Acknowledgment. This research was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U.S. Department of Energy.

Registry No. TMB, 21296-82-2; TMB<sup>+</sup>, 366-29-0; LDS, 2044-56-6;

SDS, 151-21-3; 5-DSA, 96041-46-2; 7-DSA, 115095-62-0; 10-DSA, 115095-63-1; 12-DSA, 115095-64-2; 16-DSA, 115095-65-3; 15-crown-5, 33100-27-5; 18-crown-6, 17455-13-9; sodium 18-crown-6, 31270-12-9; sodium 15-crown-5, 59890-71-0; lithium 15-crown-5, 74060-72-3; lithium 18-crown-6, 68129-68-0.

## Activation of Encapsulation System MoO<sub>3</sub>/SnO<sub>2</sub> for Olefin Metathesis by SnMe<sub>4</sub>

Katsumi Tanaka,\* Masaki Sasaki, and Isamu Toyoshima

Research Institute for Catalysis, Hokkaido University, Kika-ku, Sapporo 060, Japan (Received: December 16, 1987; In Final Form: February 18, 1988)

Inactive  $MoO_3/SnO_2$  was changed to a metathesis catalyst by treating the surface with tetramethyltin (SnMe<sub>4</sub>) at room temperature. On the catalyst olefin metathesis proceeded selectively without accompanying side reactions such as hydrogen scrambling. During the treatment of  $MoO_3/SnO_2$  with  $SnMe_4$ , a small amount of methane formed concurrent with decomposition of  $SnMe_4$ . Decomposition of tetraethyltin (SnEt<sub>4</sub>) also occurred on  $MoO_3/SnO_2$ ; however, the surface showed no metathesis activity. From these results, it was concluded that the cause for activation of  $MoO_3/SnO_2$  by  $SnMe_4$  is attributed not to reduction of Mo species or the presence of Sn but to the formation of  $CH_2$  species pivotal to the catalytic olefin metathesis cycle. When  $MoO_3/SnO_2$  was reduced with  $H_2$  or CO at 500 °C, Mo species migrated into reduced  $SnO_2$  and no metathesis activity was observed even after treating the surface with  $SnMe_4$ . However, when the reduced sample was reoxidized with  $O_2$  at 500 °C for 1 h followed by being treated with  $SnMe_4$ , the surface was changed to metathesis active.

## Introduction

It is assumed that olefin metathesis on solid catalysts proceeds through metal alkylidene and metallacyclobutane intermediates, which are accepted species in homogeneous catalytic systems.<sup>1</sup> In fact, the stereoselectivities in olefin metathesis observed on  $SnMe_4$  treated molybdena-titania catalysts<sup>2</sup> are quite similar to those in homogeneous systems,<sup>3</sup> which supports a validity for the reaction mechanism on solid metathesis catalysts. In this sense, whether or not a surface shows metathesis activity may depend on the initiation step, a metal alkylidene formation process by a contact with olefin, and if a metal alkylidene species is formed on the surface, it may be able to participate in the propagation step, the chain carrying process involving metallacyclobutane intermediates:<sup>4</sup>

initiation step of propene metathesis:

Mo cation + propene  $\rightarrow$  Mo=CH<sub>2</sub> or Mo=CHCH<sub>3</sub>

propagation step:



<sup>(1)</sup> Rooney, J. J.; Stewart, A. Catalyst; Kemball, C., Ed.; Specialist Periodical Report, The Chemical Society: London, 1977; Vol. 1, Chapter 8. Grubbs, R. H. Comprehensive Organometallic Chemistry; Wilkinson, G., Ed.; Pergamon: New York, 1982; Vol. 8, Chapter 54. Ivin, K. J. Olefin Metathesis; Academic: New York, 1983. Casey, C. P. Reactive Intermediates; Jones, M., Moss, R. A., Eds.; Wiley: New York, 1985; Chapter 4.

