Masking and Demasking Strategies for the BF₂-BODIPYs as a Tool for **BODIPY** Fluorophores

Ankush B. More,^{†,#} Soumyaditya Mula,^{‡,#} Shrikant Thakare,[†] Nagaiyan Sekar,^{*,†} Alok K. Ray,[§] and Subrata Chattopadhyay*,[‡]

[†]Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai 400019, India

[‡]Bio-Organic Division and [§]Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India

Supporting Information

ABSTRACT: An efficient and chemoselective route for transforming BF2-BODIPYs to Et2B-BODIPYs (masking) was developed using Et₂AlCl. The Et groups can be easily replaced with F atoms using BF₃·Et₂O in moist CH₂Cl₂ to regenerate the BF2-BODIPYs (demasking). The masking-demasking strategy is very useful for synthesizing functionalized BODIPYs via nucleophilic and reductive reactions. The masking strategy was used to synthesize a BODIPY dimer by McMurry coupling of a formyl Et₂B–BODIPY, while a new BODIPY with an asymmetrically substituted B-center was synthesized using the demasking strategy.

INTRODUCTION

Due to good thermal and photochemical stabilities as well as tunable fluorescence properties, the dipyrromethene $-BF_2$ (4,4difluoro-4-bora-3a,4a-diaza-s-indacene, BF2-BODIPY) compounds are attractive precursors for various advanced materials. This aspect is highlighted in several elegant reviews including some recent ones on the chemistry and applications of the BODIPYs.¹ Functionalization of the BODIPY cores is important, as it would enable us to tune their spectral and electronic properties and expand their applications.^{1,2} Unfortunately, due to the presence of the BF₂ unit, the BODIPYs are not amenable to nucleophilic and reductive reactions.³ Masking the BF₂ unit by its conversion to the BR₂ unit (alkyl/alkenyl/ alkynyl/aryl groups) can offset this limitation. Substitution of the F atoms at the B-center with alkyl/aryl groups has been used to improve the Stokes shift⁴ and photostability,^{5a,b} as well as to prevent the undesired micellar behavior of the BODIPYs.^{5c-e} This is accomplished by reacting the BF₂-BODIPYs with hard nucleophiles like organo-Mg or organo-Li reagents, as the B–F bond is very strong.^{3b,4,6a,b} However, these transformations, usually conducted at room temperature or even under refluxing conditions, proceed in low yields (≤60%).^{3b,4} The high reactivity of the organo-Mg/Li reagents leads to degradation of the BODIPYs, accounting for the poor yields. In view of this, recently Thompson et al. developed an elegant synthesis of R₂B-BODIPYs in excellent yields by reacting different Grignard reagents with the BCl₂-BODIPYs, prepared separately or by in situ conversion of the BF2-BODIPYs.^{6c,d} However, chemoselective substitution of the F atoms by this route may not be possible with the BODIPYs containing more reactive electrophiles such as aldehyde, ester, etc.^{7a,b} In addition, no strategy for reverting the BR₂–BODIPYs

to the BF₂-BODIPYs (demasking) is known to date, although Gabbai et al. reported substitution of the aryl and OH groups in BArF– and BROH–BODIPYs with Bu_4NF and KHF_2 , respectively.^{7c,d} Against the above backdrop, the aims of the present study were to (i) formulate an efficient method for selective alkylation at the BF2 unit of the BODIPYs and (ii) convert the BR₂-BODIPYs to the BF₂- or BFR-BODIPYs. In particular, we wanted to use the R group in R₂B-BODIPYs as a masking agent so that they are amenable to nucleophilic and reductive reactions. The other aim was to utilize these protocols for the synthesis of some new BODIPY derivatives.

RESULTS AND DISCUSSION

Conversion of BF₂-BODIPYs to Et₂B-BODIPYs (Masking) and Its Application. It was envisaged that activation of the B-F bond would allow the alkylation at the B-center using soft nucleophiles under mild conditions to realize our objectives. AlCl₃ is a known activator of the B-F bond and has been specifically used to synthesize the B-alkoxy and Baryloxy derivatives.^{8a,b} Hence, we attempted the alkylation at the BF₂ moiety with the commercially available Et₂AlCl reagent that is a combination of the required B-F activator and a soft nucleophile. Consistent with our hypothesis, the reaction between Et₂AlCl and the commercially available BODIPY 1a proceeded cleanly at 25 °C and was complete in 5 min to furnish the Et₂B derivative 3a exclusively in 90% yield (Scheme 1). Lowering the reaction temperature (0 °C) increased the reaction time (30 min) without affecting the yield of 3a. In comparison, reaction of 1a with EtMgBr required longer time

Received: September 3, 2014

Scheme 1. Comparison of the Synthesis of 3a via Three Different Routes

(30 min) and furnished 3a in 60% yield only. We also followed Thompson's method^{6d} by reacting 1a with BCl_3 followed by reaction with EtMgBr to obtain 3a in a comparable yield (92%) as ours. However, as reported earlier,^{6d} the reaction took a much longer time (2 h) compared to our new method. The reaction with Et₂AlCl is believed to proceed via the transition state 2 (Scheme 1) where the Al atom of the reagent gets coordinated with the F atoms of the BODIPY to make the B-F bond labile for the subsequent nucleophilic transfer of the Et group to the B center. Because of the less reactivity of the second Et group of Et₂AlCl, an excess (2.2 equiv) of the reagent was required to complete the reaction. Notably, use of 1 equiv of Et₂AlCl also furnished 3a (40%) without any monoethyl compound. Our intention of synthesizing Et₂B-BODIPYs was merely to mask the BF₂ unit and not to develop a method of preparing R₂B-BODIPYs. Hence, we did not explore the reactions of other $(R/Ar)_2$ AlCl reagents, which are expected to take place in a similar fashion.

Subsequently, we extended the above procedure to a variety of BODIPYs 1b-g to obtain the corresponding $Et_2B-BODIPYs \ 3b-g$ in 80-90% yields (Scheme 2). The reactions

were fast and proceeded without any alkylation at the pyrrole (viz. of **1b**, **1c**, **1e**) or the phenyl rings (viz. of **1c**–**e**) or at the *meso*-position (viz., of **1f**). This supported the proposed transition state. The chemoselectivity of the protocol was examined with the known 2-formyl BODIPY dye **4**.^{6b} In this case also, the reaction of Et₂AlCl occurred exclusively at the B-center at 25 °C to furnish **5** in a moderate yield (40%). Lowering the reaction temperature to 0 °C increased the yield (80%) of **5** significantly (Scheme 3). In comparison, EtMgBr reacted selectively at the aldehyde function (both at 0 or 25

Scheme 3. Comparison of the Chemoselectivities of Et₂AlCl and EtMgBr

°C) to furnish the alcohol **6** in a moderate (50%) yield, without the formation of **5** (Scheme 3).^{7a} On the other hand, Thompson's method^{6d} (BCl₃/EtMgBr) furnished an unidentified fluorescent compound, but not **5** or **6**.

