTBP (16.1 mg, 65.0 µmol) was azeotroped twice with dry toluene and was diluted with dry CH₂Cl₂ (500 µL). The solution was stirred at room temperature for 1 h under argon in the presence of activated MS 4 Å (200 mg) to remove a trace amount of H₂O. Then, Tf₂O

3182 -

(7.80 µL, 46.4 µmol) was added to the reaction mixture at -78 °C and stirred at -40 °C for 1 h. A solution of **10** (18.1 mg, 31.0 µmol) was azeotroped twice with dry toluene, diluted with dry CH₂Cl₂ (500 µL), and the solution was added to the reaction mixture at -78 °C. After additionally being stirred for 2.5 h at the same temperature, the reaction mixture was warmed to 0 °C. After being stirred for 30 min, the reaction mixture was cooled to -78 °C. After 5 min, a solution of **11** (34.1 mg, 61.9 µmol) in dry CH₂Cl₂ (800 µL), NIS (17.4 mg, 77.3 µmol, 2.50 equiv) and TfOH (2.80 µL, 30.1 µmol) was added to the reaction mixture was neutralized with NEt₃ and filtered through a pad of Celite. Then, the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (elution with CHCl₃/MeOH=99:1) and further purified by gel permeation chromatography (GPC) to give **13** (23.8 mg, 15.7 µmol, 54 % based on **10**).

2-(Trimethylsilyl)ethyl (2-O-benzyl-4,6-di-O-benzylidene-α-D-galactopy $ranosyl) \textbf{-} (1 \rightarrow 4) \textbf{-} (2\textbf{-} \textbf{O}\textbf{-} benzoyl\textbf{-} 3, \textbf{6}\textbf{-} di\textbf{-} \textbf{O}\textbf{-} benzyl\textbf{-} \beta\textbf{-} \textbf{D}\textbf{-} galactopyranosyl) \textbf{-} (1 \rightarrow 4) \textbf{-} (1 \rightarrow 4) \textbf{-} (2 \textbf{-} \textbf{O}\textbf{-} benzoyl\textbf{-} 3, \textbf{6}\textbf{-} di\textbf{-} \textbf{O}\textbf{-} benzyl\textbf{-} \beta\textbf{-} \textbf{D}\textbf{-} galactopyranosyl) \textbf{-} (1 \rightarrow 4) \textbf{-} (2 \textbf{-} \textbf{O}\textbf{-} benzoyl\textbf{-} 3, \textbf{6}\textbf{-} di\textbf{-} \textbf{O}\textbf{-} benzyl\textbf{-} \beta\textbf{-} \textbf{D}\textbf{-} galactopyranosyl) \textbf{-} (1 \rightarrow 4) \textbf{-} (2 \textbf{-} \textbf{O}\textbf{-} benzoyl\textbf{-} 3, \textbf{6}\textbf{-} di\textbf{-} \textbf{O}\textbf{-} benzyl\textbf{-} \beta\textbf{-} \textbf{D}\textbf{-} galactopyranosyl) \textbf{-} (1 \rightarrow 4) \textbf{-} (2 \textbf{-} \textbf{O}\textbf{-} benzyl\textbf{-} \beta\textbf{-} \textbf{D}\textbf{-} galactopyranosyl) \textbf{-} (1 \rightarrow 4) \textbf{-} (2 \textbf{-} \textbf{O}\textbf{-} benzyl\textbf{-} \beta\textbf{-} \textbf{D}\textbf{-} galactopyranosyl) \textbf{-} (1 \rightarrow 4) \textbf{-} (2 \textbf{-} \textbf{O}\textbf{-} benzyl\textbf{-} \beta\textbf{-} \textbf{D}\textbf{-} galactopyranosyl) \textbf{-} (1 \rightarrow 4) \textbf{-} (2 \textbf{-} \textbf{D}\textbf{-} benzyl\textbf{-} \beta\textbf{-} \textbf{D}\textbf{-} galactopyranosyl) \textbf{-} (1 \rightarrow 4) \textbf{-} (2 \textbf{-} \textbf{D}\textbf{-} benzyl\textbf{-} \beta\textbf{-} \textbf{D}\textbf{-} galactopyranosyl) \textbf{-} (1 \rightarrow 4) \textbf{-} (2 \textbf{-} \textbf{D}\textbf{-} benzyl\textbf{-} \beta\textbf{-} benzyl\textbf{-} benzyl \textbf{-} benzyl \textbf{-} benzyl\textbf{-} benzyl \textbf{-} be$ **4)-2,3,6-tri-***O*-benzyl-β-D-glucopyranoside (5): Thiourea (11.4 mg, 149 µmol) and 2,6-lutidine (14.0 µL, 120 µmol) were added to a stirred solution of 13 (35.2 mg, 24.9 µmol) in dry DMF (600 µL) at room temperature. After being stirred at 50 °C for 14 h, the reaction mixture was poured into 1 M HCl with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with 1M HCl, saturated aq. NaHCO3 and brine, dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by chromatography on silica gel (elution with toluene/acetone=96:4) to give 5 (31.2 mg, 23.3 μ mol, 94%). [α]_D²⁰ = +89.3 (*c*=1.06, CHCl₃); ¹H NMR (400 MHz, $[D_6]$ acetone): $\delta = 8.11$ (dd, 2H, J = 1.0, 7.7 Hz), 7.99–7.10 (m, 48H), 5.71 (s, 1 H), 5.64 (s, 1 H), 5.55 (dd, 1 H, J=7.7, 10.2 Hz), 5.47 (s, 1 H), 5.30 (d, 1H, J=3.4 Hz), 5.08 (d, 1H, J=3.4 Hz), 5.04 (brs, 2H), 5.03 (d, 1H, J= 7.7 Hz), 4.92 (d, 1 H, J=12.1 Hz), 4.90 (d, 1 H, J=11.1 Hz), 4.77 (d, 1 H, J=12.6 Hz), 4.72 (d, 1 H, J=8.7 Hz), 4.67 (d, 1 H, J=12.1 Hz), 4.62 (br d, 1 H, J = 2.9 Hz, 4.61 (d, 1 H, J = 11.1 Hz), 4.52 (brs, 1 H), 4.51 (d, 1 H, J = 11.1 Hz) 12.6 Hz), 4.43 (d, 1 H, J=11.1 Hz), 4.42 (d, 1 H, J=8.2 Hz), 4.34 (d, 1 H, J=10.2 Hz), 4.33 (dd, 1 H, J=2.9, 10.2 Hz), 4.32 (br d, 1 H, J=2.9 Hz), 4.31 (brd, 1H, J=10.2 Hz), 4.30 (brs, 2H), 4.25 (d, 1H, J=12.1 Hz), 4.23 (brd, 1H, J=12.1 Hz), 4.18 (dd, 1H, J=6.3, 8.7 Hz), 4.17 (d, 1H, J= 10.2 Hz), 4.15 (brd, 1H, J=10.2 Hz), 4.11 (brdd, 1H, J=8.7, 10.6 Hz), 4.10 (d, 1H, J=12.1 Hz), 4.09 (dd, 1H, J=3.4, 11.6 Hz), 4.09 (dd, 1H, J=1.4, 12.1 Hz), 3.95 (dd, 1H, J=3.4, 10.2 Hz), 3.94 (dd, 1H, J=3.4, 10.6 Hz), 3.93 (brs, 1 H), 3.90 (dd, 1 H, J=8.7, 9.7 Hz), 3.92 (dt, 1 H, J= 7.7, 8.7 Hz), 3.80 (dd, 1 H, J=2.9, 10.2 Hz), 3.76 (d, 1 H, J=12.1 Hz), 3.68-3.62 (m, 6H), 3.57 (dd, 1H, J=4.8, 9.2 Hz), 3.56 (dd, 1H, J=1.9, 10.6 Hz), 3.45 (ddd, 1H, J=3.4, 4.8, 9.7 Hz), 3.38 (dd, 1H, J=5.8, 9.2 Hz), 3.31 (dd, 1 H, J=8.2, 9.2 Hz), 0.98 (t, 2 H, J=7.7 Hz), 0.00 ppm (s, 9H); 13 C NMR (100 MHz, [D₆]acetone): $\delta = 165.6$, 155.4, 141.2, 140.8, 140.5, 140.3, 140.2, 140.1, 140.0, 139.7, 134.6, 131.7, 131.0, 130.0, 129.9, 129.6, 129.5, 129.4, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.2. 127.8. 127.6. 104.2. 104.0. 102.7. 101.9×2. 101.6. 101.5. 97.4. 96.3. 83.7, 83.6, 80.8, 80.1, 79.1, 78.1, 77.8, 76.2, 75.7, 75.5, 75.4, 75.0, 74.8, 74.6, 74.3, 74.1, 74.0, 73.7, 72.3, 72.2, 70.6, 70.4, 70.3, 70.1, 68.7, 67.8, 67.6, 67.5, 64.8, 64.4, 61.2, 54.3, 19.4, -0.79 ppm; FTIR (KBr): $\tilde{v} = 3420, 2923, 2111,$ 1730, 1453, 1268, 1219, 1097, 1023, 772 cm⁻¹; HRMS (ESI-TOF): m/z calcd for $C_{108}H_{121}N_5O_{27}SiCl_3$: 2052.7084 $[M + NH_4]^+$; found: 2052.7026.