Consequently, it is interesting to elucidate the behavior of grafted CH<sub>2</sub> species on solid surfaces. So far MoO<sub>3</sub> supported on various kinds of metal oxide supports that are completely metathesis-inactive materials have been treated with SnMe4 to convert them to metathesis catalysts. For instance,  $MoO_3/TiO_2$  treated with  $SnMe_4$  (hereafter denoted as  $MoO_3/TiO_2$ - $SnMe_4$ ),<sup>4,5</sup> MoO<sub>3</sub>/SiO<sub>2</sub>-SnMe<sub>4</sub>,<sup>6</sup> MoO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>-SnMe<sub>4</sub>, and MoO<sub>3</sub>/ZrO<sub>2</sub> changed into super-active olefin metathesis catalysts.<sup>7</sup> While their reduced catalysts were less active for metathesis, however, their metathesis activities were also drastically enhanced more than by a factor of 10<sup>3</sup> by treating with SnMe<sub>4</sub>. Consequently these metathesis activities are not induced by reduction of Mo species on their surfaces but are interpreted by grafting CH<sub>2</sub> on Mo species formed as a result of CH<sub>4</sub> evolution during the treatment with SnMe<sub>4</sub>. Contrary to these, MoO<sub>3</sub> supported on ZnO, MgO, and  $\text{GeO}_2$  did not have any metathesis activity irrespective of the oxidized and reduced forms even after being treated with SnMe4. These results clearly induce an effect of support on grafting CH<sub>2</sub> species on Mo cations formed by decomposition of SnMe<sub>4</sub>. Compared to these supported molybdenum oxide catalysts, the MoO<sub>3</sub>/SnO<sub>2</sub> system showed an unexpected behavior. That is, metathesis-inactive MoO<sub>3</sub>/SnO<sub>2</sub> changed to an olefin metathesis-active catalyst by treating it with SnMe4; however, the H2reduced surface showed no activity following treatment with SnMe<sub>4</sub>.<sup>7</sup> In this paper, first the cause of metathesis activity generation on  $MoO_3/SnO_2$  treated with SnMe<sub>4</sub> is elucidated, and second the cause of metathesis inhibition on reduced  $MoO_x/SnO_{2-y}$ treated with SnMe<sub>4</sub> is studied.

## **Experimental Section**

Molybdenum trioxide supported on  $\text{SnO}_2$  was obtained by immersing  $\text{SnO}_2$  powder into an aqueous solution of ammonium paramolybdate salt; water was then removed by heating the solution at 120 °C. The starting material was oxidized with  $O_2$  at 500 °C to obtain 6.7 wt %  $\text{MoO}_3/\text{SnO}_2$ . Here  $\text{SnO}_2$  was obtained by oxidation of  $\text{Sn}(\text{OH})_4$  under  $O_2$  flow at 700 °C for 12 h, and oxide formation was ascertained by the oxygen 1s X-ray photo-

<sup>(2)</sup> Tanaka, K.; Tanaka, K.; Takeo, H.; Matsumura, C. J. Am. Chem. Soc. 1987, 109, 2422.

<sup>(3)</sup> Leconte, M.; Basset, J. M. J. Am. Chem. Soc. 1979, 101, 7296.
Garnier, F.; Krausz, P. J. Mol. Catal. 1980, 8, 91. Ofstead, E. A.; Lawrence, J. P.; Senyek, M. L.; Calderon, N. Ibid. 1980, 8, 227. Leconte, M.; Taarit, B.; Bilhou, Y.; Basset, J. M. Ibid. 1980, 8, 263. Bosma, R. H. A.; Xu, X. D.; Mol, J. C. Ibid. 1982, 15, 187.

<sup>(4)</sup> Tanaka, K.; Tanaka, K. J. Chem. Soc., Faraday Trans. 1 1988, 84, 601.

 <sup>(5)</sup> Tanaka, K.; Tanaka, K. J. Chem. Soc., Chem. Commun. 1984, 748.
 (6) Tanaka, K.; Tanaka, K. J. Chem. Soc., Faraday Trans. 1 1987, 83,

<sup>1859.</sup> (7) Tanaka, K.; Tanaka, K. Hyomen (Surface) 1987, 24, 275.