Next, we applied the new synthetic protocol for the synthesis of a novel BODIPY dimer. These dimers are of recent interest due to their unusual fluorescence and redox properties and other attributes such as charge delocalization, exciton coupling, etc. Previously, BODIPY dimers linked at $\alpha_1^9 \beta_1^{10}$ and Bcenter^{4b} were reported. The dimers, linked at the β -postiton through a small alkene spacer for an extended conjugation, are promising BODIPY candidates with new properties. Very recently, Bröring et al. have synthesized this type of dimers in low yields (~17%) using alkene metathesis.¹¹ We realized that the McMurry coupling of a formyl-BODIPY such as 4 may provide access to these molecules. However, due to the incompatibility of the BF₂ moiety under the reductive conditions, the McMurry coupling of 4 using various LVT reagents (TiCl₄/Zn, TiCl₄/Mg, TiCl₄/Li) and solvents¹² led to its complete degradation. Gratifyingly, reductive dimerization of the Et₂B-BODIPY dye 5 with TiCl₄/Zn/THF furnished the required compound 8 in a moderate (40%) yield (Scheme 4).

Scheme 4. McMurry Coupling of the Formyl–BODIPYs 4 and 5

Evidently, substitution of the F atoms of 4 increased its stability against the reducing agent, assisting the dimer formation. The *E*-geometry of the alkene moiety of 8 was confirmed from the doublets of the ¹³C satellites (coupling constant ³*J* = 15.0 Hz).

Photophysical Properties. The photophysical properties of the Et_2B -BODIPYs 3a-g (Table S1, Supporting Information), as well as that (Table 1) of the monomer 5 and dimer 8, were evaluated in CH_2Cl_2 solvent. The normalized absorption and emission spectra of 5 and 8 are shown in Figure 1. Consistent with the previous report by Ortiz et al.,^{5b} the Et_2B -BODIPYs showed low fluorescence compared to the corresponding BF_2 -BODIPYs. Replacement of the small F atoms at the B center with the bulky alkyl (Et) groups induced

Table 1. Selected Optical Properties of 5 and 8 in $\rm CH_2Cl_2$ at 25 $^{\circ}\rm C$

dye	$\lambda_{\rm abs}~({\rm nm})$	$\lambda_{\rm em}~({\rm nm})$	Stokes shift (cm ⁻¹)	$\Phi_{\rm F}$
5	492.0	516.0	945.4	0.02 ^{<i>a</i>}
8	554.0	648.0	2618.4	0.06 ^b
-				

^{*a*}Determined using $\Phi = 0.99$ for **1b** in MeOH as the reference, $\lambda_{\text{exc}} = 490 \text{ nm.}^{13a}$ ^{*b*}Determined using $\Phi = 0.913$ for Rh 101 in EtOH as the reference, $\lambda_{\text{exc}} = 550 \text{ nm.}^{13b}$

Figure 1. Normalized absorption (—) and fluorescence (--) spectra of dyes 5 (red) and 8 (blue).

high steric hindrance, distorting the optimized excited-state geometries of the BODIPY chromophores. The lack of planarity enhances the internal conversion (nonradiative deactivation) to decrease the fluorescence drastically. Compound 5, with a greenish yellow fluorescence ($\Phi_F = 2\%$), showed the longest-wavelength absorption (λ_{abs}) and emission (λ_{em}) maxima at 492 and 516 nm, respectively, with a small (945.4 cm⁻¹) Stokes shift, typical of the BODIPYs. Due to extended conjugation, the λ_{abs} and λ_{em} of the dimer 8 were redshifted by 62 and 132 nm, respectively, compared to that of 5. These amounted to a Stokes shift of 2618.4 cm⁻¹ for the dimer 8 that is ~3-fold that of 5. The dye 8 showed a red fluorescence, albeit with a low quantum yield ($\Phi_F = 6\%$).

Earlier, Bröring et al. have also reported an enhanced Stokes shift with BODIPY dimers and suggested that geometry relaxation in the excited state may be responsible for this.¹¹ This was clearly substantiated by our theoretical calculations. For this, the geometries of the ground (S_0) and excited (S_1) states of the dye 8 were optimized by the density functional theory (DFT) (Figures 2 and 3). This revealed that its HOMO is spread over the whole molecule, indicating a remarkably high π -conjugation between the BODIPY moieties (Figure 2) and accounting for the large red shifts in its λ_{abs} and λ_{em} . Further, the two BODIPY moieties of 8 are not coplanar with their bridging ethylene moiety, and the calculated dihedral angle between them at the S_0 state revealed a highly twisted structure (Figures 3a and 3c). However, the S_1 excited state structure showed a significantly reduced dihedral angle, suggesting that the BODIPY moieties are more coplanar with the ethylene moiety (Figures 3b and 3c). This geometry relaxation on photoexcitation may impart a remarkable effect on the energy levels of the molecular orbitals to increase the Stokes shift considerably.^{2b}

Regeneration of BF₂-BODIPYs from Et₂B-BODIPYs (Demasking) and Its Application. In search of a mild and selective method to regenerate the BF2 moiety from the Et2B precursors, a number of metal fluorides were unsuccessfully screened using 3a as the model compound. Finally, 3a could be converted to the BF2-BODIPY 1a in excellent (75%) yield within 15 min using $BF_3 \cdot OEt_2$ (1.3 equiv) in moist CH_2Cl_2 (Scheme 5). We used commercial CH₂Cl₂ (Merck, GR) for the reactions, and the moisture content in the solvent was found to be 0.08-0.1% by Karl Fischer titration. Consistent with a previous report,14 the yield decreased when the reaction was carried out in CH₂Cl₂ containing a higher concentration of H₂O. The conversion was confirmed from the disappearance of the ¹H NMR resonances [δ 0.28 (t) and δ 0.82 (q)] of the Et group and the appearance of the BF₂ triplet (δ 0.93, J = 33.5 Hz) in place of the broad singlet (δ 1.54) due to the Et₂B moiety in the ¹¹B NMR spectrum (Figures S1-S3, Supporting Information). Extension of the method to the other Et₂B-BODIPYs 3b-f also furnished the corresponding BF_2 -BODIPYs 1b-f (70-85%) uneventfully (Scheme 5). The method was also effective with the BODIPY 3h containing a dialkynyl-B moiety to obtain 1a in 78% yield. However, the $-B(CH=CH_2)_2$ derivative 3i and the dimer 8 degraded rapidly under the same reaction conditions, while Ph2B-BODIPY 3j was inert toward the reagent and the starting dye was recovered quantitatively even after exposure to the reagent for 1 h. This is consistent with the reported extraordinary stability of the Ar–B bonds in the Ar₂B–BODIPYs.^{3a} We also tried fluorination of 3a, 3i, 3j, and 8 with Bu₄NF.^{7c} However, no reaction was observed with any of the compounds under the reported conditions. The demasking reaction with BF₃·OEt₂ did not take place under an anhydrous condition, indicating that the reactive species is the in situ generated HF instead of BF_3 . This was confirmed by the reaction of **3a** with aqueous HF that produced a mixture of EtFB dye 9 and 1a along with some degraded products. Thus, BF₃·OEt₂ in moist CH₂Cl₂ is a better reagent than aqueous HF for clean reactions with higher yields.

