Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Gong, C. Liu, S. Cai, S. He, L. Zhao and X. Zeng, *Org. Biomol. Chem.*, 2020, DOI: 10.1039/D0OB01563F.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

View Article Online

View Journal

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Novel near-infrared fluorescent probe with a large Stokes shift for sensing hypochlorous acid in mitochondria

Jin Gong, ^{a,b} Chang Liu, ^a Songtao Cai, ^{a,b} Song He, ^a Liancheng Zhao ^{a,b} and Xianshun Zeng ^{a,b,*}

Hypochlorous acid (HOCI) plays a crucial role in various of physiological and pathological processes. However, it is still challenging to design a xanthene-based near-infrared (NIR) fluorescent probe with large Stokes shift for sensing HOCI. In this work, a novel mitochondria-targeted fluorescent probe **MXS** with large Stokes shift based on a xanthene-hemicyanine dyad structure has been successfully designed and synthesized for the specific detection of HOCI. Gratifyingly, the peak-to-peak Stokes shift of **MXS** was found to be 130 nm, which was obviously larger than those of conventional rhodamine dyes and most of reported xanthene-based hypochlorous acid probes. As expected, **MXS** exhibited high selectivity, high sensitivity, and fast response time (30 s) for the detection of HOCI via a specific HOCI-promoted intramolecular charge transfer processes. The detection limit of **MXS** for HOCI is calculated to be as low as 72 nM, which falls within the physiological concentration of HOCI (5–25 μ M). Importantly, **MXS** is able to permeate cell membranes and accumulate in the mitochondria, which is convenient to use for monitoring the variation of hypochlorous acid concentration in the mitochondria of living cell.

Introduction

Published on 04 September 2020. Downloaded by Cornell University Library on 9/4/2020 2:11:15 PM

Intracellular reactive oxygen species (ROS, such as ONOO⁻, H_2O_2 , 1O_2 , OCI^- and O_2^-) existed in living organisms played a crucial role in many physiological and pathological processes such as intracellular signal transduction, aging and immunity responses.¹ Among the various ROS, HOCI was one of the vital members, had received an increasing amount of attention due to it played as a powerful microbicidal reagent in the innate immune system.² However, deregulation of HOCI production and/or elimination may cause a series of organ dysfunctions and oxidative damage to nucleic acids, thereby leading to chronic inflammatory diseases, cystic fibrosis, cardiovascular disease, kidney disease, neurodegenerative disease, etc.³ It has been reported that HOCI was generated from H₂O₂ and Cl⁻ by secreted myeloperoxidase (MPO) in vivo in response to inflammatory stimuli, and MPO were found in mitochondria of cells.⁴ macrophage Therefore. the development of mitochondrial-targeted detection tools has practical significance for further understanding the distribution and functions of cellular HOCI at subcellular level and the link to the aforementioned diseases.

To date, several analytical methods have been developed for the detection of HOCI, for example, electrochemical analysis, high-performance liquid chromatography, potentiometry and colorimetry, but they are not suitable for measuring HOCI in living cells.⁵ In recent years, the probe-based fluorescent imaging technology has been introduced in the detection of HOCI in the living cells due to its high sensitivity, simplicity of implementation, in situ analysis, spatial-temporal imaging, realtime and non-invasive detection.⁶ Therefore, many efforts have recently been focused on developing efficient fluorescent probes to image HOCI by taking advantage of its strong oxidation properties.⁷ Generally, these probes are composed with a fluorophore and electron-rich function moieties, and the fluorescent responses of the probe toward HOCI are based on the HOCI-promoted intramolecular charge transfer (ICT) processes.⁸ Although many of HOCI-sensitive probes have been successfully utilized for the detection of HOCI in cellular environments, the probe with near-infrared (NIR) emissions and large Stokes shifts nature for real-time detection of HOCl at the subcellular level are still rare.6h,8a,9 Especially, most of the reported rhodamine-based probes have narrow Stokes shifts (< 30 nm), which limits their intracellular imaging applications due to self-quenching and excitation wavelength interference.¹⁰ It has been reported that the use of NIR fluorescence imaging (650-900 nm) techniques can minimize photodamage to living samples, increase tissue penetration depth, and diminish signal interference caused by autofluorescence of living samples.¹¹ Meanwhile, fluorescent sensors with large Stokes shifts can avoid self-quenching due to back scattering from biological samples, resulting in precise imaging and accurate sensing.¹² Consequently, the development of novel mitochondrialtargeted probes with improved emission wavelengths and Stokes shifts for understanding the functions of HOCI in

^{a.} Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China. E-mail: xshzenq@tjut.edu.cn.

^{b.} School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.