TABLE I: Composition and Deuterium Distribution of Products Formed in the Metathesis Reaction of a 1:1 Mixture of Propene- $d_0$  and  $-d_6$  on MoO<sub>3</sub>/SnO<sub>2</sub>-SnMe<sub>4</sub> at Room Temperature<sup>a</sup>

|          | time, min | comp, % | deuterium distribution, % |       |                       |                       |       |            |       |       |                       |
|----------|-----------|---------|---------------------------|-------|-----------------------|-----------------------|-------|------------|-------|-------|-----------------------|
| product  |           |         | $d_0$                     | $d_1$ | <i>d</i> <sub>2</sub> | <i>d</i> <sub>3</sub> | $d_4$ | <i>d</i> 5 | $d_6$ | $d_7$ | <i>d</i> <sub>8</sub> |
| propene  | 0         | 100.0   | 48.1                      | 0     | 0                     | 0                     | 0     | 1.5        | 50.4  |       |                       |
|          | 20        | 91.8    | 36.1                      | 0     | 12.5                  | 0.2                   | 12.4  | 0.9        | 37.9  |       |                       |
|          | 160       | 78.3    | 26.0                      | 0.3   | 22.5                  | 0.6                   | 22.1  | 0.8        | 27.8  |       |                       |
| ethylene | 20        | 4.7     | 27.2                      | 1.5   | 49.7                  | 0.1                   | 22.6  |            |       |       |                       |
|          | 160       | 11.9    | 26.5                      | 0     | 49.2                  | 1.5                   | 22.8  |            |       |       |                       |
| 2-butene | 20        | 3.5     | 24.5                      | 0.8   | 0.3                   | 1.3                   | 46.4  | 0          | 1.2   | 1.2   | 24.4                  |
|          | 160       | 9.8     | 23.7                      | 0     | 0.4                   | 1.5                   | 48.8  | 0          | 0.5   | 1.3   | 23.9                  |

<sup>a</sup> Total propene, 18.4 Torr; MoO<sub>3</sub>/SnO<sub>2</sub>, 0.3 g; SnMe<sub>4</sub> used, 5 Torr.

electron spectrum (XPS). The partially reduced catalyst (denoted as  $MoO_{3-x}$ ) was obtained by reoxidizing a fully reduced catalyst  $(MoO_x)$  with a 1:1 mixture of N<sub>2</sub>O and H<sub>2</sub> of total pressure of about 200 Torr (1 Torr = 133.3 Pa); here the fully reduced catalyst was obtained by reducing MoO<sub>3</sub>/SnO<sub>2</sub> with H<sub>2</sub> at 500 °C for 1 h. The same procedure was performed to obtain partially reduced  $MoO_{3-x}/TiO_2$  (0.1 > x > 0.7).<sup>8</sup> The catalyst treatment changing the extent of reduction was carried out in a conventional glass circulation system with volume of ca. 260 mL. Each catalyst was evacuated at 500 °C for 1 h and was supplied to reactions with olefins, SnMe<sub>4</sub>, and SnEt<sub>4</sub>. Tetramethyltin or SnEt<sub>4</sub> (both are commercially available) vapor (generally 5 Torr) was diluted with He (about 60 Torr), and the mixed gas was exposed to molybdena-stannic oxide catalysts at room temperature for 30 min; the catalyst was then followed by evacuation at room temperature for 30 min.

Catalytic reactions were carried out in the glass circulation system at room temperature, and analysis of produced gases was performed by using a Shimadzu GC-4C gas chromatograph with thermal conductivity detector and flame ionization detector, in which a 6-m long and 3-mm i.d. stainless steel column involving a VZ-7 was equipped, and deuterium distributions of products were measured by using a Hitachi RMU-6 mass spectrometer with ionization voltage between 10 and 12 eV. Commercially available propene- $d_6$ , 1,3-butadiene- $d_6$ , unlabeled propene, 1-butene, and 1,3-butadiene were used after purification.