The importance of the BODIPY-based bi- or trimodal fluorophores has been highlighted earlier.⁴ These types of molecules were previously synthesized by asymmetric substitutions at the B atom using a mixture of two different organo-Li reagents.^{4d} However, this led to statistical mixtures of products comprised of the unwanted dyes, and the desired products were obtained in poor (~25%) yields. BODIPYs

Figure 2. DFT-optimized structures of 8: (a) HOMO and (b) LUMO.

·			
	Dihedral angles	S ₀ state	S ₁ state
	C38-C37-C31-C29	31.2°	18.8°
	C36-C37-C31-C29	29.7°	18.1°
	C7-C8-C29-C31	26.4°	16.3°
	C9-C8-C29-C31	28.2°	16.2°

Figure 3. DFT-optimized structure of 8: (a) S_0 state and (b) S_1 state. (c) Dihedral angles of the DFT-optimized S_0 and S_1 states of 8.

Scheme 5. Regeneration of the BF_2 -BODIPYs from the BR_2 -BODIPYs

containing a RFB moiety may be the appropriate precursors for constructing these fluorophores. Hence, we sought to examine if the present fluorination protocol for the R_2B -BODIPYs can selectively unmask only one of the Et groups to furnish the corresponding EtFB-BODIPYs. To this end, when **3a** was treated with 0.4 equiv of BF₃·OEt₂, the monoethylated dye **9** was obtained in 40% yield along with the BF₂ product **1a** (5%) and recovered **3a** (47%). Thus, the effective yield of **9** was 75%, as the unreacted **3a** can be recycled for the same transformation to obtain another batch of **9**. The reproducibility of the reaction was high as confirmed by repeating it 2–3 times. Moreover, isolation of the products in our method was also much easier. Reaction of **9** with the Grignard reagent, prepared from 2,5dioxaoct-7-yne,^{3b} furnished **10** with two different substitutions at the B-center (Scheme 6).

CONCLUSIONS

In short, we have developed an efficient and chemoselective protocol to substitute the F atoms of the BF₂–BODIPYs to the corresponding Et₂B–BODIPYs using Et₂AlCl. The importance of this method is illustrated by converting a Et₂B–BODIPY into a highly conjugated β -linked BODIPY dimer with a large Stokes shift. A rapid route of regenerating the BF₂–BODIPYs from the Et₂B–BODIPYs with BF₃·Et₂O also proceeded with high yield and can be used selectively for monofluorination. Taken together, these F-masking and unmasking strategies can be used for the syntheses of several functional molecules.

EXPERIMENTAL SECTION

Preparation of the Substrates. Compound 3h.^{5a} To a stirred solution of 2,5-dioxaoct-7-yne (4.08 mmol) in THF (10 mL) was added EtMgBr (4.1 mmol, 4.1 mL, 1.0 M in Et₂O). After heating the mixture at 60 °C for 2 h, 1a (260 mg, 0.82 mmol) was added, and stirring continued for another 18 h. The resultant dark mixture was successively washed with aqueous saturated NH₄Cl (20 mL), H₂O (20 mL), and brine (20 mL) and dried. Removal of the solvent in vacuo followed by column chromatography of the residue (silica gel, hexane/ EtOAc) furnished 3h (256 mg, 62%). Red square crystals (benzene/ hexane); mp: 154 °C; IR (solid): 2167, 2927 cm⁻¹; ¹H NMR: δ 1.00 (t, J = 7.6 Hz, 6H), 2.34 (s, 6H), 2.35 (q, J = 7.6 Hz, 4H), 2.66 (s, 6H), 2.59 (s, 3H), 3.34 (s, 6H), 3.55-3.49 (m, 4H), 3.65-3.59 (m, 4H), 4.16 (s, 4H); ¹³C NMR: δ 13.8, 14.5, 14.9, 17.1, 17.3, 58.8, 59.5, 68.4, 71.6, 90.7, 129.9, 132.3, 134.2, 139.5, 151.5; $^{11}\mathrm{B}$ NMR: δ -13.4(s); EI-MS m/z (%): 506.3 (100) [M]⁺. Anal. Calcd for C₃₀H₄₃BN₂O₄: C, 71.14; H, 8.56; N, 5.53%. Found: C, 71.11; H, 8.52; N, 5.51%.

4,4-Divinyl-2,6-diethyl-1,3,5,7,8-pentamethyl-4-bora-3a,4adiaza-s-indacene **3i**.^{5b} To a stirred solution of **1a** (100 mg, 0.31 mmol) in THF (20 mL) was added vinylmagnesium bromide (2.0 mmol, 2.0 mL, 1.0 M in THF), and the solution refluxed for 0.5 h. The resultant dark mixture was washed successively with aqueous saturated

Scheme 6. Synthesis of the BODIPY Dye 10 with an Asymmetrically Substituted B Center

NH₄Cl (1 × 20 mL), H₂O (1 × 20 mL), and brine (1 × 20 mL) and dried. Removal of solvent in vacuo followed by column chromatography of the residue (silica gel, hexane/EtOAc) furnished **3i** (70 mg, 66%). Orange solid; ¹H NMR: δ: 0.92 (t, *J* = 7.5 Hz, 6H), 2.20 (s, 6H), 2.29 (s, 6H), 2.37 (q, *J* = 7.5 Hz, 4H), 2.58 (s, 3H), 4.91 (dd, *J* = 19.5 and 3.9 Hz, 2H), 5.32 (dd, *J* = 12.9 and 3.9 Hz, 2H), 6.38 (dd, *J* = 19.5 and 12.9 Hz, 2H); ¹³C NMR: δ 15.1, 15.2, 15.5, 17.8, 17.9, 121.5, 131.1, 132.4, 132.9, 139.9, 150.5; EI-MS *m*/*z* (%): 334.3 (100) [M]⁺. Anal. Calcd For C₂₂H₃₁BN₂: C, 79.04; H, 9.35; N, 8.38%. Found: C, 79.02; H, 9.71; N, 8.34%.