⁺ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

physiological and pathological process is of considerable

ARTICLE

importance. Bearing these concerns in mind, we herein reported a rational design and synthesis of a novel NIR mitochondriatargeted probe MXS with large Stokes shift for specific detection of HOCI and cell imaging at the subcellular level (Scheme 1). We reckoned that MXS with a structure of xanthene-hemicyanine dyad might increase the emission wavelengths and the Stokes shifts of the fluorophore.¹³ At the same time, the incorporation of the xanthene moiety in the probe is based on the consideration of its excellent photophysical properties and biocompatibility, including high molar extinction coefficients, high quantum yields, tolerance to photobleaching, and excellent water solubility.¹⁴ In addition, the cationic xanthene moiety normally works as a functional group for targeting mitochondria,15 and increase the water solubility of the probe. As expected, MXS exhibited NIR fluorescence emission at 654 nm, large Stokes shifts (130 nm), fast response time (30 s), and high selectivity and sensitivity for the detection of HOCI via a specific HOCI-promoted intramolecular charge transfer processes. Furthermore, MXS is able to permeate cell membranes and highly targeted to the mitochondria and enables to be used as a probe for monitoring the variation of HOCI concentration in the mitochondria of living cells.

Results and discussion

Synthesis of MXS

The synthetic procedures for the probe MXS were depicted in Scheme 1. The key intermediate 3-diethylamino-6-methoxy-9-methylxanthine perchlorate (E) was synthesized starting from malonic acid and phenol via five steps with a moderate yield according to the literature.¹⁶ The detailed reaction reagents and conditions were showed in Scheme 1. Followed by the condensation reaction of 3-diethyl-amino-6-methoxy-9methylxanthine perchlorate (E) and 4-(methylthio)benzaldehyde in ethanol, the probe MXS was

3-(diethylamino)phenol, toluene, reflux, 4 h; c) 30% H₂SO₄, 125 °C, 5 h; d) resorcinol, 85% H₃PO₄, 140 °C, 6 h; e) toluene-4-sulphonic acid methyl ester, K₂CO₃, 18-crown-6, CH₃CN, reflux, 2 h; f) 4-(methylthio)benzaldehyde, piperidine, EtOH, reflux, overnight.

Fig. 1 Normalized absorption and fluorescence spectra of MXS in PBS buffer (10 mM, pH 7.4). $\lambda_{ex} = 530$ nm, slit = 10/10 nm.

obtained in 81% yield. The structure of MXS was fully characterized by ¹H NMR, ¹³C NMR and HRMS, and the specific data were presented in the supporting information.

Optical properties of MXS

With the probe in hand, the UV/vis absorption and fluorescence emission properties, and fluorescence quantum yields of MXS were initially elucidated in various organic solvents (CH₃CN, DCM, DMF, DMSO, and EtOH) and in PBS buffer (10 mM, pH = 7.4). As shown in Fig. 1, Table S1 and Fig. **S1**, **MXS** displayed the maxima π - π * transition absorption band at 524 nm and maxima fluorescence emission band at 654 nm $(\lambda_{ex} = 530 \text{ nm})$ in PBS buffer. Comparatively, the maxima fluorescence emission band of MXS at 654 nm is significantly red-shifted than those of traditional rhodamine dyes (~570 nm),¹⁷ which can be assigned to the π - π * transition of the xanthene-hemicyanine dyad fluorophore. Gratifyingly, the peak-to-peak Stokes shift of MXS was found to be 130 nm, which was obviously larger than those of conventional rhodamine dyes (< 30 nm).¹⁷ At the same time, the Stokes shift of MXS was larger than most of reported xanthene-based hypochlorous acid probes (Table S2). In addition, the fluorescence quantum yields in these solvents were between 2.8% and 16.8%. Collectively, the 9-position modified MXS was a novel NIR fluorophore with improved Stokes shift.

Selectivity and sensing mechanism studies

In order to evaluate the recognition properties of MXS towards HOCI, elective experiments were carried out. The selectivity of MXS was scrutinized after addition of 5 equiv. oxidative species, including ¹O₂, H₂O₂, ClO⁻, NO, NO₂⁻, NO₃⁻, O₂⁻, •OH, ONOO⁻, and TBHP. As shown in Fig. 2a, upon addition of CIO⁻, the intensity of the fluorescence emission of the probe at 654 nm was significantly decreased with 5 nm blue-shift. In contrast, under identical conditions, no obvious fluorescence changes in the fluorescence emission spectrum were observed after addition of 5 equiv. other oxidative species. Meanwhile, the similar decrease trend as emission spectrum was also displayed in the absorption spectrum (Fig. S2). Upon addition of CIO⁻, the absorption intensity of the probe at 524 nm was significantly decreased. In contrast, the introduction of other oxidative species cannot lead to an obvious fluorescence change under the identical conditions. Above results showed that only CIO⁻ can cause the spectral change of the probe,