XPS spectra were recorded with a Vacuum Generators ESCA 3 MKII photoelectron spectrometer employing Mg K $\alpha$  radiation (hu = 1253.6 eV). The background pressure was below  $5 \times 10^{-9}$ Torr. Analyzer energy used was 20 eV. Binding energy (BE) values on XPS were corrected with reference to the peak at 530 eV for O 1s, which is roughly common in the spectra of metal oxides.<sup>9</sup> A fully reduced sample was prepared in the glass circulation system and was transferred to the preparation chamber of the ESCA machine, in which the sample was reduced again with  $1 \times 10^{-4}$  Torr of H<sub>2</sub> at 500 °C for 1 h. Depth profile analysis of fully oxidized MoO<sub>3</sub>/SnO<sub>2</sub> and the fully reduced sample was performed by taking spectra following Ar<sup>+</sup> ion sputtering with 2-kV acceleration voltage at room temperature.

## **Results and Discussion**

Molybdenum trioxide supported on  $\text{SnO}_2$  was completely inactive to propene metathesis reaction at room temperature. However, when  $\text{MoO}_3/\text{SnO}_2$  was treated with  $\text{SnMe}_4$  at room temperature, a small amount of methane formed and the surface was changed to a metathesis catalyst. Table I shows the deuterium distribution of products formed in the metathesis reaction of a 1:1 mixture of propene- $d_0$  and  $-d_6$  on  $\text{MoO}_3/\text{SnO}_2-\text{SnMe}_4$ :

productive metathesis:

 $CH_2 = CHCH_3 + CD_2 = CDCD_3 \rightarrow ethylene + 2-butene$ 

degenerate metathesis:

$$CH_2 = CHCH_3 + CD_2 = CDCD_3 \rightarrow CD_2 = CHCH_3 + CH_2 = CDCD_3$$

TABLE II: Product Distribution and Deuterium Distribution of Products Formed in the Decomposition Reaction of  $SnMe_4$  on  $MoO_3/SnO_2$  at Room Temperature, on Which Hydrogen Was 97.4% Exchanged by Deuterium Atom<sup>a</sup>

|          |           | deute | deuterium distribution, % |       |                       |  |  |  |
|----------|-----------|-------|---------------------------|-------|-----------------------|--|--|--|
| product  | amt, Torr | $d_0$ | $d_1$                     | $d_2$ | <i>d</i> <sub>3</sub> |  |  |  |
| methane  | 0.49      | 92.0  | 8.0                       | 0     | ~0                    |  |  |  |
| ethane   | 0.51      | 100.0 | 0                         | 0     | ~0                    |  |  |  |
| ethylene | 0.08      | 95.4  | 4.6                       | 0     | $\sim 0$              |  |  |  |

<sup>a</sup> For catalyst preparation, see text.  $MoO_3/SnO_2$ , 3.5 g, pressure and reaction time of SnMe<sub>4</sub>, 14.4 Torr, 30 min.

As shown in the table, ethylene and 2-butenes were formed in the productive fashion, and these were composed of  $d_0$ ,  $d_2$ , and  $d_4$  isomers for ethylene and  $d_0$ ,  $d_4$ , and  $d_8$  isomers for 2-butenes. On the other hand, propene- $d_2$  and  $-d_4$  isomers were produced in the degenerate fashion. From these results, it is concluded that this surface catalyzes propene metathesis selectively and does not show any activity to side reactions such as hydrogen scrambling of olefins or double bond shift reaction. It is noted that the turnover frequency of the productive metathesis of propene was  $8.7 \times 10^{-5}$  (ethylene molecules (Mo cations)<sup>-1</sup> s<sup>-1</sup>), assuming all Mo cations in the catalyst participate in the reaction. The number of active Mo—CH<sub>2</sub> species should be much less than that of the total number of Mo cations included in the catalyst, so that the real turnover frequency is expected to be much higher than the reported value.