4,4-Diphenyl-2,6-diethyl-1,3,5,7,8-pentamethyl-4-bora-3a,4adiaza-s-indacene **3**;^{5b} To a stirred solution of **1a** (100 mg, 0.31 mmol) in THF (20 mL) was added PhMgBr (2.0 mL, 2.0 mmol, 1.0 M in THF), and stirring continued at 25 °C for 0.5 h. The resultant dark mixture was washed successively with aqueous saturated NH₄Cl (1 × 20 mL), H₂O (1 × 20 mL), and brine (1 × 20 mL) and dried. Removal of solvent in vacuo followed by column chromatography of the residue (silica gel, hexane/EtOAc) furnished **3j** (85 mg, 62%). Orange solid; ¹H NMR: δ 1.05 (t, *J* = 7.5, 6 H), 1.80 (s, 6 H), 2.42 (q, *J* = 7.5, 4 H), 2.44 (s, 6 H), 2.74 (s, 3 H), 7.28 (m, 10 H); ¹³C NMR: δ 14.7, 14.8, 15.1, 17.5, 18.0, 125.5, 127.2, 128.1, 132.3, 132.4, 133.5, 133.7, 140.1, 151.2; EI-MS *m/z* (%): 434.3 (100) [M]⁺.

2-Formyl-8-phenyl-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indecene **4**.^{6b} Compound 4 was synthesized in 90% yield as reported earlier.^{6b} Red solid; mp: >300 °C; IR (solid): 1459, 1509, 1538, 1659, 2849, 2917 cm⁻¹; ¹H NMR: δ 1.41 (s, 3H), 1.63 (s, 3H), 2.60 (s, 3H), 2.81 (s, 3H), 6.14 (s, 1H), 7.24–7.29 (m, 2H), 7.49–7.54 (m, 3H), 9.99 (s, 1H); ¹³C NMR: δ 11.4, 12.9, 14.7, 15.0, 29.6, 124.0, 126.1, 127.6, 128.3, 129.4, 129.5, 130.0, 133.4, 134.0, 142.8, 143.4, 147.3, 156.3, 161.6, 170.9, 185.9; ¹¹B NMR: δ 0.69 (t, *J* = 33.7 Hz). HRMS (ESI-TOF) *m*/*z* [M + H]⁺ Calcd for C₂₀H₁₉BF₂N₂O: 353.1637. Found: 353.1604.

General Procedure for BF_2 to BEt_2 Conversion with Et_2AlCl (Masking). To a solution of 1a-g (0.5 mmol) in dry CH_2Cl_2 (30 mL) was added Et_2AlCl (1.1 mmol, 1.1 mL, 1.0 M in hexane), and the mixture was stirred at 25 °C for 5 min. The mixture was treated with H_2O (10 mL), and the organic layer was separated, dried in vacuo and the residue column chromatographed (silica gel, hexane/EtOAc) to furnish 3a-g.

2,4,4,6-Tetraethyl-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-sindecene **3a**.^{5b} Yield: 152 mg (90%); red solid; mp: 104 °C; IR (solid): 1446, 1556, 2920, 2947 cm⁻¹; ¹H NMR: δ 0.28 (t, *J* = 7.5 Hz, 6H), 0.82 (q, *J* = 7.5 Hz, 4H), 1.04 (t, *J* = 7.5 Hz, 6H), 2.36 (s, 6H), 2.42–2.44 (m, 10H), 2.65 (s, 3H); ¹³C NMR: δ 9.3, 14.0, 14.9, 15.1, 17.5, 17.7, 29.7, 131.3, 131.9, 132.2, 139.7, 148.2; ¹¹B NMR: δ 1.54 (s); Anal. Calcd for C₂₂H₃₅BN₂: C, 78.10; H, 10.43; N, 8.28%. Found: C, 78.25; H, 10.36; N, 8.43%.

4,4-Diethyl-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indecene **3b**. Yield: 120 mg (85%); red solid; mp: 183 °C; IR (solid): 1510, 1560, 2856, 2933 cm⁻¹; ¹H NMR: δ 0.29 (t, J = 7.6 Hz, 6H), 0.77 (q, J = 7.6 Hz, 4H), 2.43 (s, 12H), 2.61 (s, 3H), 6.05 (s, 2H); ¹³C NMR: δ 9.1, 16.3, 16.9, 18.0, 121.7, 132.7, 136.3, 141.5, 149.9; ¹¹B NMR: δ 1.81 (s). HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₈H₂₇BN₂: 283.2345. Found: 283.2371. Anal. Calcd for C₁₈H₂₇BN₂: C, 76.60; H, 9.64; N, 9.93%. Found: C, 76.37; H, 9.64; N, 10.16%.

4,4-Diethyl-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a,4a-diaza-sindecene **3c**. Yield: 144 mg (84%); red solid; mp: 134 °C; IR (solid): 1467, 1507, 1538, 2911 cm⁻¹; ¹H NMR: δ 0.42 (t, *J* = 7.6 Hz, 6H), 0.82 (q, *J* = 7.6 Hz, 4H), 1.33 (s, 6H), 2.46 (s, 6H), 5.98 (s, 2H), 7.25–7.29 (m, 2H), 7.42–7.48 (m, 3H); ¹³C NMR: δ 9.2, 14.7, 16.4, 29.7, 121.6, 128.3, 128.4, 128.7, 128.9, 131.8, 136.6, 138.4, 142.3, 151.6; ¹¹B NMR: δ 2.20 (s). Anal. Calcd for C₂₃H₂₉BN₂: C, 80.23; H, 8.49; N, 8.14%. Found: C, 80.48; H, 8.62; N, 8.11%.