С

Accepted

Journal Name

Fig. 2 a) Fluorescence responses of **MXS** (10 μ M) in the presence of different relevant analytes (5 equiv.) in PBS (10 mM, pH = 7.4), 1: ${}^{1}O_{2}$, 2: $H_{2}O_{2}$, 3: blank, 4: NO, 5: NO₂⁻, 6: NO₃⁻, 7: O₂⁻, 8: •OH, 9: ONOO⁻, 10: TBHP, and 11: ClO⁻; b) ratio (F – F₀)/(F_{ClO} – F₀) of fluorescence intensity of **MXS** (10 μ M) at 654 nm upon addition of 5 equiv. other analytes and 5 equiv. OCl⁻ in PBS, 1: ClO⁻, 2: ${}^{1}O_{2}$, 3: $H_{2}O_{2}$, 4: NO, 5: NO₂⁻, 6: NO₃⁻, 7: O₂⁻, 8: •OH, 9: ONOO⁻, and 10: TBHP. λ_{ex} = 530 nm, slit = 10/10 nm.

indicating that MXS showcased the high specificity for OCI-.

According to the literatures,^{8a,8c} we speculated that the spectral changes of MXS were initiated by HOCI-induced ICT mechanism illustrated in Scheme 2. After reaction with OCI⁻, the electron donating sulfur atom was oxidized to yield an electron withdrawing sulfoxide, resulting in the fluorescence emission spectra and absorption spectra of the fluorophore largely decreased. To verify the speculated detection mechanism of MXS towards OCI-, the high-resolution mass spectra (HRMS) was conducted to analyze the molecular weight of MXS after the reaction with OCI-. As shown in Fig. S3, an intense peak at m/z 446.1804 corresponding to MXSO was distinct, providing reliable evidence for the HOCI-induced oxidation of the electron donating sulfur atom to produce the electron withdrawing sulfoxide moiety. In addition, MXSO was obtained by the oxidation of the sulfur group in MXS by using m-CPBA as oxidizing reagent, and the ¹H NMR and ¹³C NMR spectra were presented in Fig. S10 and Fig. S11. The absorption spectra, emission spectra and fluorescence quantum yields of MXSO were measured in various organic solvents (CH₃CN, DCM, DMF, DMSO, and EtOH) and in PBS buffer. As presented in Table S3 and Fig. S4, the absorption and emission spectra of MXSO were consistent with those of MXS treated with OCI- in PBS buffer. Furthermore, the fluorescence quantum yields in these solvents were between 1.8% and 8.2%.

To further demonstrate the specific recognition of **MXS** towards OCl⁻, the competition experiments were simultaneously conducted by addition of OCl⁻ to the solution of **MXS** in the presence of 5 equiv. of other oxidative species (${}^{1}O_{2}$, H₂O₂, NO, NO₂⁻, NO₃⁻, O₂⁻, •OH, ONOO⁻, and TBHP). As shown in **Fig. 2b**, in the presence of the relevant oxidative species, the probe still exhibited an obvious fluorescence change for the

detection of OCI⁻. These phenomena indicated that **MXS** could successfully recognize OCI⁻ with high selectivity (Well of the biologically oxidative species, implying the potential for sensing OCI⁻ under complex physiological conditions.

Sensitivity studies

In order to further evaluate the recognition properties of MXS towards OCI⁻, the fluorometric titration experiments were performed to investigate the sensitivity of the probe. As shown in Fig. 3a, upon treatment with the increasing concentrations of OCI⁻ (0–7 equiv.), the emissions peak of xanthene-hemicyanine dyad fluorophore at 654 nm disappeared gradually. Essentially, the fluorescence emission intensities at 654 nm became constant when the amount of OCI- reached 5 equiv. The fluorescence intensity of MXS at 654 nm was linearly proportional to concentration of OCI⁻ within the range from 0 to 30 µM, and then data analysis reveals an excellent linear relationship with a correlation coefficient of 0.9989 (Fig. 3b). Subsequently, the detection limit of MXS towards OCI- was calculated to be 72 nM based on the equation of $3\sigma/k$, where k is the slope plotted from the fluorescence intensity at 654 nm versus the concentration of OCI⁻, and σ is the fitting error on the intercept. Therefore, the probe can be used to detect HOCI down to 72 nM, which falls within the physiological concentration of HOCI (5–25 µM).¹⁸ Hence, we can apply this probe effectively for biological applications. Compared with other xanthene-based fluorescent probes for detecting OCI⁻, the detection limit of MXS was at a relatively low level (Table S2). Meanwhile, after the addition of OCI⁻ (0-7 equiv.) to the solution, the absorption intensity of MXS at 524 nm remarkably decreased and reached the plateau when the

Fig. 3 a) The fluorescence changes of MXS (10 μ M) treated with increasing concentrations of OCI⁻ (0 – 7 equiv.). Insert: The plot of the fluorescence intensities at 654 nm versus the equivalents of OCI⁻; b) The plot of the fluorescence intensities of MXS at 654 nm versus the concentrations of OCI⁻ (0 – 30 μ M). The conditions: PBS buffer (10 mM, pH 7.4), λ_{ex} = 530 nm, slit = 10/10 nm.