2,6-Dimethylphenylthio (2-azido-4,6-*O*-benzylidene-3-*O*-chloroacetyl-2deoxy- α -D-galactopyranosyl)-(1 \rightarrow 3)-4,6-*O*-benzylidene-2-deoxy-(2,2,2-trichloroethoxycarbonylamino)- β -D-galactopyranoside (15): A mixture of 6a (84.0 mg, 227 µmol), Ph₂SO (85.6 mg, 423 µmol), TTBP (113 mg, 454 µmol; azeotroped twice with dry toluene) and pulverized activated MS 4Å (150 mg) in dry CH₂Cl₂ (1.00 mL) were stirred at room temperature for 1 h under argon to remove a trace amount of H₂O. Then, the reaction mixture was cooled to -78 °C. After 5 min, Tf₂O (53.4 µL, 318 µmol) was added to the reaction mixture at the same temperature. After being stirred at -40 °C for 1 h, a solution of 7 (81.9 mg, 151 µmol; azeotroped twice with dry toluene) in dry CH₂Cl₂ (5.00 mL) was added at the same temperature. After being stirred for 1 h at the same temperature, the reaction mixture was neutralized with NEt₃ and filtered through a pad of Celite. Then, the filtrate was concentrated in vacuo and the residue was purified by column chromatography on silica gel (elution with

CHCl₃/MeOH=99:1) and gel permeation chromatography (GPC) to give 15 (102 mg, 116 μ mol, 77 %, $\alpha/\beta = 92:8$). The α/β ratio was determined by ¹H NMR spectroscopic analysis. The α isomer was purified by an additional column chromatography on silica gel. $[\alpha]_D^{25} = +127$ (c = 1.15, CH₂Cl₂); ¹H NMR (400 MHz, [D₆]acetone): $\delta = 7.61$ (dd, 2H, J = 1.4, 7.7 Hz), 7.61 (dd, 2H, J=5.3, 7.7 Hz), 7.39-7.33 (m, 6H), 7.24 (brd, 1H, J=9.2 Hz), 7.16–7.10 (m, 3 H,), 5.71 (s, 1 H), 5.63 (s, 1 H), 5.48 (d, 1 H, J= 3.4 Hz), 5.31 (dd, 1 H, J=3.4, 11.1 Hz), 4.96 (d, 1 H, J=12.1 Hz), 4.78 (d, 1 H, J=12.1 Hz), 4.72 (d, 1 H, J=10.2 Hz), 4.66 (brd, 1 H, J=3.4 Hz), 4.57 (brd, 1H, J=3.4 Hz), 4.37 (d, 1H, J=15.0 Hz), 4.31 (d, 1H, J= 15.0 Hz), 4.25 (br dd, 1 H, J=3.4, 10.6 Hz), 4.18 (dd, 1 H, J=10.2, 10.6 Hz), 4.16–4.12 (m, 4H), 4.05 (brs, 1H), 3.94 (dd, 1H, J=3.4, 11.1 Hz), 3.53 (brs, 1H), 2.55 ppm (s, 6H); ¹³C NMR (67.8 MHz, $[D_6]$ acetone): $\delta = 167.6$, 155.2, 147.6, 144.9, 140.0, 139.3, 132.3, 131.7, 130.2, 129.6, 129.5, 129.2, 128.8, 127.1, 127.0, 125.0, 101.1×2, 96.8, 96.2, 89.5, 76.4, 75.1, 74.0, 72.2, 71.5, 70.4, 69.5, 63.8, 57.9, 53.4, 41.4, 22.7 ppm; FTIR (KBr): $\tilde{v} = 2115$, 1763, 1708, 1443, 1090, 1044, 756, 537 cm⁻¹; HRMS (ESI-TOF): m/z calcd for $C_{39}H_{44}N_5O_{11}SiCl_4$: 930.1512 $[M + NH_4]^+$; found: 930.1531.

 $benzyl-4, 6-di-\textit{O}-benzylidene-\alpha-d-galactopyranosyl)-(1 \rightarrow 4)-(2-\textit{O}-benzoyl-d-benzoyl-benzoyl-d-benzoyl-be$ 3,6-di-O-benzyl-α-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (16): A mixture of 15 (45.5 mg, 45.6 µmol), compound 9 (30.5 mg, 22.8 µmol; azeotroped twice with dry toluene) and pulverized activated MS 4 Å (50.0 mg) in dry CH₂Cl₂ (1.20 mL) was stirred at room temperature for 1 h under argon to remove a trace amount of H₂O. Then, the reaction mixture was cooled to -20 °C. After 5 min, NIS (12.3 mg, 54.7 µmol) and a catalytic amount of TfOH (1.00 µL, 11.4 µmol) was added to the reaction mixture at the same temperature. After being stirred for 2 h, during which time the solution was allowed to warm to 0°C, the reaction mixture was neutralized with NEt₃ and filtered through a pad of Celite. Then, the filtrate was concentrated in vacuo and the residue was purified by column chromatography on silica gel (elution with CHCl₃/MeOH=99:1) and gel permeation chromatography (GPC) to give **16** (41.3 mg, 19.5 μ mol, 92%). $[\alpha]_{D}^{27} = +110$ (c=1.28, CHCl₃); ¹H NMR (400 MHz, $[D_6]$ acetone): $\delta = 8.10$ (dd, 2 H, J = 1.0, 7.3 Hz), 7.99– 7.13 (m, 48 H), 6.56 (brd, 1 H, J=9.7 Hz), 5.70 (s, 1 H), 5.65 (s, 1 H), 5.55 (dd, 1H, J=7.7, 10.2 Hz), 5.47 (s, 1H), 5.46 (d, 1H, J=3.9 Hz), 5.23 (br dd, 1 H, J=3.4, 11.1 Hz), 5.08 (d, 1 H, J=3.4 Hz), 5.04 (br s, 2 H), 5.04 (d, 1H, J=7.7 Hz), 4.92 (d, 1H, J=12.6 Hz), 4.90 (d, 1H, J=11.6 Hz), 4.77 (d, 1H, J=12.1 Hz), 4.74 (d, 1H, J=7.7 Hz), 4.68 (d, 1H, J= 12.6 Hz), 4.64 (d, 1H, J=11.6 Hz), 4.63 (brs, 1H), 4.56 (brs, 1H), 4.52 (d, 1H, J=12.1 Hz), 4.43 (d, 1H, J=7.7 Hz), 4.42 (d, 1H, J=11.6 Hz), 4.35-4.30 (m, 6H), 4.28 (d, 1H, J=13.1 Hz), 4.24 (brd, 1H, J=12.1 Hz), 4.21 (d, 1H, J=11.6 Hz), 4.19 (dd, 1H, J=5.3, 9.2 Hz), 4.17 (d, 1H, J= 11.6 Hz), 4.17 (br dd, 1 H, J=7.7, 10.6 Hz), 4.16 (d, 1 H, J=12.1 Hz), 4.16 (brd, 1H, J=11.1 Hz), 4.15 (brs, 1H), 4.12 (d, 1H, J=12.1 Hz), 4.12 (brd, 1H, J=12.1 Hz), 4.02 (brs, 1H), 3.95 (dd, 1H, J=3.4, 10.6 Hz), 3.94 (dt, 1H, J=7.7, 9.7 Hz), 3.94 (dd, 1H, J=3.9, 11.1 Hz), 3.90 (dd, 1H, J=9.2 Hz, 9.7 Hz), 3.85 (d, 1H, J=12.6 Hz), 3.81 (dd, 1H, J=2.4, 10.6 Hz), 3.68 (dd, 1 H, J=4.8, 5.3 Hz), 3.66 (dd, 1 H, J=9.7, 9.7 Hz), 3.66 (dd, 1H, J=4.8, 8.7 Hz), 3.62 (dt, 1H, J=7.7, 9.7 Hz), 3.59 (dd, 1H, J= 4.8, 8.7 Hz), 3.58 (br d, 1 H, J=11.6 Hz), 3.56 (br d, 1 H,, J=11.6 Hz), 3.46 (br dt, 1 H, J=4.8, 9.7 Hz), 3.45 (brs, 1 H), 3.38 (dd, 1 H, J=4.8, 9.2 Hz), 3.31 (dd, 1H, J=7.7, 9.7 Hz), 0.98 (t, 2H, J=7.7 Hz), 0.00 ppm (s, 9H); ¹³C NMR (67.8 MHz, [D₆]acetone): $\delta = 168.0$, 166.6, 155.5, 141.2, 140.8, 140.5, 140.4, 140.2, 139.9, 139.8, 139.6, 134.6, 131.2, 131.0, 130.0, 129.7, 129.6, 129.5, 129.4, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.2, 127.7, 127.6, 104.2, 103.9, 102.7, 101.9, 101.7, 101.6, 101.5, 97.2, 95.8), 83.4, 80.8, 80.2, 79.1, 78.1, 76.1, 75.7, 75.4, 75.0, 74.8, 74.5, 74.1, 74.0, 73.7, 72.3, 72.0, 71.8, 70.6, 70.3, 70.1, 68.7, 67.8, 67.5, 64.4, 64.1, 58.0, 54.1, 41.8, 19.4, -0.79 ppm; FTIR (KBr): $\tilde{v} = 2921, 2112, 1731, 1454,$ 1268, 1219, 1095, 772, 698 cm⁻¹; HRMS (ESI-TOF): m/z calcd for $C_{110}H_{122}N_5O_{28}SiCl_4$: 2128.6800 [*M*+NH₄]⁺; found: 2128.6799.