2,4,4,6-Tetraethyl-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a,4adiaza-s-indecene **3d**.^{6c} Yield: 160 mg (80%); red solid; mp: 138 °C; IR (solid): 1470, 1546, 2861, 2924 cm⁻¹; ¹H NMR: δ 0.40 (t, *J* = 7.5 Hz, 6H), 0.87 (q, *J* = 7.5 Hz, 4H), 0.97 (t, *J* = 7.5 Hz, 6H), 1.25 (s, 6H), 2.33 (q, *J* = 7.5 Hz, 4H), 2.44 (s, 6H), 7.27–7.30 (m, 3H), 7.43– 7.45 (m, 2H); ¹³C NMR: δ 9.3, 11.8, 14.0, 14.8, 17.5, 29.7, 128.1, 128.6, 128.8, 131.0, 132.2, 133.3, 137.5, 140.7, 150.0; ¹¹B NMR: δ 1.26 (s). Anal. Calcd for C₂₇H₃₇BN₂: C, 80.99; H, 9.31; N, 7.00%. Found: C, 81.01; H, 9.47; N, 6.79%.

4,4-Diethyl-1,3,5,7-tetramethyl-8-(p-tolyl)-4-bora-3a,4a-diaza-sindecene **3e**. Yield: 148 mg (83%); red solid; mp: 152 °C; IR (solid): 1470, 1546, 2859, 2927 cm⁻¹; ¹H NMR: δ 0.42 (t, *J* = 7.5 Hz, 6H), 0.86 (q, *J* = 7.5 Hz, 4H), 1.37 (s, 6H), 2.43 (s, 3H), 2.46 (s, 6H), 5.98 (s, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H); ¹³C NMR: δ 9.1, 14.8, 16.3, 21.4, 29.7, 121.5, 128.3, 129.4, 132.0, 133.5, 138.1, 138.5, 142.7, 151.5; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₂₄H₃₁BN₂: 359.2658. Found: 359.2633. Anal. Calcd for C₂₄H₃₁BN₂: C, 80.45; H, 8.72; N, 7.82%. Found: C, 80.23; H, 8.50; N, 7.63%.

2,4,4,6-Tetraethyl-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indecene **3f**.^{6c} Yield: 146 mg (90%); red solid; IR (solid): 1469, 1510, 1538, 2922 cm⁻¹; ¹H NMR: δ 0.30 (t, *J* = 7.5 Hz, 6H), 0.82 (q, *J* = 7.5 Hz, 4H), 1.06 (t, *J* = 8.0 Hz, 6H), 2.18 (s, 6H), 2.38–2.43 (m, 10H), 6.98 (s, 1H); ¹³C NMR: δ 9.2, 9.3, 13.7, 14.8, 17.7, 29.7, 119.2, 130.9, 131.7, 132.4, 150.9; ¹¹B NMR: δ 2.55 (s); EI-MS *m*/*z* (%): 324.3 (100) [M]⁺. Anal. Calcd for C₂₁H₃₃BN₂: C, 77.77; H, 10.26; N, 8.64%. Found: C, 77.44; H, 10.41; N, 8.40%.

2,6-Di-(tert-Butyl)-4,4-diethyl-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indecene **3g**. Yield: 171 mg (87%); red solid; mp: 122 °C; IR (solid): 1537, 2920, 2947 cm⁻¹; ¹H NMR: δ 0.31 (t, *J* = 7.5 Hz, 6H), 0.81 (q, *J* = 7.5 Hz, 4H), 1.42 (s, 18H), 2.47 (s, 6H), 2.54 (s, 6H), 2.62 (s, 3H); ¹³C NMR: δ 9.7, 18.1, 18.4, 20.9, 30.0, 32.3, 33.0, 132.2, 133.9, 136.3, 139.6, 148.4; ¹¹B NMR: δ 2.55 (s). HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₆H₄₃BN₂: 395.3597. Found: 395.3564. Anal. Calcd for C₂₆H₄₃BN₂: C, 79.17; H, 10.99; N, 7.10%. Found: C, 79.45; H, 10.85; N, 6.75%.

2-Formyl-4,4-diethyl-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a,4adiaza-s-indecene **5**. To a cooled solution (0 °C) of **4** (176 mg, 0.5 mmol) in dry CH₂Cl₂ (30 mL) was added Et₂AlCl (5.0 mmol, 5.0 mL, 1.0 M in hexane) and the mixture stirred for 0.5 h at 0 °C. Subsequent workup as above followed by column chromatography of the residue (silicagel, hexane/EtOAc) furnished **5** (149 mg, 80%). Red-brown solid; mp: 130 °C; IR (solid): 1506, 1546, 1660, 2881, 2941 cm⁻¹; ¹H NMR: δ 0.44 (t, *J* = 7.6 Hz, 6H), 0.82–0.95 (m, 4H), 1.36 (s, 3H), 1.60 (s, 3H), 2.51 (s, 3H), 2.74 (s, 3H), 6.12 (s, 1H), 7.24–7.29 (m, 2H), 7.47–7.51 (m, 3H), 9.95 (s, 1H); ¹³C NMR: δ 9.0, 11.4, 14.8, 15.0, 16.7, 29.8, 124.7, 125.7, 128.2, 128.9, 129.0, 130.2, 134.7, 135.6, 139.9, 142.8, 143.9, 152.7, 157.7, 186.0; ¹¹B NMR: δ 2.61 (s). Anal. Calcd for C₂₄H₂₉BN₂O: C, 77.42; H, 7.85; N, 7.52%. Found: C, 77.48; H, 8.13; N, 7.53%.

BF₂ to BEt₂ Conversion via the Grignard Route. Route 1. To a stirred solution of 1a (159 mg, 0.5 mmol) in THF (30 mL) was added EtMgBr (2.0 mmol, 2.0 mL, 1.0 M in Et₂O), and stirring continued at 25 °C for 0.5 h. The resultant dark mixture was successively washed with aqueous saturated NH₄Cl (1 × 20 mL), H₂O (1 × 20 mL), and brine (1 × 20 mL) and dried. Removal of solvent in vacuo followed by column chromatography of the residue (silica gel, hexane/EtOAc) furnished 3a (101 mg, 60%).

Route 2 (in the Presence of BCl₃). To a stirred solution of 1a (159 mg, 0.5 mmol) in CH₂Cl₂ (30 mL) was added BCl₃ (0.5 mmol, 0.5 mL, 1.0 M in hexane), and stirring continued at 25 °C for 1.0 h. To this was added EtMgBr (1.0 mmol, 1.0 mL, 1.0 M in Et₂O) followed by stirring for another 1 h at 25 °C. The resultant dark mixture was washed successively with aqueous saturated NH₄Cl (1 × 20 mL), H₂O (1 × 20 mL), and brine (1 × 20 mL) and dried. Removal of solvent in vacuo followed by column chromatography of the residue (silica gel, hexane/EtOAc) furnished 3a (155 mg, 92%).

