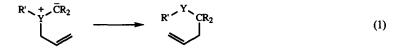
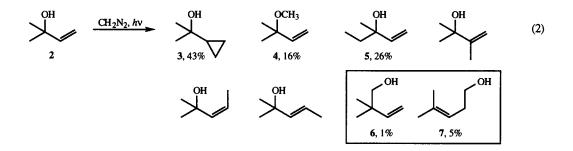


0040-4039(95)00532-3

Intramolecular Trapping of an Ylide Intermediate in the Reaction of ¹:CH₂ with an Allylic Alcohol


Warunee Sobery and JoAnn P. DeLuca*

Department of Chemistry, 4160 Illinois State University, Normal, IL 61790-4160


Abstract: The reaction of 1 :CH₂, generated by the photolysis of CH₂N₂, with 2-methyl-3-buten-2-ol leads to the formation of several products including 4-methyl-3-penten-1-ol. This product is best explained as the result of rearrangement of an ylide intermediate.

Considerable effort has gone into determining the pathways by which a variety of singlet carbenes react with alcohols to give O-H insertion products.¹ In general, electrophilic carbenes react with alcohols to form ylide intermediates which undergo either inter- or intramolecular proton transfer to yield O-H insertion products. However, the pathway for reaction of the parent carbene, ¹:CH₂, with alcohols remains uncertain. Computational studies predict that the ylide formed by reaction of ¹:CH₂ with water (H₂O-CH₂, 1) will rearrange to CH₃OH with little or no enthalpic barrier,² supporting a concerted pathway for O-H insertion by this carbene. In contrast, Wesdemiotis et al. report a lifetime on the order of 10^{-6} s for 1 formed in neutralization-reionization mass spectrometry experiments.³ Here we report what we believe to be the first evidence for an ylide intermediate in a reaction of ¹:CH₂ with an alcohol in solution.

The involvement of ylide intermediates in reactions of singlet carbenes with allylic substrates has often been inferred from the formation of rearrangement products.⁴ Rearrangement of allylic ylides as shown in eq 1 may occur as either a concerted 2,3-sigmatropic shift or via homolytic cleavage of the heteroatom-carbon bond to form a radical pair (Stevens rearrrangement).⁵ In cases where the ylide can be readily prepared, yields of rearrangement products are often high enough to make the rearrangement synthetically useful.^{4c} Moss et al. have used laser flash photolysis to study sulfonium ylides resulting from attack of chlorophenylcarbene on allylic sulfides and found their rearrangement to be quite rapid (k $\approx 10^7 \text{ s}^{-1}$ at room temperature).⁶ These features suggested to us that a rearrangement of this type might be very well-suited to the trapping of an ylide formed as a short-lived intermediate in the reaction of ¹:CH₂ with an allylic alcohol.

We carried out the reaction of ¹:CH₂, generated by photolysis of CH₂N₂, with 2-methyl-3-buten-2-ol (2) in pentane solution (eq 2).⁷ Products arising from reaction of the carbene with substrate 2 were identified by comparison (GC coinjection and GC/MS) with, and GC response factors were measured for, authentic samples. The products of carbene addition to the double bond (3), insertion into the O-H bond (4) and insertion into the methyl C-H bonds (5) were identified in the reaction mixture. Three additional products, formed in lesser

amounts, were not thoroughly characterized, but were assumed to be vinylic C-H insertion products. Alcohols 6 and 7 were also identified. The product distribution is indicated in eq 2.

The products and their distribution are unremarkable, except for the appearance of compounds 6 and 7. Formation of 6 may proceed from an ylide intermediate via the Stevens rearrangement as shown in eq 3, although a direct C-O insertion of the carbene cannot be ruled out rigorously. Formation of 7 must involve a rearrangement, most reasonably 2,3-sigmatropic rearrangement, or possibly Stevens rearrangement, of an oxonium ylide intermediate. Thus, our results indicate that an ylide intermediate is formed in the solution phase reaction of 1 :CH₂ with alcohol 2 and that rearrangement of the ylide to alcohol 7 can successfully compete with both inter- and intramolecular proton transfer.

Acknowledgement

We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the Illinois State University Research Grant Program for support of this research.

References and Notes

- (1) Kirmse, W. In Brinker, U. H., ed., Advances in Carbene Chemistry; JAI Press: Greenwich, Conn.; vol.1, 1994, pp. 1-58.
- (2) (a) Pople, J. A.; Raghavachari, K.; Frisch, M. J.; Binkley, J. S., Schleyer, P. v. R. J. Am. Chem. Soc. 1983, 105, 6389. (b) Yates, B. F.; Bouma, W. J.; Radom, L. J. Am. Chem. Soc. 1987, 109, 2250.
- (3) Wesdemiotis, C.; Feng, R.; Danis, P. O.; Williams, E. R.; McLafferty F. W. J. Am. Chem. Soc. 1986, 108, 5847.
- (4) (a) Ando, W. Acc. Chem. Res. 1977, 10, 179. (b) Nikolaev, V. A.; Korobitsyna, I. K. Mendeleev Chem. J. (Engl. Transl.) 1979, 24, 88. (c) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263. (d) For a recent example of a study involving a singlet carbene and an allylic alcohol, see Liu, M. T. H.; Romashin, Y. N.; Venkatachalam, T. K. Can. J. Chem. 1994, 73, 1961.
- (5) Morris, D. G. Surv. Prog. Chem. 1983, 10, 189.
- (6) Moss, R. A.; Ho, G.-J.; Sierakowski, C. J. Am. Chem. Soc. 1992, 114, 3128.
- (7) The general procedure has been described in Young, T. A.; O'Rourke, C.; Gray, N. B.; Lewis, B. D.; Dvorak, C. A.; Kan, S. K.; DeLuca, J. P. J. Org. Chem. 1993, 58, 6224.

(Received in USA 23 November 1994; revised 6 March 1995; accepted 17 March 1995)