To elucidate the cause of the generation of metathesis activity on  $MoO_3/SnO_2$ -SnMe<sub>4</sub>, we studied products formed in the treatment of  $MoO_3/SnO_2$  with SnMe<sub>4</sub> and their deuterium distributions. Here hydrogen in  $MoO_3/SnO_2$  was 97.4% converted into deuterium by the following reactions:

$$MoO_{3}/SnO_{2} \text{ (with H)} \xrightarrow[1 h]{D_{2}, 500 \text{ °C}} MoO_{x}/SnO_{2-y} (97.4\% \text{ D}) \xrightarrow[O_{2}, 500 \text{ °C}, 3 \text{ h}]{MoO_{3}/SnO_{2}} (97.4\% \text{ D})$$

The results are shown in Table II. Methane, ethane, and ethylene formed in the treatment with SnMe<sub>4</sub> on MoO<sub>3</sub>/SnO<sub>2</sub> at room temperature for 30 min. It is significant to note that methane was composed of almost all  $d_0$  isomers and ethane was a completely  $d_0$  species. The former result might be significant only if the catalyst contained considerably more moles of D than was present in methane. These results imply that ethane is formed by recombination of two methyls in SnMe4 and that methane is formed by the reaction  $2CH_3 \rightarrow CH_4 + CH_2$ , that is, grafting of a  $CH_2$ species, which is pivotal to the propagation step in the propene methathesis reaction. The fact that ethylene was formed also supports the CH<sub>2</sub> formation on the surface since it is interpreted that ethylene is formed by either coupling of two CH<sub>2</sub> species or  $\beta$ -hydrogen abstraction of the ethyl group formed as a result of CH<sub>2</sub> insertion into the metal (Sn or Mo)-methyl bond. This assumption may be supported by the fact that ethylene is significantly composed of  $d_0$  species.

It is generally considered that the treatment of  $MoO_3/SnO_2$ with  $SnMe_4$  may reduce Mo cations on the surface, and the reduction of their species may be the reason for generation of

 <sup>(8)</sup> Tanaka, K.; Miyahara, K.; Tanaka, K. J. Mol. Catal. 1982, 15, 133.
 (9) Barr, T. L. J. Phys. Chem. 1978, 82, 1801.

TABLE III: Products Formed in the Decomposition of  $SnMe_4$  and Metathesis Reaction of Propene on the  $SnMe_4$ -Treated Surfaces at Room Temperature

|                                    |                      |          |                   | metathesis of propene |           |  |  |
|------------------------------------|----------------------|----------|-------------------|-----------------------|-----------|--|--|
|                                    | products             | formed.  | <sup>a</sup> Torr |                       | cis/trans |  |  |
| catalyst                           | CH4                  | $C_2H_6$ | $C_2H_4$          | TF <sup>b</sup>       | 2-butene  |  |  |
| MoO <sub>3</sub> /SnO <sub>2</sub> | 0.043                | 0.061    | 0.010             | $8.7 \times 10^{-5}$  | 0.69      |  |  |
| $MoO_{3-x}/SnO_{2-\nu}$            | 7 × 10 <sup>-4</sup> | 0        | 0                 | 0                     |           |  |  |
| $MoO_x/SnO_{2-y}$                  | $5 \times 10^{-4}$   | 0        | 0                 | 0                     |           |  |  |
| $MoO_3/SnO_2$<br>(reoxidized)      | 0.045                | 0.076    | 0.005             | $2.2 \times 10^{-5}$  | 0.93      |  |  |
| SnO <sub>2</sub>                   | 0.015                | 0        | 0                 | 0                     |           |  |  |
| $SnO_{2-y}$                        | $8 \times 10^{-4}$   | 0        | 0                 | 0                     |           |  |  |

<sup>a</sup>Reaction with SnMe<sub>4</sub>; 5 Torr; 30 min at room temperature on 0.5 g of catalyst. <sup>b</sup>Turnover frequency (ethylene (molybdenum cations)<sup>-1</sup>, assuming all Mo cation participate in the metathesis reaction of propene (20-30 Torr).

methathesis activity. In fact, Xu et al. reported that SnR<sub>4</sub> (R = Me, Et, and Bu) reduces the Re species on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> at room temperature.<sup>10</sup> To verify such a possibility, we treated MoO<sub>3</sub>/SnO<sub>2</sub> with SnEt<sub>4</sub> at room temperature. During the treatment, decomposition of SnEt<sub>4</sub> occurred and small amounts of ethylene and ethane were formed. However, the surface did not show activity for the metathesis of propene at all. Consequently, an effect of Sn derived from SnMe<sub>4</sub> as well as of reduction of Mo species can be neglected for the metathesis activity generation by SnMe<sub>4</sub>, and it is concluded that grafting of CH<sub>2</sub> species is the reason for the metathesis activity on MoO<sub>3</sub>/SnO<sub>2</sub> was not made clear by Mo 3d XPS spectra, which may be due to the amount of reduced Mo species.