Grignard Reaction with the Aldehyde 4. 2-(1-Ethanol)-4,4difluoro-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a,4a-diaza-s-indecene 6.^{7a} To a stirred solution of 4 (176 mg, 0.5 mmol) in THF (30 mL) at 25 °C was added EtMgBr (1.0 mmol, 1.0 mL, 1.0 M in Et₂O). After stirring for 1 h, the resultant dark mixture was treated with aqueous saturated NH₄Cl (1 × 20 mL), the organic layer separated, and the aqueous portion extracted with Et₂O (3 × 5 mL). The combined organic extracts were washed with H₂O (1 × 20 mL) and brine (1 × 20 mL), dried, and concentrated in vacuo to obtain a residue, which on column chromatography (silica gel, hexane–EtOAc) furnished 6 (96 mg, 50%). Red solid; mp: 167 °C; IR (solid): 1460, 1510, 1536, 2917, 3574 cm⁻¹; ¹H NMR: δ 0.87 (t, J = 7.5 Hz, 3H), 1.37 (s, 3H), 1.42 (s, 3H), 1.60–1.65 (m, 1H), 1.79–1.83 (m, 1H), 2.50 (s, 3H), 2.63 (s, 3H), 4.01 (s, 1H), 4.62 (t, J = 7.5 Hz, 1H), 6.09 (s, 1H), 7.38–7.41 (m, 2H), 7.58–7.61 (m, 3H); ¹³C NMR: δ 10.0, 11.3, 13,0, 13.6, 30.3, 67.8, 120.9, 128.2, 129.0, 129.3, 130.8, 130.9, 133.9, 135.2, 139.6, 141.8, 142.2, 154.1, 155.3; ¹¹B NMR: δ 0.79 (t, J =33.7 Hz). Anal. Calcd for C₂₂H₂₅BF₂N₂O: C, 69.13; H, 6.59; N, 7.33%. Found: C, 69.47; H, 6.69; N, 7.31%.

General Procedure for BR₂ to BF₂ Conversion (Demasking). To a solution of **3a**-f and **3h** (0.5 mmol) in CH₂Cl₂ (30 mL) was added BF₃·Et₂O (0.5 mmol, 125 μ L), and the mixture was stirred at 25 °C for 15 min. The mixture was treated with aquueous saturated NaHCO₃ (10 mL); the organic was layer separated, washed with H₂O (10 mL), and dried in vacuo; and the residue was column chromatographed (silica gel, hexane/EtOAc) to furnish **1a** from both **3a** and **3h** and **1b**-f from **3b**-f, respectively.

HF-Mediated Demasking of **3a**. To a solution of **3a** (170 mg, 0.5 mmol) in CH₂Cl₂ (30 mL) was added aqueous HF (48%, 2 mmol, 36 μ L), and the mixture was stirred at 25 °C for 15 min. Aqueous saturated NaHCO₃ (10 mL) was added to the mixture, and the organic layer was separated, washed with H₂O (10 mL), and dried in vacuo. The residue was column chromatographed (silica gel, hexane/ EtOAc) to furnish **9** (15 mg, 9%) and **1a** (34 mg, 21%).

2,6-Diethyl-4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4adiaza-s-indecene **1a**..^{5b,15a} Yield: 120 mg (75%); red needles (CH₂Cl₂/cyclohexane); mp: 208 °C (lit.^{15a} mp 207–208 °C); IR (solid): 1474, 1541, 2929, 2963 cm⁻¹; ¹H NMR: δ 1.03 (t, J = 7.6 Hz, 6H), 2.32 (s, 6H), 2.67 (s, 3H), 2.37 (q, J = 7.6 Hz, 4H), 2.48 (s, 6H), 2.59 (s, 3H); ¹³C NMR: δ 12.2, 14.2, 14.8, 16.7, 17.0, 131.5, 132.2, 136.3, 139.8, 151.6; ¹¹B NMR: δ 0.93 (t, J = 33.5 Hz). HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₈H₂₅BF₂N₂: 319.2157. Found: 319.2123.

4,4-Difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indecene **1b**..^{5b,15a} Yield: 92 mg (70%); red needles (CH₂Cl₂/cyclohexane); mp: 256 °C (lit.^{15a} mp 254–257 °C); IR (solid): 1506, 1552, 2854, 2920 cm⁻¹; ¹H NMR: δ 2.40 (s, 6H), 2.52 (s, 6H), 2.56 (s, 3H), 6.05 (s, 2H); ¹³C NMR: δ 14.4, 16.3, 17.3, 121.2, 132.0, 141.0, 141.4, 153.6; ¹³C NMR: δ 14.3, 16.3, 17.2, 121.1, 132.0, 140.9, 141.4, 153.5; ¹¹B NMR: δ 0.60 (t, *J* = 33.7 Hz); EI-MS *m*/*z* (%): 262.0 (100) [M]⁺.

4,4-Difluoro-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a,4a-diaza-sindecene 1c.^{15b} Yield: 138 mg (85%); red amorphous solid; mp: 178 °C; IR (solid): 1470, 1505, 1537, 2926 cm⁻¹; ¹H NMR: δ 1.36 (s, 6H), 2.54 (s, 6H), 5.97 (s, 2H), 7.25–7.28 (m, 2H), 7.44–7.48 (m, 3H); ¹³C NMR: δ 14.2, 14.5, 121.2, 127.9, 128.5, 128.9, 129.1, 131.4, 134.9, 141.7, 143.1, 155.4; ¹¹B NMR: δ 0.77 (t, *J* = 33.7 Hz). HRMS (ESI-TOF) *m*/*z* [M + H]⁺ Calcd for C₁₉H₁₉BF₂N₂: 325.1687. Found: 325.1660.

2,6-Diethyl-4,4-difluoro-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a,4a-diaza-s-indecene **1d**..^{6c,15c} Yield: 148 mg (78%); orange needles (CH₂Cl₂/cyclohexane); mp: 185 °C (lit.^{15c} mp: 185–186 °C); ¹H NMR: δ 1.09 (t, J = 7.6 Hz, 6H), 1.48 (s, 6H), 2.31 (q, J = 7.6 Hz, 4H), 2.87 (s, 6H), 7.01–7.06 (m, 2H), 7.29–7.37 (m, 3H); ¹³C NMR: δ 11.6, 12.5, 14.6, 17.1, 128.3, 128.7, 129.0, 130.8, 132.7, 135.8, 138.4, 140.2, 153.7; ¹¹B NMR: δ 0.80 (t, J = 33.7 Hz); EI-MS m/z(%): 380.0 (100) [M]⁺.