Fig. 4 a) Time-dependent fluorescence response of MXS (10 μ M) in the absence/presence of OCI⁻ (5 μ M); b) Fluorescence intensity at 654 nm of MXS (10 μ M) at different pH values in the absence/presence of OCI⁻ (5 μ M). The conditions: PBS buffer (10 mM, pH 7.4), λ_{ex} = 530 nm, slit = 10/10 nm.

ARTICLE

accumulated amount of OCI⁻ reached 5 equiv. (**Fig. S5**). These results indicated that **MXS** showed high sensitivity to OCI⁻ and could be used as a practical probe for quantitative detection OCI⁻ in aqueous environments.

Time- and pH-dependent fluorescent responses of MXS

Subsequently, in order to assess the possibility of MXS for sensing OCI⁻ in real-time, time-dependent fluorescent responses of MXS towards OCI⁻ were evaluated at room temperature. As shown in Fig. 4a, in the presence of 5 equiv. of OCI-, the fluorescence intensity of MXS at 654 nm rapidly decreased and reached a plateau within about 30 s, suggesting that MXS could be used as an effective candidate for monitoring OCI⁻ in real-time. In contrast, in the absence of OCI⁻, the probe showed almost stable emission signals output when continuously excited under a 530 nm laser within 600 s, indicating that **MXS** could be stably present in the solution and owned high photo-stability. In addition, due to the differences in the pH values in various cell ompartments,19 keeping the stable output of the fluorescence signal in acidic, neutral and alkaline environments is a very important property of the probe. Therefore, the fluorescent response of MXS towards OCI- at different pH conditions (ranging from 2.0 to 12.0) were further assessed to explore the optimal working range of the probe and to apply MXS in complicated systems, especially biological systems. As shown in Fig. 4b, the fluorescence intensity of MXS at 654 nm was stable in the pH range from 2.0 to 10.0. In contrast, upon addition of OCI⁻, the fluorescence signals of the probe **MXS** decreased dramatically in the pH range of 2.0–10.0. The broad pH tolerance for the detection of OCI⁻ and the stable fluorescence of the probe at a pH level of approximately 7.4 suggested that MXS had the possibility to detect OCI- in biological systems.

Application of MXS in living cells

Inspired by the excellent spectral properties of MXS, such as high selectivity, high sensitivity, response in real time, and physiological pH range of working, potential applications of the probe for imaging Cys in living cells were investigated next. As standard MTT assays confirmed that MXS has fairly low toxicity towards living cells when the concentration of the probe was 0-20 μ M and the cells were incubated for 24 h (Fig. S6), we evaluated whether MXS can image HOCI in living cells by means of laser scanning confocal microscopy. HeLa cells were incubated with MXS for 30 min in the growth medium, and then washed three times with PBS to remove excess probes. As presented in Fig. 5a, strong emission signals in the red channel were observed with an excitation of 559 nm in the cells. In contrast, after treatment with $\text{OCI}^{\text{-}}$ (5 $\mu\text{M})$ and then fed for another 30 min, the fluorescence outputs in 618-718 nm were largely decreased (Fig. 5b). Compared with the untreated cells, the relative decrease of fluorescence signals is about 3-fold (Fig. 5c). Thus, above-described results revealed that MXS had good membrane permeability and could be used for imaging OCI⁻ in living cells.

Fig. 5 Fluorescence images of HeLa cells. a) Cells were incubated with **MXS** (1 μ M) for 30 min; b) and then incubated with OCl⁻ (5 μ M) for 30 min; c) Histogram of fluorescence enhancement. λ_{ex} = 559 nm, λ_{em} = 618 – 718 nm.

Fig. 6 Fluorescence imaging of HeLa cells costained with **MXS** (1 µM) upon treatment of and Mito-Tracker Green (200 nM), Lyso-Tracker Green Green (200 nM), or ER-Tracker Green (200 nM). Cells were incubated with probes at 37 °C for 30 min, and then treated with OCI (5 µM) for another 30 min, and washed before imaging. a) Costained with Mito-Tracker Green; b) Costained with Lyso-Tracker Green, c) Costained with ER-Tracker Green; Red channel: λ_{ex} = 559 nm, λ_{em} = 607-683 nm. Green channel: λ_{ex} = 488 nm, λ_{em} = 509-544 nm.