One-pot synthesis of 16: A mixture of **5a** (28.0 mg, 64.7 μ mol), Ph₂SO (20.1 mg, 99.6 μ mol), TTBP (27.5 mg, 111 μ mol) was azeotroped twice with dry toluene and was diluted with dry CH₂Cl₂ (1.00 mL) in the pres-

ence of pulverized activated MS 4Å (110 mg). The mixture was stirred at room temperature for 1 h under argon to remove a trace amount of H₂O. Tf₂O (13.0 μ L, 77.5 μ mol) was then added to the reaction mixture at -78°C. The reaction mixture was warmed at -40°C and then stirred at the same temperature for 1 h. Compound 7 (30.0 mg, 55.3 µmol) was then azeotroped twice with dry toluene and diluted with dry CH2Cl2 (2.50 mL). After being stirred for 1 h, the solution of 7 was added to the reaction mixture at the same temperature. After being stirred for 5 h at the same temperature the reaction mixture was warmed to 0°C and stirred for 30 min. The reaction mixture was then cooled to -78°C. A solution of $\boldsymbol{9}$ (88.8 mg, 66.4 $\mu mol)$ in dry CH_2Cl_2 (1.00 mL) and NIS (14.9 mg, 66.4 µmol) was then added to the reaction mixture at the same temperature. After being stirred for 1 h, the reaction mixture was neutralized with NEt3 at -20°C and filtered through a pad of Celite. Then, the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (elution with CHCl₃/MeOH=99:1) and further purified by gel permeation chromatography (GPC) to give 16 (58.6 mg, 28.9 μ mol, 52% based on 7). $[\alpha]_{D}^{27} = +110$ (c=1.28, CHCl₃); ¹H NMR (400 MHz, [D₆]acetone): $\delta = 8.10$ (dd, 2H, J = 1.0, 7.3 Hz), 7.99-7.13 (m, 48 H), 6.56 (br d, 1 H, J=9.7 Hz), 5.70 (s, 1 H), 5.65 (s, 1 H), 5.55 (dd, 1H, J=7.7, 10.2 Hz), 5.47 (s, 1H), 5.46 (d, 1H, J=3.9 Hz), 5.23 (brdd, 1H, $J_{2,3}$ =3.4, 11.1 Hz), 5.08 (d, 1H, J=3.4 Hz), 5.04 (brs, 2H), 5.04 (d, 1H, J=7.7 Hz), 4.92 (d, 1H, J=12.6 Hz), 4.90 (d, 1H, J=12. 11.6 Hz), 4.77 (d, 1H, J=12.1 Hz), 4.74 (d, 1H, J=7.7 Hz), 4.68 (d, 1H, J=12.6 Hz), 4.64 (d, 1H, J=11.6 Hz), 4.63 (brs, C-4), 4.56 (brs, 1H), 4.52 (d, 1H, J=12.1 Hz), 4.43 (d, 1H, J=7.7 Hz), 4.42 (d, 1H, J=11.6 Hz), 4.35–4.30 (m, 6 H), 4.28 (d, 1 H, J=13.1 Hz), 4.24 (br d, 1 H, J= 12.1 Hz), 4.21 (d, 1 H, J=11.6 Hz), 4.19 (dd, 1 H, J=5.3, 9.2 Hz), 4.17 (d, 1 H, J=11.6 Hz), 4.17 (brdd, 1 H, J=7.7, 10.6 Hz), 4.16 (d, 1 H, J=12.1 Hz), 4.16 (br d, 1 H, J = 11.1 Hz), 4.15 (br s, 1 H), 4.12 (d, 1 H, J = 11.1 Hz), 4.15 (br s, 1 H), 4.12 (d, 1 H, J = 11.1 Hz) 12.1 Hz), 4.12 (br d, 1 H, J = 12.1 Hz), 4.02 (br s, 1 H), 3.95 (dd, 1 H, $J_{1,2} =$ 3.4 Hz, 10.6 Hz), 3.94 (dt, 1 H, J=7.7, 9.7 Hz), 3.94 (dd, 1 H, $J_{1,2}=3.9$, 11.1 Hz), 3.90 (dd, 1H, J=9.2, 9.7 Hz), 3.85 (d, 1H, J=12.6 Hz), 3.81 (dd, 1H, J=2.4, 10.6 Hz), 3.68 (dd, 1H, J=4.8, 5.3 Hz), 3.66 (t, 1H, J 9.7 Hz), 3.66 (dd, 1 H, J=4.8, 8.7 Hz), 3.62 (dt, 1 H, J=7.7, 9.7 Hz), 3.59 (dd, 1H, J=4.8, 8.7 Hz), 3.58 (brd, 1H, J=11.6 Hz), 3.56 (brd, 1H, J= 11.6 Hz), 3.46 (br dt, 1H, J=4.8, 9.7 Hz), 3.45 (br s, 1H), 3.38 (dd, 1H, J=4.8, 9.2 Hz), 3.31 (dd, 1 H, J=7.7, 9.7 Hz), 0.98 (t, 2 H, J=7.7 Hz), 0.00 ppm (s, 9H, Si(CH₃)₃); ¹³C NMR (67.8 MHz, [D₆]acetone): $\delta = 168.0$, 166.6, 155.5, 141.2, 140.8, 140.5, 140.4, 140.2, 139.9, 139.8, 139.6, 134.6, 131.2, 131.0, 130.0, 129.7, 129.6, 129.5, 129.4, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.2, 127.7, 127.6, 104.2, 103.9, 102.7, 101.9, 101.7, 101.6, 101.5, 97.2, 95.8, 83.4, 80.8, 80.2, 79.1, 78.1, 76.1, 75.7, 75.4, 75.0, 74.8, 74.5, 74.1, 74.0, 73.7, 72.3, 72.0, 71.8, 70.6, 70.3, 70.1, 68.7, 67.8, 67.5, 64.4, 64.1, 58.0, 54.1, 41.8, 19.4, -0.79 ppm; FTIR (KBr): $\tilde{\nu} =$ 2921, 2112, 1731, 1454, 1268, 1219, 1095, 772, 698 cm⁻¹; HRMS (ESI-TOF): m/z calcd for $C_{110}H_{122}N_5O_{28}SiCl_4$: 2128.6800 $[M+NH_4]^+$; found: 2128.6799.

2-(Trimethylsilyl)ethyl (2-azido-4,6-O-benzylidene-2-deoxy-α-D-galacto $pyranosyl) \textbf{-} (1 \rightarrow 3) \textbf{-} [4, \textbf{6-}O\textbf{-} benzyl idene \textbf{-} 2\textbf{-} deoxy \textbf{-} (2, 2, 2\textbf{-} trichloroethoxy car$ bonylamino)-β-D-galactopyranosyl]-(1→3)-(2-O-benzyl-4,6-di-O-benzylidene-α-D-galactopyranosyl)-(1→4)-(2-O-benzoyl-3,6-di-O-benzyl-α-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (17): Thiourea (8.70 mg, 114 µmol) and 2,6-lutidine (10.0 µL, 91.5 µmol) were added to a stirred solution of 16 (35.2 mg, 24.9 µmol) in dry DMF (1.00 mL) at room temperature. After being stirred at the same temperature for 14 h, the reaction mixture was poured into 1 M HCl with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extracts were washed with 1 M HCl, saturated aq. NaHCO3 and brine, dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (elution with 92:8 toluene/acetone) to give 17 (37.1 mg, 18.4 μ mol, 96%). [α]_D²⁰ = +89.3 (c = 1.06, CHCl₃); ¹H NMR (400 MHz, [D₆]acetone): $\delta = 8.11$ (dd, 2H, J = 1.0, 7.7 Hz), 7.99–7.10 (m, 48 H), 5.71 (s, 1 H), 5.64 (s, 1 H), 5.55 (dd, 1 H, $J_1 =$ 7.7, 10.2 Hz), 5.47 (s, 1 H), 5.30 (d, 1 H, J = 3.4 Hz), 5.08 (d, 1 H, J =3.4 Hz), 5.04 (brs, 2H), 5.03 (d, 1H, J=7.7 Hz), 4.92 (d, 1H, J=12.1 Hz), 4.90 (d, 1H, J=11.1 Hz), 4.77 (d, 1H, J=12.6 Hz), 4.72 (d, 1H, J= 8.7 Hz), 4.67 (d, 1 H, J=12.1 Hz), 4.62 (brd, 1 H, J=2.9 Hz), 4.61 (d, 1 H, J=11.1 Hz), 4.52 (brs, 1H), 4.51 (d, 1H, J=12.6 Hz), 4.43 (d, 1H, J=12.6 (d, 1H, J=12.6 (d, Hz), 4.43 (d, H