4,4-Difluoro-1,5,5,7-tetramethyl-8-(p-tolyl)-4-bora-3a,4a-diazas-indecene 1e.^{15d} Yield: 126 mg (75%); red amorphous solid; mp: 183 °C; IR (solid): 1467, 1507, 1538, 2911 cm⁻¹; ¹H NMR: δ 1.39 (s, 6H), 2.42 (s, 3H), 2.54 (s, 6H), 5.96 (s, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H); ¹³C NMR: δ : 14.4, 14.5, 21.4, 121.0, 127.7, 129.7, 131.6, 131.9, 138.8, 142.1, 143.1, 155.2; ¹¹B NMR: δ : 0.77 (t, J= 33.7 Hz). HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₂₀H₂₁BF₂N₂: 339.1844. Found: 339.1819.

2,6-Diethyl-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diazas-indecene **1f**.^{6c} Yield: 121 mg (80%); red solid; ¹H NMR: δ 1.06 (t, *J* = 7.6 Hz, 6H), 2.16 (s, 6H), 2.36 (q, *J* = 7.6 Hz, 4H), 2.49 (s, 6H), 6.95 (s, 1H); ¹³C NMR: δ 9.4, 12.5, 14.6, 17.3, 118.5, 131.6, 132.4, 136.6, 154.6; ¹¹B NMR: δ : 0.77 (t, *J* = 33.7 Hz); EI-MS *m*/*z* (%): 304.2 (100) [M]⁺.

McMurry Coupling of 5. A mixture of TiCl₄ (0.8 mmol, 88 μ L) and Zn (105 mg, 1.6 mmol) in dry THF (20 mL) was refluxed for 3 h. After cooling, 5 (100 mg, 0.26 mmol) in dry THF (5 mL) was added into it, and the mixture was refluxed for another 2 h. The mixture was diluted with EtOAc (10 mL), treated with aqueous saturated K₂CO₃ (10 mL), and passed through Celite. The organic layer was separated and concentrated in vacuo, and the residue was column chromatographed (alumina, hexane/EtOAc) to furnish 8 (38 mg, 40%). Red solid; mp: >300 °C; IR (solid): 1610, 2861, 2921 cm⁻¹; ¹H NMR: δ 0.43 (t, J = 7.5 Hz, 12H), 0.86 (q, J = 7.5 Hz, 8H), 1.33 (s, 6H), 1.40 (s, 6H), 2.47 (s, 6H), 2.55 (s, 6H), 5.99 (s, 2H), 6.35 (s, 2H), 7.25-7.29 (m, 4H), 7.43-7.47 (m, 6H); ¹³C NMR: δ: 9.3, 13.2, 14.8, 15.4, 16.4, 29.7, 121.8, 123.1, 128.4, 128.7, 128.8, 129.3, 131.6, 132.1, 133.6, 136.8, 138.4, 142.0, 151.3, 151.7; HRMS (ESI-TOF) m/z [M + H] Calcd for C48H58B2N4: 713.4926. Found: 713.4905. Anal. Calcd for C48H58B2N4: C, 80.90; H, 8.20; N, 7.86%. Found: C, 80.79; H, 8.20; N, 7.68%.

Synthesis of BODIPY 10 with Asymmetrically Substituted B. 4-Fluoro-1,3,5,7,8-pentamethyl-2,4,6-triethyl-4-bora-3a,4a-diaza-sindecene 9. To a solution of 3a (170 mg, 0.5 mmol) in CH₂Cl₂ (30 mL) was added BF₃:Et₂O (0.2 mmol, 50 μ L), and the mixture was stirred at 25 °C for 15 min. Aqueous saturated NaHCO₃ (10 mL) was added, and the organic layer was separated, washed with H₂O (10 mL), and concentrated in vacuo. Column chromatography of the residue (silica gel, hexane/EtOAc) furnished 9 (65 mg, 75% based on conversion). Red solid; mp: 153 °C; ¹H NMR: δ 0.28 (t, *J* = 7.6 Hz, 3H), 0.64 (q, *J* = 7.6 Hz, 2H), 1.01 (t, *J* = 7.6 Hz, 6H), 2.32 (s, 6H), 2.41 (q, *J* = 7.6 Hz, 4H), 2.45 (s, 6H), 2.60 (s, 3H); ¹³C NMR: δ 8.5, 8.6, 12.7, 12.8, 14.3, 15.0, 17.2, 29.7, 128.5, 131.7, 131.9, 133.9, 139.8, 150.6; EI-MS *m*/*z* (%): 327.7 (20) [M – 1]⁺, 309.5 (100) [M – 19]⁺. Anal. Calcd for C₂₀H₃₀BFN₂: C, 73.17; H, 9.21; N, 8.53%. Found: C, 73.43; H, 9.58; N, 8.38%.

Compound **10.** To a stirred solution of 2,5-dioxaoct-7-yne (2.04 mmol) in THF (10 mL) was added EtMgBr (2.04 mmol, 2.04 mL, 1 M in Et₂O). After heating the mixture at 60 °C for 2 h, **9** (130 mg, 0.40 mmol) was added, and stirring continued at 60 °C for another 18 h. The resultant dark mixture was thoroughly washed successively with aqueous saturated NH₄Cl (20 mL), H₂O (20 mL), and brine (20 mL) and dried. Removal of the solvent in vacuo followed by column chromatography of the residue (silica gel, hexane/EtOAc) furnished **10** (101 mg, 60%). Red solid; ¹H NMR: δ 0.19 (t, J = 7.6 Hz, 3H), 0.75 (q, J = 7.6 Hz, 2H), 1.02 (t, J = 7.6 Hz, 6H), 2.33 (s, 6H), 2.42 (q, J = 7.6 Hz, 4H), 2.58 (s, 6H), 2.60 (s, 3H), 3.36 (s, 3H), 3.51–3.57 (m, 2H), 3.63–3.69 (m, 2H), 4.20 (s, 2H); ¹³C NMR: δ : 1.0, 8.3, 13.9, 14.6, 15.0, 17.4, 29.7, 58.9, 59.7, 68.2, 71.8, 131.3, 132.1, 132.6, 139.7, 150.0. HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₂₆H₃₉BN₂O₂: 423.3183. Found: 423.3193.

ASSOCIATED CONTENT

Supporting Information

Photophysical data, ¹H and ¹³C NMR spectra of all compounds, and computational data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: schatt@barc.gov.in (S.C.).

*E-mail: n.sekar@ictmumbai.edu.in (N.S.).

Author Contributions

[#]A.B.M. and S.M. contributed equally.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) (a) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891-4932.
(b) Boens, N.; Leen, V.; Dehaen, W. Chem. Soc. Rev. 2012, 41, 1130-1172.
(c) Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L.