Molybdenum trioxide supported on SnO<sub>2</sub> reduced with H<sub>2</sub> or CO at 500 °C and then reoxidized with a 1:1 mixture of  $N_2O$ and H<sub>2</sub> at 200 °C was inactive for propene metathesis even after SnMe4 treatment. This was an unexpected result, because metathesis activities on partially reduced  $MoO_{3-x}$  supported on TiO<sub>2</sub>,  $SiO_2$ ,  $Al_2O_3$ , and  $ZrO_2$  were drastically enhanced.<sup>7</sup> It is significant to point out that SnO<sub>2</sub> as well as MoO<sub>3</sub> support was reduced on MoO<sub>3</sub>/SnO<sub>2</sub> with H<sub>2</sub> or CO at 500 °C, which was ascertained by the amount of  $H_2O$  or  $CO_2$  formed in the reduction. It is pointed out that  $SnO_2$  is an easily reducible oxide and is completely reduced to SnO above 260 °C,<sup>11</sup> and it is reported that reduction of SnO<sub>2</sub> to metallic Sn occurs on Rh/SnO<sub>2</sub> by hydrogen spillover.<sup>12</sup> Accordingly, hereafter partially reduced and fully reduced catalyst are denoted as  $MoO_{3-x}/SnO_{2-y}$  and  $MoO_x/SnO_{2-y}$ , respectively. To verify why activation of  $MoO_{3-x}/SnO_{2-y}$  and  $MoO_x/SnO_{2-y}$ was unsuccessful, we compared products formed in the decomposition of  $SnMe_4$  on these surfaces with reduced  $SnO_{2-\nu}$ . As shown in Table III,  $5 \times 10^{-4}$  Torr of methane formed on  $MoO_x/SnO_{2-y}$  (0.5 g of catalyst for 30 min of reaction with SnMe<sub>4</sub>), and 7 × 10<sup>-4</sup> Torr of methane formed on  $MoO_{3-x}/SnO_{2-y}$ , which were quite similar to results for  $SnO_{2-\nu}$  following the same treatments. It is also an important result that no formation of ethane and ethylene was observed on  $SnO_{2-y}$ -supported  $MoO_{3-x}$ and MoO<sub>x</sub> catalysts. These results imply that the surface is covered with reduced  $SnO_2$  if  $MoO_3/SnO_2$  is reduced with  $H_2$ or CO, and no Mo species seems to be present on the surface.

For elucidation of whether or not Mo species are present on the surface, (a) hydrogenation of 1,3-butadiene, (b) hydrogenexchange reaction between 1,3-butadiene- $d_0$  and  $-d_6$ , (c) isomerization of 1-butene, and (d) hydrogen-exchange reaction between propene- $d_0$  and  $-d_6$  were studied on MoO<sub>x</sub>/SnO<sub>2-y</sub>. It is reported that these reactions proceed quite rapidly on a fully reduced MoO<sub>x</sub>/TiO<sub>2</sub> catalyst at room temperature.<sup>13</sup> As Mo species are



Figure 1. Mo 3d spectra of  $MoO_3/SnO_2$  (a),  $MoO_x/SnO_{2-y}$  (c), and following Ar<sup>+</sup> ion sputtering for 0.5 min on a (b), for 0.5 min (d) and 370 min on c (e).



Figure 2. Sn 3d spectra of  $MoO_3/SnO_2$  and  $MoO_x/SnO_{2-y}$ . Notations are the same as in Figure 1.

reduced (Figure 1c, mentioned later), these reactions should proceed as long as Mo species are present on the surface. However, these reactions did not take place at all. Consequently we would like to interpret that no metathesis activity on  $SnMe_4$  treated  $MoO_x/SnO_{2-y}$  and  $MoO_{3-x}/SnO_{2-y}$  is attributed to such migration of Mo species from the surface to the bulk of reduced  $SnO_2$ .