11.1 Hz), 4.42 (d, 1 H, J=8.2 Hz), 4.34 (d, 1 H, J=10.2 Hz), 4.33 (dd, 1 H, J=2.9, 10.2 Hz), 4.32 (brd, 1H, J=2.9 Hz), 4.31 (brd, 1H, J=10.2 Hz), 4.30 (brs, 2H), 4.25 (d, 1H, J=12.1 Hz), 4.23 (brd, 1H, J=12.1 Hz), 4.18 (dd, 1H, J=6.3, 8.7 Hz), 4.17 (d, 1H, J=10.2 Hz), 4.15 (brd, 1H, J= 10.2 Hz), 4.11 (br dd, 1 H, J=8.7, 10.6 Hz), 4.10 (d, 1 H, J=12.1 Hz), 4.09 (dd, 1H, J=3.4, 11.6 Hz), 4.09 (dd, 1H, J=1.4, 12.1 Hz), 3.95 (dd, 1H, J=3.4, 10.2 Hz), 3.94 (dd, 1 H, J=3.4, 10.6 Hz), 3.93 (brs, 1 H), 3.90 (dd, 1H, J=8.7, 9.7 Hz), 3.92 (dt, 1H, J=7.7, 8.7 Hz), 3.80 (dd, 1H, J=2.9, 10.2 Hz), 3.76 (d, 1 H, J=12.1 Hz), 3.68-3.62 (m, 6 H), 3.57 (dd, 1 H, J= 4.8, 9.2 Hz), 3.56 (dd, 1 H, $J_{5,6a}$ =1.9, 10.6 Hz), 3.45 (ddd, 1 H, J=3.4, 4.8, 9.7 Hz), 3.38 (dd, 1 H, J=5.8, 9.2 Hz), 3.31 (dd, 1 H, J=8.2, 9.2 Hz), 0.98 (t, 2H, J=7.7 Hz), 0.00 ppm (s, 9H, Si(CH₃)₃); ¹³C NMR (100 MHz, $[D_6]$ acetone): $\delta = 165.6$, 155.4, 141.2, 140.8, 140.5, 140.3, 140.2, 140.1, 140.0, 139.7, 134.6, 131.7, 131.0, 130.0, 129.9, 129.6, 129.5, 129.4, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.2, 127.8, 127.6, 104.2, 104.0, 102.7, 101.9×2, 101.6, 101.5, 97.4, 96.3, 83.7, 83.6, 80.8, 80.1, 79.1, 78.1, 77.8, 76.2, 75.7, 75.5, 75.4, 75.0, 74.8, 74.6, 74.3, 74.1, 74.0, 73.7, 72.3, 72.2, 70.6, 70.4, 70.3, 70.1, 68.7, 67.8. 67.6, 67.5, 64.8, 64.4, 61.2, 54.3, 19.4, -0.79 ppm; FTIR (KBr): \tilde{v} = 3420, 2923, 2111, 1730, 1453, 1268, 1219, 1097, 1023, 772 cm⁻¹; HRMS (ESI-TOF): m/z calcd for $C_{108}H_{121}N_5O_{27}SiCl_3$: 2052.7084 [*M*+NH₄]⁺; found: 2052.7026.

2-(Trimethylsilyl)ethyl (2-O-benzyl-4,6-O-benzylidene-3-O-chloroacetylα-D-galactopyranosyl)-(1→3)-[4,6-O-benzylidene-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-galactopyranosyl]-(1 \rightarrow 3)-(2-O-benzyl-4,6-O-benzylidene- α -D-galactopyranosyl)-(1 \rightarrow 4)-(2-O-benzoyl-3,6-di-Obenzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (20): A mixture of 6a (15.5 mg, 35.7 µmol), Ph₂SO (9.30 mg, 45.9 µmol), TTBP (12.7 mg, 51.0 µmol; azeotroped twice with dry toluene) and pulverized activated MS 4 Å (200 mg) in dry CH₂Cl₂ (1.00 mL) was stirred at room temperature for 1 h under argon to remove a trace amount of H₂O. Then, the reaction mixture was cooled to -78°C. After 5 min, Tf₂O (6.00 µL, 35.7 µmol) was added to the reaction mixture at the same temperature. After being stirred at -40 °C for 1 h, a solution of 7 (13.9 mg, 25.5 μ mol; azeotroped twice with dry toluene) in dry CH₂Cl₂ (2.00 mL) was added at the same temperature. After being stirred for 1.5 h at the same temperature, the reaction mixture was warmed to 0°C and stirred for 30 min. The reaction mixture was then cooled to -25°C. After 5 min, a solution of 9 (40.9 mg, 30.5 µmol) in dry CH₂Cl₂ (750 µL) and NIS (8.60 mg, 38.3 µmol) was added to the reaction mixture. After being stirred for 2 h at the same temperature, the reaction mixture was neutralized with NEt3 and filtered through a pad of Celite. Then, the filtrate was concentrated in vacuo and the residue was purified by column chromatography on silica gel (elution with CHCl₃/MeOH=99:1) and gel permeation chromatography (GPC) to give 20 (22.3 mg, 10.5 µmol, 41% based on 7). $[\alpha]_{D}^{23} = +106$ (c=0.885, CHCl₃); ¹H NMR (400 MHz, $[D_6]$ acetone): $\delta = 8.11$ (dd, 2H, J = 1.5, 7.3 Hz), 7.68 (t, 1H, J = 7.3 Hz), 7.57-7.10 (m, 52 H), 6.64 (br d, 1 H, J=9.7 Hz), 5.66 (s, 1 H), 5.60 (s, 1 H), 5.55 (dd, 1 H, J=7.7, 10.2 Hz), 5.48 (d, 1 H, J=2.9 Hz), 5.47 (s, 1 H), 5.25 (dd, 1H, J=3.4, 10.2 Hz), 5.08 (d, 1H, J=3.4 Hz), 5.04 (d, 1H, J= 7.7 Hz), 5.03 (brs, 2H), 4.95 (d, 1H, J=13.1 Hz), 4.90 (d, 1H, J=13.1 11.1 Hz), 4.77 (d, 1 H, J=12.1 Hz), 4.76 (d, 1 H, J=7.7 Hz), 4.70 (d, 1 H, J=13.1 Hz), 4.65 (d, 1 H, J=11.1 Hz), 4.64 (d, 1 H, J=11.1 Hz), 4.63 (br d, 1 H, J=2.4 Hz), 4.62 (d, 1 H, J=12.1 Hz), 4.56 (br s, 1 H), 4.53 (d, 1 H, J = 12.1 Hz), 4.51 (d, 1 H, J = 12.1 Hz), 4.48 (brd, 1 H, J = 3.4 Hz), 4.44 (d, 1H, J=7.7 Hz), 4.41 (d, 1H, J=11.6 Hz), 4.33 (brd, 1H, J= 2.9 Hz), 4.32 (dd, 1H, J=2.4, 9.7 Hz), 4.28 (d, 1H, J=12.1 Hz), 4.28 (brd, 1H, J=11.1 Hz), 4.25 (brs, 1H), 4.24 (d, 1H, J=12.6 Hz), 4.23 (d, 1H, J=14.1 Hz), 4.23 (brd, 1H, J=11.6 Hz), 4.18 (dd, 1H, J=8.7, 8.7 Hz), 4.16 (br dd, 1 H, J=9.2, 10.2 Hz), 4.13-4.07 (m, 6 H), 4.02 (dd, 1H, J=2.4, 10.2 Hz), 4.01 (brs, 1H), 3.96 (dd, 1H, J=3.4, 9.7 Hz), 3.95 (dt, 1H, J=6.8, 8.7 Hz), 3.89 (dd, 1H, J=8.7, 9.2 Hz), 3.83 (d, 1H, J= 12.1 Hz), 3.81 (dd, 1 H, J=2.9, 10.2 Hz), 3.71–3.54 (m, 7 H), 3.47 (dt, 1 H, J=4.8, 8.7 Hz), 3.41 (brs, 1H), 3.36 (dd, 1H, J=4.8, 8.7 Hz), 3.12 (dd, 1 H, J = 7.7, 8.7 Hz), 0.98 (t, 2 H, J = 8.7 Hz), 0.00 ppm (s, 9 H); ¹³C NMR (67.8 MHz, [D₆]acetone): δ=167.5, 166.0, 155.0, 140.6, 140.3, 139.9, 139.8, 139.6, 139.5, 139.4, 139.1, 134.0, 131.1, 130.5, 129.5, 129.4, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.3, 127.0, 103.8, 103.4, 102.2, 101.4, 101.3, 101.0, 100.9, 96.7, 94.9, 83.1, 83.0, 79.6, 77.6, 75.5, 75.2, 74.8, 74.4, 74.3, 74.2, 74.1, 74.0,

3184 -

73.7, 73.6, 73.5, 73.4, 73.1, 72.8, 72.0, 71.8, 71.7, 70.0, 69.9, 69.6, 68.1, 67.2, 67.1, 63.8, 63.3, 53.7, 51.5, 41.4, 18.8, -1.40 ppm; FTIR (KBr): $\bar{\nu}$ =2954, 1732, 1453, 1366, 1269, 1097, 753, 698 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₁₇H₁₂₉N₂O₂₉SiCl₄: 2193.7204 [*M*+NH₄]+; found: 2193.7200.

ranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (21): Thiourea (5.80 mg, 76.3 µmol, 6.00 equiv) and 2,6-lutidine (6.80 µL, 61.0 µmol, 4.80 equiv) was added to a stirred solution of 20 (27.7 mg, 12.7 µmol) in dry DMF (1.00 mL) was added at room temperature. After being stirred at 50 °C for 14 h, the reaction mixture was poured into 1 M HCl with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extracts were washed with 1 M HCl, saturated NaHCO3 (aq.) and brine, dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (elution with 94:6 toluene/acetone) to give **21** (23.0 mg, 10.9 μ mol, 86%). $[a]_{D}^{23} =$ +92.7 (c=0.335, CHCl₃); ¹H NMR (400 MHz, [D₆]acetone): δ =8.12 (d, 2H, J=7.3 Hz), 7.68 (dd, 1H, J=7.3, 7.7 Hz), 7.57-7.11 (m, 52H), 6.57 (brd, 1H, J=9.7 Hz), 5.68 (s, 1H), 5.59 (s, 1H), 5.55 (dd, 1H, J=7.7, 10.2 Hz), 5.47 (s, 1 H), 5.39 (d, 1 H, J=3.4 Hz), 5.09 (d, 1 H, J=3.4 Hz), 5.05 (d, 1H, J=7.7 Hz), 5.03 (brs, 2H), 4.95 (d, 1H, J=13.1 Hz), 4.90 (d, 1H, J=11.6 Hz), 4.77 (d, 1H, J=12.6 Hz), 4.75 (d, 1H, J=7.7 Hz), 4.67 (d, 1H, J=13.1 Hz), 4.66 (d, 1H, J=11.6 Hz), 4.64 (d, 1H, J=11.6 Hz), 4.64 (brs, 1H), 4.63 (d, 1H, J=12.1 Hz), 4.59 (d, 1H, J=12.6 Hz), 4.55 (brs, 1H), 4.51 (d, 1H, J=12.6 Hz), 4.44 (d, 1H, J=8.2 Hz), 4.41 (d, 1H, J=12.1 Hz), 4.33 (brd, 1H, J=2.4 Hz), 4.31 (dd, 1H, J=3.4, 10.6 Hz), 4.30-4.26 (m, 2H), 4.24 (brs, 1H), 4.22 (d, 1H, J=12.1 Hz), 4.21 (brd, 1H, J=3.4 Hz), 4.20 (brd, 1H, J=10.2 Hz), 4.19 (brd, 1H, J=9.2 Hz), 4.16 (dd, 1 H, J=8.4, 9.2 Hz), 4.14 (br dd, 1 H, J=7.7, 10.2 Hz), 4.12 (br d, 1 H, J = 10.2 Hz), 4.10 (d, 1 H, J = 11.6 Hz), 4.07 (brd, 1 H, J = 10.2 Hz), 4.06 (br dd, 1 H, J=3.4, 10.2 Hz), 3.98–3.83 (m, 6 H), 3.81 (dd, 1 H, J=2.4, 10.2 Hz), 3.70-3.53 (m, 8H), 3.47 (ddd, 1H, J=4.4, 4.8, 9.2 Hz), 3.42 (brs, 1H), 3.35 (dd, 1H, J = 5.8, 8.7 Hz), 3.31 (dd, 1H, J = 8.2, 8.7 Hz), 0.98 (t, 2H, J=8.7 Hz), 0.00 ppm (s, 9H); ¹³C NMR (67.8 MHz, [D₆]acetone): $\delta = 166.0, 154.9, 140.6, 140.3, 139.9, 139.7, 139.5, 139.0, 134.0, 131.1, 130.5,$ 129.5, 129.0, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.6, 127.3, 127.2, 103.4, 102.3, 101.3, 101.2, 101.1, 100.9, 96.8, 94.9, 94.8, 83.2, 83.1, 80.2, 79.8, 78.7, 77.8, 76.8, 76.2, 75.6, 74.8, 74.2, 73.8, 73.7, 73.4, 73.3, 71.8, 71.7, 69.4, 68.3, 68.1, 67.2, 67.0, 63.8, 53.6, 18.8, -1.37 ppm; FTIR (KBr): $\tilde{\nu} = 3569, 2869, 1730, 1454, 1366, 1269, 1097, 753, 698 \text{ cm}^{-1}$; HRMS (ESI-TOF): m/z calcd for $C_{115}H_{128}N_2O_{28}SiCl_3$: 2117.7488 $[M+NH_4]^+$; found: 2117.7485.

2,3,6-tri-O-benzyl-β-D-glucopyranoside (22): A mixture of 6a (21.4 mg, 49.3 μmol), Ph₂SO (18.3 mg, 90.3 μmol), TTBP (26.9 mg, 108 μmol; azeotroped twice with dry toluene) and pulverized activated MS 4 Å (300 mg) in dry CH2Cl2 (1.20 mL) was stirred at room temperature for 1 h under argon to remove a trace amount of H2O. Then, the reaction mixture was cooled to -78°C. After 5 min, Tf₂O (11.0 µL, 65.0 µmol) was added to the reaction mixture at the same temperature. After being stirred at -40°C for 1 h, a solution of 8 (15.1 mg, 36.3 µmol; azeotroped twice with dry toluene) in dry CH22Cl2 (1.00 mL) was added at the same temperature. After being stirred for 3.5 h at the same temperature, the reaction mixture was warmed to 0°C and stirred for 30 min. The reaction mixture was then cooled to -20°C. After 5 min, a solution of 9 (58.0 mg, 43.4 µmol) in dry CH₂Cl₂ (1.00 mL) and NIS (12.2 mg, 54.1 µmol, 1.50 equiv) was added to the reaction mixture. After being stirred for 6 h at the same temperature, the reaction mixture was neutralized with NEt₃ and filtered through a pad of Celite. Then, the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (elution with CHCl₃/MeOH=99:10) and by gel permeation chromatography (GPC) to give 22 (29.7 mg, 16.6 μ mol, 46% based on 8). $[\alpha]_{D}^{30} =$ +90.0 (c = 1.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.98$ (dd, 2H, J=1.5, 7.3 Hz), 7.90 (d, 2H, J=7.3 Hz), 7.61 (dd, 1H, J=7.3, 7.7 Hz), 7.51-7.03 (m, 55 H), 5.68 (dd, 1 H, J=7.7, 9.7 Hz), 5.49 (dd, 1 H, J=7.7, 10.2 Hz), 5.45 (s, 1 H), 5.26 (s, 2 H), 5.19 (dd, 1 H, J=3.4, 10.2 Hz), 5.08 (d, 1H, J=3.4 Hz), 5.08 (d, 1H, J=3.4 Hz), 5.00 (d, 1H, J=11.1 Hz), 4.90 (d, 1H, J=11.1 Hz), 4.89 (d, 1H, J=13.1 Hz), 4.86 (d, 1H, J= 7.7 Hz), 4.79 (d, 1 H, J=7.7 Hz), 4.73 (d, 1 H, J=12.6 Hz), 4.64 (d, 1 H, J=11.1 Hz), 4.62 (d, 1H, J=11.1 Hz), 4.62 (d, 1H, J=12.6 Hz), 4.54 (d, 1H, J=12.1 Hz), 4.52 (d, 1H, J=12.1 Hz), 4.50 (brs, 1H), 4.43 (d, 1H, J=12.6 Hz), 4.37 (d, 2H, J=12.6 Hz), 4.37 (dd, 1H, J=3.4, 10.6 Hz), 4.36 (brd, 1H, J=10.6 Hz), 4.32 (d, 1H, J=7.7 Hz), 4.26 (d, 1H, J=12.1 Hz), 4.22 (brs, 1 H), 4.14 (brd, 1 H, J=2.4 Hz), 4.13 (dd, 1 H, J=8.2, 8.7 Hz), 4.10 (brd, 1H, J=3.4 Hz), 4.08 (brd, 1H, J=2.4 Hz), 4.07 (dd, 1 H, J=3.4, 10.2 Hz), 4.06 (d, 1 H, J=15.0 Hz), 4.02 (dd, 1 H, J=3.4, 10.6 Hz), 3.98 (d, 1 H, J=15.0 Hz), 3.96 (dt, 1 H, J=6.8, 9.2 Hz), 3.87 (dd, 1 H, J=9.2, 9.7 Hz), 3.87 (d, 1 H, J=12.1 Hz), 3.86 (br d, 1 H, J=10.6 Hz), 3.65 (dd, 1H, J=2.4, 9.7 Hz), 3.61-3.41 (m, 9H), 3.39 (dd, 1H, J=2.4, 10.2 Hz), 3.37 (dd, 1 H, J=7.7, 9.2 Hz), 3.33 (dd, 1 H, J=4.8, 8.2 Hz), 3.32 (dd, 1H, J=4.8, 8.7 Hz), 3.30 (dt, 1H, J=4.8, 9.2 Hz), 3.05 (brs, 1H), 1.02–0.98 (m, 2 H), 0.01 ppm (s, 9 H); 13 C NMR (100 MHz, CDCl₃): $\delta =$ 166.4, 165.3, 164.9, 139.4, 138.7, 138.4, 138.3, 138.2, 138.1, 138.0, 137.8, $137.5,\ 137.4,\ 133.2,\ 132.9,\ 129.9,\ 129.8,\ 129.7,\ 129.6,\ 128.9,\ 128.7,\ 128.5,$ 128.3, 128.2, 128.1, 128.0, 127.8, 127.7, 127.6, 127.4, 127.3, 127.2, 126.9, 126.3, 126.2, 126.0, 103.0, 101.8, 101.4, 101.2, 100.7, 100.4, 100.2, 98.4, 82.5, 82.0, 79.2, 78.5, 76.2, 75.3, 74.8, 74.6, 74.4, 73.7, 73.5, 73.4, 73.3, 73.1, 72.9, 72.1, 71.1, 70.8, 69.0, 68.7, 68.5, 67.3, 67.0, 66.2, 63.3, 62.6, 40.7, 18.4, -1.50 ppm; FTIR (KBr): $\tilde{\nu} = 2861$, 1734, 1267, 1097, 1000, 750, 698 cm⁻¹; HRMS (ESI-TOF): m/z calcd for C121H131NO29SiCl: 2124.8265 [M+ NH₄]⁺; found: 2124.8240.

