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Small molecule drug discovery often requires structural
biology to facilitate the design of compounds that can interact
with a given target protein. There are instances when protein
reagent generation is difficult with hurdles such as low protein
yield/solubility or protein conformational heterogeneity. This
hampers progression into wide crystallization screening and
ultimately iterative crystal structures. Protein construct design
can be used to overcome this hurdle. Here we will describe a
novel construct approach to provide structural support for the
protein target S1P Lyase.

S1P Lyase (SPL) catalyzes the irreversible breakdown of
sphingosine-1-phosphate (S1P) into trans-2-hexadecenal and
ethanolamine phosphate. This activity is critical for maintaining
the low S1P tone in secondary lymphoid organs which is
essential for normal lymphocyte trafficking.1 SPL inhibition
prevents lymphocyte egress from lymph node, thymus, and
spleen, resulting in peripheral lymphopenia and
immunosuppression.1,2 Therefore this protein has been
investigated as a potential target for a range of autoimmune
disorders such as rheumatoid arthritis and multiple sclerosis.3,4

SPL is a member of the PLP (pyridoxal 5’-phosphate)
superfamily and is located in the endoplasmic reticulum.5  Initial
SPL structural information of the soluble PLP binding domain

was obtained from both a prokaryotic SPL homolog in
Symbiobacterium thermophilium (StSPL) and yeast SPL (Dpl1p),
which gave the first view of the SPL structural scaffold and key
features of the binding pocket.6  One of the conclusions from this
study was that both prokaryotic and eukaryotic homologs shared
the same quaternary fold (overall r.m.s.d 1.2 Å for dimer), with
relatively conserved features in the active site and the PLP co-
factor binding pocket. Due to our difficulty with protein
expression and generation of human SPL for crystallography and
based on the strong resemblances between prokaryotic and
eukaryotic scaffolds, we embarked on a bacterial surrogate
approach to use a more “human-like” mutant version of StSPL to
crystallize with our early SPL inhibitor leads. Here we present
the surrogate construct strategy and key crystal structures
resulting from this effort. The accompanying paper discusses
application of these structures for further inhibitor optimization.

Several attempts were made to create human constructs for
SPL in order to structurally enable design chemistry efforts.
Protein generated from these constructs suffered from poor yields
and large aggregation issues. We were fortunate to read the
published work of Bourquin and colleagues which presented a
high resolution crystal structure of a prokaryotic homolog of SPL
from Symbiobacterium thermophilium (PDB code 3MAD).6
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S1P Lyase (SPL) has been described as a drug target in the treatment of autoimmune diseases. It plays
an important role in maintaining intracellular levels of S1P thereby affecting T cell egress from
lymphoid tissues. Several groups have already published approaches to inhibit S1P Lyase with small
molecules, which in turn increase endogenous S1P concentrations resulting in immunosuppression.
The use of structural biology has previously aided SPL inhibitor design. Novel construct design is at
times necessary to provide a reagent for protein crystallography. Here we present a chimeric bacterial
protein scaffold used for protein x-ray structures in the presence of early small molecule inhibitors.
Mutations were introduced to the bacterial SPL from Symbiobacterium thermophilum which mimic the
human enzyme. As a result, two mutant StSPL crystal structures resolved to 2.8 Å and 2.2 Å
resolutions were solved and provide initial structural hypotheses for an isoxazole chemical series,
whose optimization is discussed in the accompanying paper.
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Figure 1a: Model of S1P (magenta) bound to human SPL (tan)

Figure 1b: Overlay of StSPL (green) (PDB code 3MAD6) with
human SPL (residues shown in tan) which shows four divergent
residues proximal to the S1P binding site