X-ray photoelectron spectra of Mo 3d and Sn 3d regions were studied on fully oxidized  $MoO_3/SnO_2$  and fully reduced  $MoO_x/SnO_{2-y}$ . As shown in Figure 1a, Mo 3d doublets  $(3d_{5/2,3/2})$ of Mo<sup>6+</sup> are observed at 232.0 and 235.4 eV on  $MoO_3/SnO_2$ . After Ar<sup>+</sup> ion bombardment for 0.5 min, the intensity of these bands decreased and Mo<sup>5+</sup> species were partially produced (Figure 1b). Tin 3d spectra of corresponding samples are shown in Figure 2, parts a and b, in which Sn 3d doublets  $(3d_{5/2,3/2})$  were observed at 485.7 and 494.0 eV. Binding energy values of the Sn 3d doublet observed here are close to those reported on SnO<sub>2</sub>, in which the O 1s peak was detected at 530.1 eV.<sup>14</sup> However, BE values of Sn<sup>4+</sup> and Sn<sup>2+</sup> are so close that it is crucial to classify these two

<sup>(10)</sup> Xu, X.; Andreini, A.; Mol, J. C. J. Mol. Catal. 1985, 28, 133. (11) Bond, G. C.; Tripathi, J. B. P. J. Chem. Soc., Faraday Trans. 1 1976,

<sup>(11)</sup> Bond, G. C.; Iripathi, J. B. P. J. Chem. Soc., Faraday Trans. 1 1976, 72, 933.

<sup>(12)</sup> Frety, R.; Charcosset, H.; Trambouze, Y. Ind. Chim. Belg. 1973, 38, 501.

<sup>(13)</sup> Tanaka, K. Dissertation, Hokkaido University, 1980.

<sup>(14)</sup> Lin, A. W. C.; Armstrong, N. R.; Kuwana, T. Anal. Chem. 1977, 49, 1228.



Figure 3. Depth profiles with respect to Mo/Sn atomic ratios on  $MoO_3/SnO_2$  (O) and  $MoO_x/SnO_{2-y}$  (O). Sputtering conditions are 2-kV acceleration voltage and room temperature.

species.<sup>15</sup> Two sets of 3d doublets were newly observed at 229.5 and 232.7 eV and at 227.1 and 230.3 eV for  $3d_{5/2}$  and  $3d_{3/2}$ , respectively (Figure 1c). These BE values correspond to those reported on MoO<sub>2</sub> and metallic Mo.<sup>16</sup> After Ar<sup>+</sup> ion sputtering for 0.5 min, the intensity of these Mo species did not change appreciably (Figure 1d). Corresponding Sn 3d spectra are shown in Figure 2, parts c and d. The peaks at 484.5 and 491.6 eV newly appeared in addition to the Sn 3d doublet for Sn<sup>4+</sup> (Sn<sup>2+</sup>). These BE values of newly appearing peaks are almost the same as reported for Sn<sup>0.14,17</sup> After Ar<sup>+</sup> sputtering for 370 min, Mo<sup>6+</sup> (Figure 1e) and Sn<sup>4+</sup> species (Figure 2e) were detected definitely. These results clearly indicate that SnO<sub>2</sub> is reduced on the surface

A. P. B. J. Electron Spectrosc. Relat. Phenom. 1983, 28, 261.
(16) Colton, R. J.; Guzman, A. M.; Rabalais, J. W. J. Appl. Phys. 1978, 49, 409. Kim, K. S.; Baitinger, W. E.; Amy, J. W.; Winograd, N. J. Electron Spectrosc. Relat. Phenom. 1974, 5, 351. Grzybowska, B.; Haber, J.; Marczewski, W.; Ungier, L. J. Catal. 1976, 42, 327. Chimino, A.; De Angelis, B. A. J. Catal. 1975, 36, 11. Zingg, D. S.; Makovsky, L. E.; Tischer, R. E.; Brown, F. R.; Hercules, D. M. J. Phys. Chem. 1980, 84, 2898.