2-(Trimethylsilyl)ethyl (2-O-benzyl-4,6-O-benzylidene- α -D-galactopyranosyl)-(1 \rightarrow 3)-(2-O-benzyl-4,6-O-benzylidene- β -D-galactopyranosyl)-(1 \rightarrow 3)-(2-O-benzyl-4,6-O-benzylidene- α -D-galactopyranosyl)-(1 \rightarrow 4)-(2-O-

benzoyl-3,6-di-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzylβ-D-glucopyranoside (23): Thiourea (8.70 mg, 114 μmol) and 2,6-lutidine (10.6 µL, 91.2 µmol) to a stirred solution of 22 (40.0 mg, 19.0 µmol) in dry DMF (1.00 mL) was added at room temperature. After being stirred at 50°C for 12 h, the reaction mixture was poured into 1 M HCl with cooling. The aqueous layer was extracted with two portions of ethyl acetate. The combined extracts were washed with 1 M HCl, saturated NaHCO₃ (aq.) and brine, dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (elution with 95:5 toluene/acetone) to give 23 (33.9 mg, 16.7 μ mol, 88%). [α]_D²² = +80.2 $(c=0.935, \text{ CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.98$ (d, 2 H, J =7.3 Hz), 7.86 (d, 2H, J=7.7 Hz), 7.60 (dd, 1H, J=7.3 Hz, J=7.7 Hz), 7.48-7.03 (m, 55 H), 5.70 (dd, 1 H, J=8.2, 10.2 Hz), 5.49 (dd, 1 H, J=7.7, 10.2 Hz), 5.45 (s, 1 H), 5.31 (s, 1 H), 5.30 (s, 1 H), 5.13 (d, 1 H, J=2.9 Hz), 5.03 (d, 1H, J=3.4 Hz), 4.99 (d, 1H, J=11.1 Hz), 4.90 (d, 2H, J= 11.1 Hz), 4.89 (d, 1 H, J=8.2 Hz), 4.78 (d, 1 H, J=7.7 Hz), 4.72 (d, 1 H, J=11.6 Hz), 4.65 (d, 1H, J=11.1 Hz), 4.62 (d, 1H, J=11.6 Hz), 4.53 (d, 1H, J=13.1 Hz), 4.51 (brd, 1H, J=3.9 Hz), 4.49 (d, 1H, J=12.1 Hz), 4.42 (d, 1H, J=12.6 Hz), 4.37 (d, 1H, J=13.1 Hz), 4.36 (dd, 1H, J=3.9, 10.2 Hz), 4.35 (d, 1 H, J=12.6 Hz), 4.31 (d, 1 H, J=7.7 Hz), 4.22 (brs, 1 H), 4.25 (d, 2 H, J=12.1 Hz), 4.12 (br d, 1 H, J=3.4 Hz), 4.12 (br d, 1 H, J=3.4 Hz), 4.11 (dd, 1H, J=7.7, 8.7 Hz), 4.03 (br d, 1H, J=11.6 Hz), 4.02 (dd, 1H, J=3.4, 10.2 Hz), 3.98-3.83 (m, 4H), 3.79 (dd, 1H, J=2.9, 9.7 Hz), 3.78 (brs, 1 H), 3.68 (dd, 1 H, J=3.4, 10.2 Hz, J=3.4 Hz), 3.67 (brd, 1H, J=9.7 Hz), 3.62-3.52 (m, 6H), 3.51 (brs, 1H), 3.40-3.29 (m, 7H,), 3.07 (brs, 1H), 2.33 (brd, 1H, J=6.8 Hz), 0.99 (dt, 2H, J=6.3, 10.2 Hz), 0.00 ppm (s, 9H); 13 C NMR (67.8 MHz, CDCl₃): $\delta = 165.3$, 164.8, 139.4, 138.6, 138.4, 138.3, 138.2, 138.1, 138.0, 137.8, 137.5, 137.4, 133.2, 133.0, 129.9, 129.7, 129.5, 129.0, 128.8, 128.5, 128.5, 128.3, 128.2, 128.1, 128.0, 127.8, 127.6, 127.5, 127.3, 127.2, 126.9, 126.4, 126.2, 126.1, 102.9, 101.9 x2, 101.4, 101.2, 100.9, 100.2, 97.0, 82.4, 82.0, 79.2, 76.3, 76.2, 75.8, 75.3, 74.8, 74.6, 74.4, 73.7, 73.5, 73.2, 72.8, 72.6, 72.2, 72.1, 71.1, 70.8, 69.1, 69.0, 68.9, 68.5, 67.9, 67.3, 67.0, 66.1, 62.9, 29.7, 18.5, -1.50 ppm; FTIR (KBr): $\tilde{v} = 3572$, 2861, 1732, 1268, 1097, 752, 698 cm⁻¹; HRMS (ESI-TOF): m/z calcd for $C_{119}H_{130}NO_{28}Si$: 2048.8549 $[M+NH_4]^+$; found: 2048.8552.