Using this crystal structure, a homology model of human (with
S1P bound) was generated to observe the potential placement of
the natural substrate and the amino acids that surround the
substrate.7 In the model (shown in Figure 1a), the phosphate of
S1P is located in the putative phosphate binding site and makes
interactions with residues Y150, K359 and H174. F290 caps the
active site forming a fairly narrow channel for the S1P substrate
to bind. The active site opening contains an assortment of
hydrophobic residues which presumably stabilize the long alkyl
tail of the substrate. Based on this modeling hypothesis, we
superimposed the high resolution structure of StSPL (PDB code
3MAD) and the human SPL model to observe key residue
differences proximal to S1P. While most locations in the active
site remained fairly constant (i.e., PLP binding pocket and
phosphate binding site), four positions (StSPL: Y249, L344,
F346 and L497, Human: F290, I386, A388, S542) showed
diversity between the homologs (Figure 1b). Y249 superimposes
with the key residue F290 and L344/ L479/L497 line the active
site opening to solvent. We then decided to use the StSPL protein
scaffold and introduce site-directed mutations at these locations
to create a chimeric “human-like” active site for crystallography.

An E. coli construct of StSPL 2-570 (Y249F, L344I, F346A,
L497S,) was created, which resulted in robust protein expression
and final protein yields.8 Catalytic activity of this mutant
bacterial construct was assessed using a substrate analog in
which the C13 hydrocarbon tail of S1P is replaced with an ether-
linked umbelliferone group.9,10 The  KM of S1P for StSPL is
approximately 10-fold lower than human SPL, and its Vmax is
lower by a  similar  degree (Figure 2).  The decrease in  Vmax may
simply reflect the added stabilization of the SPL-substrate
complex with respect to the reaction transition state, as reflected
by the decrease in KM. At the standard assay condition of 500 mM
substrate, the two constructs have similar specific activities and
enable a comparison of IC50 values for Compound 1: 0.17 mM for
StSPL and 1.0 mM for human SPL (not shown). Protein crystals

Figure 2: Kinetic characterization of SPL constructs.  KM and
Vmax for mutant StSPL are 310 mM and 7.1x105 cts for mutant
StSPL (■) and estimated to be >2,000 mM and 5x106 cts for
huSPL (●).

in the presence of PLP co-factor were grown and diffracted to
high resolution. In parallel, an HTS screen was conducted using
the wild-type human enzyme and several compounds were
identified as preliminary hits. As an example, Compound 1
(Figure 3) (N-(2-((4-methoxy-2,5-dimethylbenzyl)amino)-1-
phenylethyl)-5-methylisoxazole-3-carboxamide) was identified
with modest potency with an IC50 of 1.0 mM. This compound was
used in crystal-soaking procedures in hopes of obtaining a ligand
bound StSPL mutant crystal structure. At that time, we needed
structural guidance to provide a binding mode, preferred
chirality, and design opportunities for optimization of this
isoxazole-amide chemotype.

Compound 1 Compound 2

Figure 3: Compound 1 N-(2-((4-methoxy-2,5-
dimethylbenzyl)amino)-1-phenylethyl)-5-methylisoxazole-3-
carboxamide Compound 2 N-(1-(4-(3-hydroxyprop-1-yn-1-
yl)phenyl)-2-((4-methoxy-2,5-dimethylbenzyl)amino)ethyl)-5-
methylisoxazole-3-carboxamide

A 2.8 Å resolution structure of Compound 1 bound to the
StSPL mutant was solved with reasonable refinement statistics
(Figure 4).11 The overall structure had high similarity to the
previously reported (PDB code 3MAD) structure with an overall
r.m.s.d of 0.4 Å.6 Additionally, when comparing this crystal
structure to the recently reported human SPL structure (PDB
code 4Q6R4), we noticed a strong similarity to backbone and side
chain placement in the active site. Electron density was observed
in both active sites and both Compound 1 and PLP could be
modeled in the density. The binding mode of Compound 1
assumes a “wishbone” conformation due to the flexible nature of
the molecule and reaches to several regions in the SPL active site
proximal to the PLP cofactor (Figure 4). The 3D structure
confirms an S-isomer stereochemistry where the ligand is
stabilized by several contacts with the protein. For example, there
is a clear edge-to-face interaction of Compound 1’s central
phenyl ring with nearby StSPL residue Y345. Beyond the central
phenyl is a crystallographic water which lies close to the bound
phosphate and PLP cofactor. The ligand wishbone conformation
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is further stabilized by two hydrogen bonds: the amine N bound
to the backbone carbonyl of I344 and the amide carbonyl to the
backbone N of A346. The isoxazole binds in a shallow channel
outlined by residues from both monomers: F500/L504 (monomer
A) and P348 (monomer B). The methoxy benzyl projects towards
the active site entrance and is surrounded by aromatic residues
Y481 and F500. The N-terminus of the protein was disordered
and as previously hypothesized might serve as a flexible gate
which closes the ligand-bound active site from solvent.6