Comparing the fluorescence images with the bright field images, non-uniform intracellular fluorescence signals of MXS were noticed in Fig. 5, implying that the probe were located in some specific organelles. In order to verify our speculation, the cellular distribution properties of MXS were explored by colocalization with the commercial subcellular organelle reagents, namely, Lyso-Tracker Green (Lyso), Mito-Tracker Green (Mito), and ER-Tracker Green (ER), respectively. In addition, due to the cationic and lipophilic characters of many xanthene dyes, such as tetramethylrhodamine and rhodamine 123, they were widely used as mitochondrial tracers in living cells.¹⁵ As presented in Fig. 6a, the fluorescence signal of MXS overlapped perfectly with that of Mito, indicating that MXS was predominantly accumulated in the mitochondria. Meanwhile, the intensity scatter plot of the red channel and the green channel showed a high correlation between MXS and Mito with high Pearson's coefficient (0.97) and overlap coefficient (0.97), respectively. In contrast, the low overlap coefficients and Pearson's coefficients of MXS and other organelle tracers (Lyso, and ER) implied that they were located in different regions (Fig.

Journal Name

Journal Name

6b–c). Thus, the results of the co-localization experiments indicated that **MXS** can precisely target the mitochondria and can be employed for imaging of HOCI in the mitochondria of living cells.

Conclusions

In summary, a novel mitochondria-targeted fluorescent probe **MXS** with large Stokes shift based on a xanthenehemicyanine dyad structure has been successfully designed and synthesized for the specific detection of HOCI. As expected, **MXS** exhibited NIR fluorescence emission at 654 nm, large Stokes shifts of 130 nm, fast response time (30 s), and high selectivity and sensitivity for the detection of HOCI *via* a specific HOCI-promoted intramolecular charge transfer processes. Importantly, **MXS** is able to permeate cell membranes and accumulate in the mitochondria, which is convenient to use for monitoring the variation of HOCI concentration in the mitochondria of living cell.

Experimental

Published on 04 September 2020. Downloaded by Cornell University Library on 9/4/2020 2:11:15 PM

Materials and instruments

All reagents used in the experiments were purchased from J&K Scientific Ltd, and were used directly unless otherwise stated. The water used in the experiments was double distilled water. The progress of the reaction was monitored by observing a thin layer chromatography under an ultraviolet lamp. Absorption spectra and fluorescence emission spectra were measured on UV-2550 UV/Vis spectrophotometer (Hitachi Japan) and F-4600 fluorescence spectrophotometer (Hitachi Japan), respectively. All fluorescence spectra data were tested at an excitation wavelength of 530 nm with an excitation/emission slit width of 10/10 nm. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were collected by Bruker spectrometer. Chemical shift (δ) values are in ppm and tetramethylsilane is used as an internal standard. High resolution mass spectra (HRMS) were measured by Agilent 6510 Q-TOF LC/MS instrument (Agilent Technologies, Palo Alto, CA) equipped with an electrospray ionization (ESI) source. The pH was measured using a FE 20/EL 20PH meter (Mettler-Toledo Instruments (Shanghai) CO., Ltd.). Cell imaging was conducted by Olympus FV 1000-IX81 laser scanning confocal imaging.

Synthesis of MXS

After dissolving 3-diethylamino-6-methoxy-9methylxanthylium perchlorate (395 mg, 1 mmol) and 4-(methylthio)benzaldehyde (152 mg, 1 mmol) in absolute ethanol (10 mL), a drop of piperidine was added, and then the reaction system was refluxed overnight. After cooling, it was evaporated to dryness under vacuum, and then the crude product was purified by silica gel column to afford the compound **MXS** as a red solid (104 mg, 23% yield). M.p. 84 – 86 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 9.7 Hz, 1H), 8.12 (d, *J* = 9.8 Hz, 1H), 7.80 – 7.71 (m, 1H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.33 – 7.31 (m, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.15 – 7.13 (m, 2H), 6.92 ARTICLE

(s, 1H), 4.02 (s, 3H), 3.70 (dd, J = 14.1, 6.9 Hz, 4H), 2.50 (s, 3H), 1.36 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCR) COCKSO, 158.61, 157.11, 155.47, 146.98, 143.57, 132.12, 131.39, 129.83, 129.31, 128.96, 126.61, 125.94, 117.25, 116.98, 116.60, 114.91, 114.17, 100.68, 96.68, 56.77, 46.68, 31.94, 29.71, 14.99; HRMS m/z = 430.1841 calcd for C₂₉H₂₈NO₄⁺ [M]⁺, found: 430.1847.