(17) Grutsch, P. A.; Zeller, M. V.; Fehlner, T. P. Inorg. Chem. 1973, 12, 1431. Grynkewich, G. W.; Ho, B. Y. K.; Marks, T. J.; Tomaja, D. L.; Zuckerman, J. J. Ibid. 1973, 12, 2522.

and Mo species migrate into the bulk of  $SnO_{2-y}$  in  $MoO_x/SnO_{2-y}$ .

In Figure 3, depth profiles of  $MoO_3/SnO_2$  and  $MoO_x/SnO_{2-y}$  are shown. Here the atomic ratio of Mo/Sn should have rigid information concerning chemical composition if a plate sample was used. However, the powder materials are used in our experiments so that the atomic ratios of Mo/Sn in bulk have less quantitative sense than that on the surface in Figure 3. The atomic ratio of Mo/Sn decreased sharply from the surface to bulk of  $MoO_3/SnO_2$ ; however, the ratio of  $MoO_x/SnO_{2-y}$  was lower than on  $MoO_3/SnO_2$  at the surface, reached a maximum, and then decreased. From this result it can be concluded that migration of Mo species occurs when support  $SnO_2$  is reduced on  $MoO_x/SnO_{2-y}$ .

Migration of Pt-group metals into reduced oxide support, which is often mentioned in terms of encapsulation,<sup>18</sup> has been studied in relation to strong metal-support interaction (SMSI).<sup>19</sup> The same behavior was observed in  $MoO_x/SnO_{2-y}$ ; however, it should be emphasized that migration of reduced Mo cations occurs in our system. It is an established behavior in an encapsulation system that metal atoms show the usual behavior after being reoxidized at 500 °C. Accordingly,  $MoO_x/SnO_{2-y}$  was reoxidized at 500 °C for 1 h and then was supplied to the treatment with SnMe<sub>4</sub> at room temperature. Interestingly, methane, ethane, and ethylene were formed in almost the same amount as fresh  $MoO_3/SnO_2$  during the SnMe<sub>4</sub> treatment as shown in Table III, and the surface showed a catalytic propene metathesis activity with a turnover frequency of 2.2 × 10<sup>-5</sup> at room temperature.

In conclusion, (a)  $MoO_3/SnO_2$ , for which the conventional reduction procedure cannot be applied due to encapsulation by reduced  $SnO_2$ , is activated by treating the surface with  $SnMe_4$ at room temperature, and (b) the treatment with  $SnMe_4$  is essential not to reduce the surface mildly but to graft  $CH_2$  species, which can participate in catalytic olefin metathesis cycle.

**Registry No.** MoO<sub>3</sub>, 1313-27-5; SnO<sub>2</sub>, 18282-10-5; SnMe<sub>4</sub>, 594-27-4; propene, 115-07-1; 1-butene, 106-98-9; 1,3-butadiene, 106-99-0.

<sup>(15)</sup> Willemen, H.; Van de Vondel, D. F.; Van der Kelen, G. P. Inorg. Chim. Acta 1979, 34, 175. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F. Handbook of X-ray Photoelectron Spectroscopy, Muilenberg, G. E., Ed.; Perkin Elmer: 1979. Umapathy, P.; Badrinarayanan, S.; Sinha, A. P. B. J. Electron Spectrosc. Relat. Phenom. 1983, 28, 261.

<sup>(18)</sup> Sadeghi, H. R.; Henrich, V. E. J. Catal. 1984, 87, 279. Belton, D. N.; Sun, Y. M.; White, J. M. J. Phys. Chem. 1984, 88, 5172. Ko, C. S.; Gorte, R. J. J. Catal. 1984, 90, 59. Takatani, S.; Chung, Y.-W. Ibid. 1984, 90, 75. Spencer, M. S. Ibid. 1985, 93, 216. Raupp, G. B.; Dumesic, J. A. Ibid. 1985, 95, 587.

<sup>(19)</sup> Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170. Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Science (Washington, DC) 1981, 211, 1121.