Polymer-assisted deprotection

 $2\-(Trimethylsilyl)ethyl \quad (2\-acetamide-2\-deoxy-\alpha\-D\-galactopyranosyl)\-(1 \rightarrow C) = 0$ 3)-(2-acetamide-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 3)- α -D-galactopyranosyl- $(1 \rightarrow 4)$ - α -D-galactopyranosyl- β -D-glucopyranoside (2 a): A mixture of 17 (8.60 mg, 4.20 µmol), prelinker 3 (5.90 mg, 21.0 µmol; azeotroped twice with dry toluene) and pulverized activated MS 4Å (100 mg) in dry CH₂Cl₂ (1.00 mL) was stirred at room temperature for 1 h under argon to remove a trace amount of H2O. Then, CSA (1.00 mg, 4.20 µmol) was added to the reaction mixture at 0°C. After being stirred at the same temperature for 4 h, the reaction mixture was filtered through a pad of Celite. Then, the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (elution with CHCl₃) and further purified by gel permeation chromatography (GPC). To a solution of the above activated ester in dry CH_2Cl_2 (150 $\mu L) and dry DMF$ (150 µL) was added ArgoPore-NH2 resin (4) (56.3 mg, 42.0 µmol), a catalytic amount of DIEA and DMAP at room temperature. After being shaken at room temperature for 18 h, the reaction mixture was filtered and the resin was washed three times each with THF/H_2O (1:1) (3.00 mL), MeOH (3.00 mL) and dry CH₂Cl₂ (3.00 mL), respectively. The resin was dried in vacuo to give 24 (FTIR (KBr): $\tilde{\nu} = 3327$, 2924, 2116, 1717, 1665, 1493, 1219, 1095, 772 cm⁻¹). To a suspension of 24 packed into MacroKans microreactor in 1,4-dioxane (20.0 mL) and H2O (10.0 mL) was added LiOH+H₂O (400 mg) at room temperature. After being stirred at 80 °C for 18 h, the reaction mixture was filtered and the resin was washed three times each with THF/H₂O (1:1) (3.00 mL), MeOH (3.00 mL), and dry CH2Cl2 (3.00 mL). The resin was dried in vacuo (FTIR (KBr): $\tilde{\nu}$ =3313, 2927, 1666, 1602, 1451, 1173 1026, 700 cm⁻¹). LiOH•H₂O (100 mg) and PMe₃ (200 μ L, 1.0 μ in THF solution) was added to a suspension of the resultant resin packed into MacroKans microreactor in toluene (5.00 mL) and H_2O (5.00 mL) was added at room temperature. After being stirred at 140°C for 14 h, the reaction mixture was filtered and the resin was washed three times each with THF/H2O (1:1) (3.00 mL), MeOH (3.00 mL) and dry CH2Cl2 (3.00 mL), respectively. The resin was dried in vacuo (FTIR (KBr): $\tilde{\nu} = 3325, 2916$. 1664, 1602, 1493, 1451, 984, 826 cm⁻¹). AcOH (70.0 μL), DIC (150 μL) and DIEA (330 uL) was added at room temperature to a suspension of the resultant resin packed into MacroKans microreactor in dry CH2Cl2 (10.0 mL). After being stirred at room temperature for 12 h, the reaction mixture was filtered and the resin was washed three times each with THF/H2O (1:1) (3.00 mL), MeOH (3.00 mL) and dry CH2Cl2 (3.00 mL), respectively. The resin was dried in vacuo. Liquid NH₃ (36.0 mL) was added to a suspension of the resultant resin packed into MacroKans microreactor in dry THF (4.00 mL). Sodium granules (40.0 mg) were subsequently added to the reaction mixture at -78°C. After being stirred at the same temperature for 1.5 h, the reaction mixture was allowed to warm to -35°C. After heating at reflux for 1 h, the reaction mixture was quenched with MeOH. The reaction mixture was filtered and the resin was washed three times each with THF/H2O (1:1) (3.00 mL), MeOH (3.00 mL) and dry CH2Cl2 (3.00 mL), respectively. Then, the resin was dried in vacuo. The resultant resin was treated with 1 M HCl (300 µL). dry CH2Cl2 (2.40 mL) and MeOH (200 µL) at room temperature for 20 min. Then, the reaction mixture was filtered and rinsed with dry CH₂Cl₂ (3.00 mL), MeOH (3.00 mL) and H₂O (3.00 mL). The residue was dried in vacuo and purified by reverse-phase column chromatography (Bond Elut-C18) to give $\mathbf{2a}$ (1.70 mg, 1.50 $\mu mol,~43\,\%$ in 7 steps based on 17). $[a]_{D}^{23} = +97.8$ (c 0.250, H₂O); ¹H NMR (400 MHz, D₂O): $\delta = 5.05$ (d, 1H, J=3.9 Hz), 4.94 (d, 1H, J=2.9 Hz), 4.72 (d, 1H, J= 8.2 Hz), 4.49 (d, 1 H, J=7.7 Hz), 4.45 (d, 1 H, J=7.7 Hz), 4.29 (dd, 1 H, J=6.3, 5.8 Hz), 4.23 (brs, 1 H), 4.21 (dd, 1 H, J=3.9, 11.1 Hz), 4.09 (dd, 1H, J=8.2, 11.1 Hz), 4.07 (brd, 1H, J=3.4 Hz), 4.03 (brd, 1H, J=3.4 Hz), 3.99 (br d, 1 H, J=2.9 Hz), 3.97 (dt, 1 H, J=6.3, 8.7 Hz), 3.96 (dd, 1H, J=3.9, 10.2 Hz, 3.95 (br ddd, 1H, J=3.9, 4.4, 9.7 Hz), 3.94 (dd, 1H, J=2.9, 10.2 Hz), 3.91-3.74 (m, 13 H), 3.71 (dd, 1 H, J=3.4, 10.2 Hz), 3.70 (brd, 1H, J=5.3 Hz), 3.70 (brd, 1H, J=5.3 Hz), 3.61 (dd, 1H, J=5.3, 6.3 Hz), 3.61 (t, 1 H, J=8.7, 9.2 Hz), 3.56 (dd, 1 H, J=7.7, 10.2 Hz), 3.54 (dd, 1H, J=8.7, 9.7 Hz), 3.28 (dd, 1H, J=7.7, 9.2 Hz), 2.03 (s, 3H), 2.02 (s, 3H, 1.07-0.91 (m, 2H), 0.00 ppm (s, 9H); ¹³C NMR (67.8 MHz, D₂O, $[D_6]$ acetone): $\delta = 165.4, 165.2, (94.1, 93.4, 92.2, 91.2, 84.4 anomeric), 69.7,$ 69.6, 68.1, 66.2, 65.6, 65.5, 65.4, 63.7, 63.0, 62.1, 61.7, 61.1, 59.7, 59.1, 58.9,

58.5, 58.4, 54.5, 51.8, 51.7, 51.2, 51.1, 41.7, 40.2, 13.1, 12.8, 8.37, -11.7 ppm; FTIR (KBr): $\tilde{\nu}$ =3254, 1629, 1557, 1417, 1248, 1039, 713 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₃₉H₇₁N₂O₂₆Si: 1011.4064 [*M*+H]⁺; found: 1011.4064.

 $(\alpha$ -D-Galactopyranosyl)- $(1 \rightarrow 3)$ -(2-acetamide-2-deoxy- α -D-galactopyranosyl)- $(1 \rightarrow 3)$ - α -D-galactopyranosyl- $(1 \rightarrow 4)$ - α -D-galactopyranosyl- β -D-glucopyranoside (2c): According to the polymer-assisted deprotection of 17, compound 2c was prepared from 21 (1.80 mg, 1.86 µmol, 34% in 6 steps based on **21**). $[\alpha]_D^{26} = +107$ (c=0.240, H₂O); ¹H NMR (400 MHz, D₂O): $\delta = 5.08$ (d, 1H, J = 3.4 Hz), 4.93 (d, 1H, J = 2.9 Hz), 4.72 (d, 1H, J =8.2 Hz), 4.48 (d, 1 H, J=7.7 Hz), 4.44 (d, 1 H, J=7.7 Hz), 4.28 (t, 1 H, C5, J=6.3 Hz), 4.26 (brd, 1H, J=2.9 Hz), 4.13 (brd, 1H, J=1.9 Hz), 4.06 (dd, 1H, J=8.2, 10.6 Hz), 4.02 (brd, 1H, J=1.9 Hz), 3.97 (brd, 1H, J= 1.9 Hz), 3.95 (br dt, 1 H, J=4.8, 9.7 Hz), 3.94 (dt, 1 H, J=6.8, 10.2 Hz), 3.93 (dd, 1H, J_{2.3}=2.9, 11.6 Hz), 3.89 (dd, 1H, J=2.9, 11.6 Hz), 3.85-3.68 (m, 17H), 3.64 (dd, 1H, $J_{5,6a}$ =5.3, 5.8 Hz), 3.60 (dd, 1H, J=8.7 Hz, 9.2 Hz), 3.55 (dd, 1 H, J=7.7, 10.6 Hz), 3.51 (dd, 1 H, J=9.2, 9.7 Hz), 3.27 (dd, 1H, J=7.7, 8.7 Hz), 2.01 (s, 3H), 1.06–0.90 (m, 2H), -0.01 (s, 9H); ¹³C NMR (67.8 MHz, D_2O): $\delta = 162.8$, 94.0, 93.2, 92.2, 91.1, 86.2, 69.9, 68.4, 66.5, 66.1, 65.5, 63.7, 63.2, 61.9, 61.8, 61.4, 60.2, 60.0, 59.9, 59.4, 58.8, 58.7, 58.4, 56.9, 54.9, 51.8, 51.7, 51.6, 51.5, 51.2, 51.1, 32.2, 13.1, 8.33, -11.8 ppm; FTIR (KBr): $\tilde{v} = 3371$, 1642, 1437, 1250, 1035, 805, 591 cm⁻¹; HRMS (ESI-TOF): m/z calcd for $C_{37}H_{68}NO_{26}Si$: 970.3799 $[M+H]^+$; found: 970.3797.

 $(\alpha$ -D-Galactopyranosyl)- $(1 \rightarrow 3)$ - $(\alpha$ -D-galactopyranosyl)- $(1 \rightarrow 3)$ - α -D-galactopyranosyl- $(1 \rightarrow 4)$ - α -D-galactopyranosyl- β -D-glucopyranoside (2d): According to the polymer-assisted deprotection of 17, compound 2d was prepared from 21 (2.60 mg, 2.84 µmol, 43% in 5 steps based on 23). $[\alpha]_{D}^{27} = +73.8$ (c=0.195, H₂O); ¹H NMR (400 MHz, D₂O): $\delta = 5.12$ (d, 1 H, J=3.9 Hz), 4.98 (d, 1 H, J=2.4 Hz), 4.66 (d, 1 H, J=7.3 Hz), 4.48 (d, 1 H, J = 7.7 Hz), 4.44 (d, 1 H, J = 7.7 Hz), 4.30 (t, 1 H, J = 6.3 Hz), 4.24 (brs, 1H, C-4), 4.17 (t, 1H, J=6.8 Hz), 4.13 (brd, 1H, J=2.4 Hz), 4.02-3.83 (m, 8H), 3.81–3.68 (m, 15H), 3.66 (dd, 1H, J=5.8, 6.3 Hz), 3.60 (dd, 1H, J=8.7, 9.2 Hz), 3.56 (dd, 1H, J=7.7, 10.2 Hz), 3.54 (dd, 1H, J=8.7, 9.7 Hz), 3.28 (dd, 1H, J=7.7, 9.2 Hz), 1.07-0.91 (m, 2H), 0.00 ppm (s, 9H); ¹³C NMR (67.8 MHz, D₂O): δ =94.8, 94.1, 92.3, 91.1, 86.5, 70.1, 69.7, 68.5, 66.1, 65.6, 65.5, 63.8, 63.4, 62.0, 61.8, 61.6, 60.6, 60.3, 60.2, 59.8, 59.1, 58.8, 58.6, 56.0, 51.9, 51.8, 51.6, 51.3, 51.2, 8.45, -11.7 ppm; FTIR (KBr): $\tilde{\nu} = 3371$, 1649, 1421, 1250, 1033, 804, 580 cm⁻¹; HRMS (ESI-TOF): m/z calcd for C₃₅H₆₅O₂₆Si: 923.3533 [M+H]⁺; found: 929.3527.