Cell culture and fluorescence imaging

HeLa cells were cultured in DMEM medium supplemented with 10% (v/v) fetal bovine serum (FBS) and penicillin/streptomycin (100 μ g/mL) in an atmosphere of 5% CO₂ at 37 °C. Then, HeLa cells were seeded in a 96-well plate, and cultured in an incubator for 2 hours to adhere to the plate, and then subjected to cell imaging experiments. The cells were incubated with **MXS** (1 μ M) for 30 minutes, and then NaOCI (5 μ M) was added and incubated for another 30 minutes. For co-localization experiments, **MXS** (1 μ M) were incubated with a 200 nM trackers (Mito-Tracker Green (Mito), ER-Tracker Green (ER), and Lyso-Tracker Green (Lyso)) for 30 minutes, respectively, and then treated with NaOCI (5 μ M) for another 30 min. Prior to cell imaging, the medium was washed three times with PBS buffer to remove excess probes and trackers.

MTT assay

The HeLa cells were cultured for 12 hours, and then **MXS** at a concentration of 0, 1, 3, 5, 10, 20 μ M were separately added to per well and were again incubated for 24 hours. The treated cells were added to 0.012 M of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide solution per well, and then incubated again 4 hours. The medium was aspirated and then placed in 100 μ L DMSO for another two hours, and the absorbance at 490 nm was measured.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (NNSFC 21907075; 21272172), and the Natural Science Foundation of Tianjin City (19JCZDJC32400; 18JCQNJC75900).

Notes and references

- (a) S. G. Rhee, *Science*, 2006, **312**, 1882; (b) Y. Cui, Z. Lu, L. Bai, Z. Shi, W. Zhao and B. L. Zhao, *Eur. J. Cancer*, 2007, **43**, 2590; (c) Y. Tang, F. Feng, F. He, S. Wang, Y. Li and D. Zhu, *J. Am. Chem. Soc.*, 2006, **128**, 14972; (d) M. Schieber and N. S. Chandel, *Curr. Biol.*, 2014, **24**, 453.
- (a) A. Daugherty, J. L. Dunn, D. L. Rateri and J. W. Heinecke, J. Clin. Invest., 1994, 94, 437; (b) S. M. Wu and S. V. Pizzo, Arch. Biochem. Biophys., 2001, 391, 119; (c) K. C. Huang, C. C. Yang, K. T. Lee and C. T. Chien, Kidney Int., 2003, 64, 704.
- 3 (a) H. Zhu, J. Fan, J. Wang, H. Mu and X. Peng, J. Am. Chem. Soc., 2015, **136**, 12820; (b) D. Pattison and M. Davies, Chem. Res. Toxicol., 2001, **14**, 1453. (c) Y. W. Yap, M. Whiteman and

N. S. Cheung, *Cell Signal*, 2007, **19**, 219; (*d*) M. J. Steinbeck, L. J. Nesti, P. F. Sharkey and J Parvizi, *J. Orthop. Res.*, 2007, **25**, 1128.