Figure 4: Crystal structure of StSPL mutant (grey) bound to
Compound 1

This initial structure of Compound 1 bound to the surrogate
SPL drove medicinal chemistry design strategies to improve its
inhibition. Several ideas emerged: 1) rigidification of the
wishbone linkages to remove rotational freedom 2) optimization
of both the isoxazole and benzyl methoxy rings to improve
induced fit in their respective binding pockets, and 3) para
substitution off of the central phenyl ring to interact or replace
the crystallographic water near the PLP co-factor.  Here, we will
focus on the third strategy.

As mentioned previously, the central phenyl ring is positioned
near a crystallographic water with ample pocket volume for
potential substitution. Superimposing the models of S1P and
Compound 1 suggests a substitution at the para position of the
phenyl ring in Compound 1 to either replace or interact with the
water. Several attempts were made to design into this region
resulting in Compound 2 (Figure 3) which introduces an alkyne
linking segment capped with an –OH to replace the
crystallographic water. This substitution proved to be successful
in moderately improving the IC50 to 0.15 mM. When solving the
structure of Compound 2 bound to StSPL, we were fortunate to
collect higher resolution data with the opportunity to model more
water molecules.11 Compound 2 binds identically to Compound 1
with the alkyne-hydroxyl capping group replacing the water
identified in the first crystal structure (Figure 5). Interestingly,
the hydroxyl taps into a larger solvent network which engages the
the PLP co-factor. Specifically, the group hydrogen bonds to a
nearby water which in turn binds to the phosphate of PLP and
nearby residue Y345. Therefore Compound 2 fills productive
VDW space with its alkyne linkage and improves the active site
solvent network with its hydroxyl. We were happy to see that the
mutant StSPL surrogate crystal structures provided us with a
successful hypothesis regarding the 3D solvent environment.
This in turn helped identify a key potency driver in the SPL
active site. After our structural work was completed, the human
structure of SPL (PDB code 4Q6R)4 was published which
provided additional retrospective support to our strategy. An

identical solvent network was observed in the   human structure
at this location with a succinic acid molecule in the place of
Compound 2’s alkyne alcohol (Figure 6). It was intriguing that
initial structural observations seen in the bacterial structural
surrogate were similar to those in the human SPL crystal
structure.

Figure 5: Crystal structure of mutant StSPL and Compound 2
(orange) gives structural rationale for improved potency via
solvent network. Compound 2 is overlayed with Compound 1
(light blue) to show comparable binding modes. The green sphere
illustrates the water identified in the StSPL/Compound 1
structure and replaced in the StSPL/Compound 2 structure.

Figure 6: Solvent network in mutant StSPL complexed to
Compound 2 as it compares to human SPL (PDB code 4Q6R).4

Here we present a surrogate crystallographic approach for the
target protein S1P Lyase. In the absence of well-behaved human
protein, we chose a surrogate crystallographic approach to guide
initial medicinal chemistry design. A construct was designed to
incorporate mutations which mimicked the human active site.
Protein generated from this construct was tested for activity and
used for crystallography. As a result, two key crystal structures
were solved and provided some initial structural hypotheses
which aided the design of subsequent analogs, which is discussed
in the accompanying paper. These compounds and analogs
showed efficacious activity against human SPL providing a lead
chemical series.
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