(2) (a) Shivran, N.; Mula, S.; Ghanty, T. K.; Chattopadhyay, S. Org. Lett. **2011**, *13*, 5870–5873. (b) Gupta, M.; Mula, S.; Tyagi, M.; Ghanty, T. K.; Murudkar, S.; Ray, A. K.; Chattopadhyay, S. Chem.— Eur. J. **2013**, *19*, 17766–17772.

(3) (a) Yang, L.; Simionescu, R.; Lough, A.; Yan, H. Dyes Pigm. 2011, 91, 264–267. (b) Mula, S.; Ulrich, G.; Ziessel, R. Tetrahedron Lett. 2009, 50, 6383–6388.

(4) (a) Goze, C.; Ulrich, G.; Mallon, L. J.; Allen, B. D.; Harriman, A.; Ziessel, R. J. Am. Chem. Soc. 2006, 128, 10231-10239. (b) Goze, C.; Ulrich, G.; Ziessel, R. Org. Lett. 2006, 8, 4445-4448. (c) Goze, C.; Ulrich, G.; Ziessel, R. J. Org. Chem. 2007, 72, 313-322. (d) Harriman, A.; Izzet, G.; Ziessel, R. J. Am. Chem. Soc. 2006, 128, 10868-10875. (5) (a) Jagtap, K. K.; Shivran, N.; Mula, S.; Naik, D. B.; Sarkar, S. K.; Mukherjee, T.; Maity, D. K.; Ray, A. K. Chem.—Eur. J. 2013, 19, 702-708. (b) Duran-Sampedro, G.; Esnal, I.; Agarrabeitia, A. R.; Prieto, J. B.; Cerdán, L.; García-Moreno, I.; Costela, A.; Lopez-Arbeloa, I.; Ortiz, M. J. Chem.—Eur. J. 2014, 20, 2646-2653. (c) Niu, S. L.; Ulrich, G.; Ziessel, R.; Kiss, A.; Renard, P.-Y.; Romieu, A. Org. Lett. 2009, 11, 2049-2052. (d) Tokoro, Y.; Nagai, A.; Chujo, Y. Tetrahedron Lett. 2010, 51, 3451-3454. (e) Niu, S. L.; Massif, C.; Ulrich, G.; Renard, P.-Y.; Romieu, A.; Ziessel, R.; Ziessel, R. Chem.—Eur. J. 2012, 18, 7229-7242.

(6) (a) Ulrich, G.; Ziessel, R.; Haefele, A. J. Org. Chem. 2012, 77, 4298-4311. (b) Jiao, L.; Yu, C.; Li, J.; Wang, Z.; Wu, M.; Hao, E. J. Org. Chem. 2009, 74, 7525-7528. (c) Lundrigan, T.; Crawford, S. M.; Cameron, T. S.; Thompson, A. Chem. Commun. 2012, 48, 1003-1005. (d) Lundrigan, T.; Thompson, A. J. Org. Chem. 2013, 78, 757-761.

(7) (a) Zhu, S.; Bi, J.; Vegesna, G.; Zhang, J.; Luo, F.-T.; Valenzano, L.; Liu, H. RSC Adv. 2013, 3, 4793-4800. (b) Wang, H.; Vicente, M. G. H.; Fronczek, F. R.; Smith, K. M. Chem.—Eur. J. 2014, 20, 5064-5074. (c) Hudnall, T. W.; Lin, T. P.; Gabbaï, F. P. J. Fluorine Chem. 2010, 131, 1182-1186. (d) Hudnall, T. W.; Gabbaï, F. P. Chem. Commun. 2008, 38, 4596-4597.

(8) (a) Tahtaoui, C.; Thomas, C.; Rohmer, F.; Klotz, P.; Duportail, G.; Mely, Y.; Bonnet, D.; Hibert, M. J. Org. Chem. 2007, 72, 269–272.
(b) Ulrich, G.; Haefele, A.; Retailleau, P.; Ziessel, R. J. Org. Chem. 2012, 77, 5036–5048.

(9) (a) Bröring, M.; Krüger, R.; Link, S.; Kleeberg, C.; Köhler, S.; Xie, X.; Ventura, B.; Flamigni, L. *Chem.—Eur. J.* 2008, *14*, 2976–2983.
(b) Nepomnyashchii, A. B.; Bröring, M.; Ahrens, J.; Krüger, R.; Bard, A. J. *J. Phys. Chem. C* 2010, *114*, 14453–14460.

(10) (a) Rihn, S.; Erdem, M.; Nicola, A. D.; Retailleau, P.; Ziessel, R. Org. Lett. 2011, 13, 1916–1919. (b) Nagai, A.; Miyake, J.; Kokado, K.; Nagata, Y.; Chujo, Y. J. Am. Chem. Soc. 2008, 130, 15276–15278. (c) Cakmak, Y.; Akkaya, E. U. Org. Lett. 2009, 11, 85–88. (d) Kim, B.; Ma, B.; Donuru, V. R.; Liu, H.; Frechet, J. M. J. Chem. Commun. 2010, 46, 4148–4150. (e) Nagai, A.; Chujo, Y. Macromolecules 2010, 43, 193–200.

(11) Ahrens, J.; Haberlag, B.; Scheja, A.; Tamm, M.; Bröring, M. Chem.—Eur. J. 2014, 20, 2901–2912.

(12) (a) McMurry, J. E. *Chem. Rev.* **1989**, 89, 1513–1524. (b) Rele, S.; Talukdar, S.; Banerji, A.; Chattopadhyay, S. *J. Org. Chem.* **2001**, *66*, 2990–2994.

(13) (a) Arbeloa, F. L.; Arbeloa, T. L.; Arbeloa, I. L. J. Photochem. Photobiol. A 1999, 121, 177–182. (b) Rurack, K.; Spieles, M. Anal. Chem. 2011, 83, 1232–1242.

(14) Lundrigan, T.; Cameron, T. S.; Thompson, A. Chem. Commun. 2014, 50, 7028-7031.

(15) (a) Shah, M.; Thangaraj, K.; Soong, M.-L.; Wolford, L. T.;
Boyer, J. H.; Politzer, I. R. *Heteroat. Chem.* **1990**, *1*, 389–399.
(b) Zhang, C.; Zhao, J.; Wu, S.; Wang, Z.; Wu, W.; Ma, J.; Guo, S.;
Huang, L. J. Am. Chem. Soc. **2013**, 135, 10566–10578. (c) Gabe, Y.;
Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. **2004**, 126, 3357–3367. (d) Cui, A.; Peng, X.; Fan, J.; Chen, X.; Wu, Y.; Guo,
B. J. Photochem. Photobiol. A: Chem. **2007**, 186, 85–92.