- 4 (a) C. C. Winterbourn, M. B. Hampton, J. H. Livesey and A. J. Kettle, *J. Biol. Chem.*, 2006, **281**, 39860; (b) D. I. Pattison and M. J. Davies, *Chem. Res. Toxicol.*, 2001, **14**, 1453; (c) A. J. Kettle and C. C. Winterbourn, *Redox Rep.*, 1997, **3**, 3.
- 5 L. Moberg and B. Karlberg, Anal. Chim. Acta, 2000, 407, 127.
- (a) M. Sun, H. Yu, H. Zhu, F. Ma, S. Zhang, D. Huang and S. Wang, *Anal. Chem.*, 2014, **86**, 671; (b) J. J. Hu, N.-K. Wong, M.-Y. Lu, X. Chen, S. Ye, A. Q. Zhao, P. Gao, R. Y.-T. Kao, J. Shen and D. Yang, *Chem. Sci.*, 2016, **7**, 2094; (c) H. Ma, B. Song, Y. Wang, D. Cong, Y. Jiang and J. Yuan, *Chem. Sci.*, 2017, **8**, 150; (d) P. Wei, W. Yuan, F. Xue, W. Zhou, R. Li, D. Zhang and T. Yi, *Chem. Sci.*, 2018, **9**, 495; (e) Y. Tang, D. Lee, J. Wang, G. Li, J. Yu, W. Lin and J. Yoon, *Chem. Soc. Rev.*, 2015, **44**, 5003; (f) S. Kenmoku, Y. Urano, H. Kojima and T. Nagano, *J. Am. Chem. Soc.*, 2007, **129**, 7313; (g) X. Jiao, C. Liu, Q. Wang, K. Huang, S. He, L. Zhao and X. Zeng, *Anal. Chim. Acta*, 2017, **969**, 49; (h) C. Liu, Q. Wang, X. Jiao, H. Yao, S. He, L. Zhao and X. Zeng, *Iterahedron Lett.*, 2017, **58**, 2004; (j) L. Liang, C. Liu, X. Jiao, L. Zhao and X. Zeng, *Chem. Commun.*, 2016, **52**, 7982.
- 7 (a) J. J. Hu, N.-K. Wong, Q. Gu, X. Bai, S. Ye and D. Yang, Org. Lett., 2014, 16, 3544; (b) J. J. Hu, N.-K. Wong, M.-Y. Lu, X. Chen, S. Ye, A. Q. Zhao, P. Gao, R. Yi-Tsun Kao, J. Shen and D. Yang, Chem. Sci., 2016, 7, 2094; (c) G. Cheng, J. Fan, W. Sun, J. Cao, C. Hu and X. Peng, Chem. Commun., 2014, 50, 1018; (d) L. Wu, I. C. Wu, C. C. DuFort, M. A. Carlson, X. Wu, L. Chen, C.-T. Kuo, Y. Qin, J. Yu, S. R. Hingorani and D. T. Chiu, J. Am. Chem. Soc., 2017, 139, 6911; (e) Q. Xu, C. H. Heo, G. Kim, H. W. Lee, H. M. Kim and J. Yoon, Angew. Chem., Int. Ed., 2015, 54, 4890; (f) W. Zhang, W. Liu, P. Li, J. kang, J. Wang, H. Wang and B. Tang, Chem. Commun., 2015, 51, 10150.
- 8 (a) X. Jiao, K. Huang, S. He, C. Liu, L. Zhao and Xianshun Zeng, Org. Biomol. Chem., 2019, 17, 108; (b) H. Xiao, K. Xin, H. Dou, G. Yin, Y. Quan and R. Wang, Chem. Commun., 2015, 51, 1442; (c) Z. R. Grabowski, K. Rotkiewicz and W. Rettig, Chem. Rev., 2003, 103, 3899; (c) M. Vedamalai, D. Kedaria, R. Vasita and I. Gupta, Sens. Actuators, B, 2018, 263, 137; (d) C. Liu, X. Jiao, S. He, L. Zhao and X. Zeng, Talanta 2017, 174, 234.
- 9 (a) Y. Yue, F. Huo, C. Yin, J. Escobedo and R. M. Strongin, Analyst, 2016, **141**, 1859; (b) X. Chen, F. Wang, J. Hyun, T. Wei, J. Qiang, X. Ren, I. Shin and J. Yoon, *Chem. Soc. Rev.*, 2016, **45**, 2976.
- 10 (a) Z. Zhang and S. Achilefu, Org. Lett., 2004, 6, 2067; (b) J. M. Baumes, J. J. Gassensmith, J. Giblin, J. J. Lee, A. G. White, W. J. Culligan, W. M. Leevy, M. Kuno and B. D. Smith, Nat. Chem., 2010, 2, 1025; (c) X. Wang, L. Cui, N. Zhou, W. Zhu, R. Wang, X. Qian and Y. Xu, Chem. Sci., 2013, 4, 2936; (d) F. Wei, Y. Lu, S. He, L. Zhao and X. Zeng, Anal. Methods, 2012, 4, 616; (e) F. Wei, Y. Lu, S. He, L. Zhao and X. Zeng, J. Fluoresc., 2012, 22, 1257; (f) D. Zheng, X. Qiu, C. Liu, X. Jiao, S. He, L. Zhao and X. Zeng, New J. Chem., 2018, 42, 5135.
- 11 (a) Z. Q. Guo, S. Park, J. Yoon and I. Shin, Chem. Soc. Rev., 2014, **43**, 16; (b) R. Weissleder and V. Ntziachristos, Nat. Med., 2003, **9**, 123; (c) A. N. Butkevich, G. Lukinavičius, E. D'Este and S. W. Hell, J. Am. Chem. Soc., 2017, **139**, 12378; (d) L. Yuan, W. Lin, K. Zheng, L. He and W. Huang, Chem. Soc. Rev., 2013, **42**, 622; (e) C. Liu, X. Jiao, Q. Wang, K. Huang, S. He, L. Zhao and X. Zeng, Chem. Commun., 2017, **53**, 10727; (f) Q. Wang, K. Huang, S. Cai, C. Liu, X. Jiao, S. He, L. Zhao and X. Zeng, Org. Biomol. Chem., 2018, **16**, 7609; (g) S. Cai, C. Liu, X. Jiao, S. He, L. Zhao and X. Zeng, Org. Biomol. Chem., 2020, **18**, 1148; (h) S. Cai, C. Liu, X. Jiao, L. Zhao and X. Zeng, J. Mater. Chem. B, 2020, **8**, 2269; (i) J. Gong, C. Liu, X. Jiao, S. He, L. Zhao and X. Zeng, J. Mater. Chem. B, 2020, **8**, 2343.