Biological evaluation

SLL-2 labeling: SLL-2 (1 mg) was dissolved in NaHCO₃ (pH 9.0, 500 μ L of 0.1 M). After the addition of fluorescein isothiocyanate (FITC; 100 μ L of 10 mgmL⁻¹) in dimethylsulfoxide, the solution was mixed and incubated at room temperature for 1 h in the dark. The solution was dialyzed against 1 L of phosphate buffered saline at 4°C overnight.

Binding of the Forssman-antigen-related oligosaccharides to SLL-2: The relative affinity of oligosaccharides to SLL-2 was tested by the change of fluorescence intensity using FP-715 (JASCO, Tokyo, Japan). Assay solution (400 µL of a solution of 150 mM NaCl, 0.1% Triton X-100, 20 mM Tris-HCl, pH 8.0) and FITC-labeled SLL-2 (3 µM) was added to a cuvette ($\phi = 7.0 \text{ mm}$). The fluorescence (excitation = 480 nm, emission = 530 nm) was measured every 15 s. After 1 min, an oligosaccharide was added and the fluorescence was measured after 5 min. The all measurement was carried out at 25.0 °C with stirring. The oligosaccharides used were Forssman-related saccharides. The specimens were analyzed in triplicate. Inhibition of SLL-2 activity by Forssman-related oligosaccharides: The inhibition of SLL-2 effect to the morphology of CS-156 by the Forssmanrelated oligosaccharides was evaluated. The CS-156 was cultured to more than 10000 cells mL $^{-1}$. CS-156 (100 $\mu L),$ adjusted to 3000 cells mL $^{-1}$ by IMK medium, was dispensed into a well of 96-well titer plate (Corning). The culture was incubated at 25°C for 24 h. Forssman-related oligosaccharides (150 $\mu L),$ at a concentration of 0.3 mm in IMK medium, were mixed with the filtrated SLL-2 (150 $\mu L)$ at a concentration of 200 μ gmL⁻¹ in IMK medium. This solution (100 μ L) was added to each CS-156 (100 µL) culture, and incubated at 25 °C and cultured for 5 days. Photographs were taken at ten different fields for each well. A blurred

3186 -

shape and a clear shape were identified as the motile form and a coccoid form, respectively. The motile cells and coccoid cells were counted, and then the motile percentage was determined. The specimens were analyzed in triplicate.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (B; Grant-in-aid No. 23310150) and Grant-in-Aid for Scientific Research (C; No. 10291650) from the Ministry of Education, Culture, Sports, Science, and Technology.

- [1] A. C. Baker, AP. W. Glynn, B. Riegl, *Estuarine Coastal Shelf Sci.* 2008, 80, 435–471.
- [2] a) M. Jimbo, T. Yanohara, K. Koike, R. Sakai, K. Muramoto, H. Kamiya, *Comp. Biochem. Physiol. Part B* **2000**, *125*, 227–236; b) K. Koike, M. Jimbo, R. Sakai, M. Kaeriyama, K. Muramoto, T. Ogata, T. Maruyama, H. Kamiya, *Biol. Bull.* **2004**, *207*, 80–86.
- [3] a) K. I. Kasai, Y. Oda, J. Chromatogr. 1986, 376, 33–47; b) J. Hirabayashi, Y. Arata, K. Kasai, Methods Enzymol. 2003, 362, 353–368;
 c) E. W. Adams, J. Ueberfeld, D. M. Ratner, B. M. O'Keefe, D. R. Walt, P. H. Seeberger, Angew. Chem. 2003, 115, 5475–5478; Angew. Chem. Int. Ed. 2003, 42, 5317–5320.
- [4] a) J. Forssman, *Biochem. Z.* 1911, *37*, 78–115; b) B. Siddiqui, S. Hakomori, *J. Biol. Chem.* 1971, *246*, 5766–5769; c) A. M. Wu, *Carbohydr. Res.* 1991, *213*, 127–143; d) P. Obukhova, E. Korchagina, S. Henry, N. Bovin, *Transfusion* 2012, *52*, 860–869.
- [5] M. Jimbo, Y. Suda, K. Koike, S. Nakamura-Tsuruta, J. Kominami, M. Kamei, J. Hirabayashi, R. Sakai, H. Kamiya, J. Exp. Mar. Biol. Ecol. 2013, 439, 129–135.
- [6] a) S. Hase, T. Ikenaka, Y. Matsushima, Biochem. Biophys. Res. Commun. 1978, 85, 257–263; b) N. Tomiya, J. Awaya, M. Kurono, S. Endo, Y. Arata, N. Takahashi, Anal. Biochem. 1988, 171, 73.
- [7] a) H. Paulsen, A. Bunsch, Angew. Chem. 1980, 92, 929–930; Angew. Chem. Int. Ed. Engl. 1980, 19, 902–903; b) H. Paulsen, A. Bunsch, Carbohydr. Res. 1982, 100, 143–167; c) S. Nunomura, M. Mori, Y. Ito, T. Ogawa, Tetrahedron Lett. 1989, 30, 6713–6716; d) U. Nilsson, A. K. Ray, G. Magnusson, Carbohydr. Res. 1994, 252, 137–148; e) J. Feng, R. Hevey, C.-C. Ling, Carbohydr. Res. 2011, 346, 2650–2662.

FULL PAPER

- [8] H. Tanaka, H. Yamada, T. Takahashi, Trends Glycosci. Glycotechnol. 2007, 19, 183–193.
- [9] a) H. Yamada, T. Harada, T. Takahashi, J. Am. Chem. Soc. 1994, 116, 7919–7920; b) H. Tanaka, M. Adachi, H. Tsukamoto, T. Ikeda, H. Yamada, T. Takahashi, Org. Lett. 2002, 4, 4213–4216; c) H. Tanaka, M. Adachi, T. Takahashi, Tetrahedron Lett. 2004, 45, 1433–1436; d) M. Adachi, H. Tanaka, T. Takahashi, Synlett 2004, 609–614; e) H. Tanaka, M. Adachi, T. Takahashi, Chem. Eur. J. 2005, 11, 849–862.
- [10] a) H. Tanaka, T. Ishida, N. Matoba, H. Tsukamoto, H. Yamada, T. Takahashi, Angew. Chem. 2006, 118, 6497–6500; Angew. Chem. Int. Ed. 2006, 45, 6349–6352; b) H. Tanaka, Y. Tateno, Y. Nishiura, T. Takahashi, Org. Lett. 2008, 10, 5597–5600; c) H. Tanaka, Y. Tanimoto, T. Kawai, T. Takahashi, Tetrahedron 2011, 67, 10011–10016; d) H. Tanaka, Y. Tateno, T. Takahashi, Org. Biomol. Chem. 2012, 10, 9570–9582.
- [11] K. Jansson, T. Frejd, J. Kihlberg, G. Magnusson, *Tetrahedron Lett.* 1988, 29, 361–362.
- [12] B. H. Lipshutz, J. J. Pegram, M. C. Morey, *Tetrahedron Lett.* 1981, 22, 4603–4606.
- [13] a) Z. Li, J. C. Gildersleeve, J. Am. Chem. Soc. 2006, 128, 11612–11619; b) S. Manabe, K. Ishii, Y. Ito, J. Org. Chem. 2007, 72, 6107–6115; c) Y. Vohra, T. Buskas, G.-J. Boons, J. Org. Chem. 2009, 74, 6064–6071; d) H. Tanaka, Y. Nishiura, T. Takahashi, J. Am. Chem. Soc. 2008, 130, 17244–17245; e) A. Koizumi, N. Hada, A. Kaburaki, K. Yamano, F. Schweizer, T. Takeda, Carbohydr. Res. 2009, 344, 856–868.
- [14] a) B. A. Garcia, J. L. Poole, D. Y. Gin, J. Am. Chem. Soc. 1997, 119, 7597-7598; b) B. A. Garcia, D. Y. Gin, J. Am. Chem. Soc. 2000, 122, 4269-4279; c) T. A. Boebel, D. Y. Gin, Angew. Chem. 2003, 115, 6054-6057; Angew Chem. Int. Ed. 2003, 42, 5874-5877; d) P. Wang, Y.-J. Kim, M. Navarro-Villalobos, B. D. Rohde, D. Y. Gin, J. Am. Chem. Soc. 2005, 127, 3256-3257; e) L. J. Van den Bos, T. J. Boltje, T. Provoost, J. Mazurek, H. S. Overkleeft, G. A. Van der Marel, Tetrahedron Lett. 2007, 48, 2697-2700.
- [15] Details of the synthetic procedure for **27–31** are shown in the Supporting Information.

Received: October 29, 2012 Revised: December 4, 2012 Published online: January 16, 2013