- 12 T. Ren, W. Xu, W. Zhang, X. Zhang, Z. Wang, Z. Xiang, L. Yuan and X. Zhang, J. Am. Chem. Soc., 2018, 140, 1714 Sp./D00B01563F
- 13 (a) Y. Li, S. He, Y. Lu and X. Zeng, Org. Biomol. Chem. 2011, 9, 2606; (b) Y. Li, S. He, Y. Lu, L. Zhao and X. Zeng, Dyes Pigment, 2013, 96, 424.
- 14 (a) M. Beija, C. A. M. Afonso and J. M. G. Martinho, *Chem. Soc. Rev.*, 2009, **38**, 2410; (b) D. T. Quang and J. S. Kim, *Chem. Rev.*, 2010, **110**, 6280; (c) Y. Yang, Q. Zhao, W. Feng and F. Li, *Chem. Rev.*, 2012, **113**, 192; (d) K. P. Carter, A. M. Young and A. E. Palmer, *Chem. Rev.*, 2014, **114**, 4564.
- 15 Y. K. Kim, H. H. Ha, J. S. Lee, X. Bi, Y. H. Ahn, S. Hajar, J. J. Lee and Y. T. Chang, *J. Am. Chem. Soc.*, 2010, **132**, 576.
- 16 (a) J. Liu, Y. Q. Sun, Y. Huo, H. Zhang, L. Wang, P. Zhang, D. Song, Y. Shi and W. Guo, *J. Am. Chem. Soc.*, 2014, **136**, 574; (b) Y. M. Poronik, M. P. Shandura and Y. Kovtun, *Dyes Pigment.*, 2007, **72**, 199.
- 17 M. Beija, C. A. M. Afonso and J. M. G. Martinho, *Chem. Soc. Rev.*, 2009, **38**, 2410.
- 18 (a) M. Katrantzis, M. S. Baker, C. J. Handley and D. A. Lowther, Free Radical Biol. Med., 1991, 10, 101; (b) M. R. McCall, A. C. Carr, T. M. Forte and B. Frei, Arterioscler. Thromb. Vasc. Biol., 2001, 21, 1040.
- 19 O. A. Krasheninina, D. S. Novopashina, A. A. Lomzov and A. G. Venyaminova, *Chem. Bio. Chem.*, 2014, **15**, 1939.

Novel near-infrared fluorescent probe with a large Stokes shift for

sensing hypochlorous acid in mitochondria

Jin Gong, Chang Liu, Songtao Cai, Song He, Liancheng Zhao and Xianshun Zeng

A novel mitochondria-targeted fluorescent probe **MXS** with large Stokes shift (130 nm) based on a xanthene-hemicyanine dyad structure has been successfully designed and synthesized for the specific detection of HOCI.

Novel near-infrared fluorescent probe with a large Stokes shift for sensing hypochlorous acid in mitochondria

Jin Gong^{†, ‡}, Chang Liu[†], Songtao Cai^{†, ‡}, Song He[†], Liancheng Zhao^{†, ‡}, Xianshun Zeng^{*, †, ‡}

[†] Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China

[‡] School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001,

China

Published on 04 September 2020. Downloaded by Cornell University Library on 9/4/2020 2:11:15 PM.

*E-mail: xshzeng@tjut.edu.cn

Contents

Synthesis of MXSO	S2
Spectral data of MXS in different solvents	S2
Absorption and fluorescence spectra of MXS in different solvents	S2
Comparison of MXS with reported probes	
The absorption spectrum of MXS with OCl ⁻	
HRMS of MXS in the presence of OCl ⁻	S6
Spectral data of MXSO in different solvents	S6
Absorption and fluorescence spectra of MXSO in different solvents	S6
Continuous titration of UV/vis spectra	S7
MTT assay	S7
¹ H, ¹³ C NMR spectra and HRMS of MXS	S7-S8
¹ H, ¹³ C NMR spectra and HRMS of MXSO	
References	S10

Synthesis of MXSO:

View Article Online DOI: 10.1039/D0OB01563F

Organic & Biomolecular Chemistry Accepted Manuscrip

Upon addition of the *m*-CPBA (1 mmol, 172 mg) to compound **MXS** (1 mmol, 430 mg) in dry dichloromethane under ice bath, the temperature was naturally raised to room temperature, and the reaction was carried out for 8 hours under vigorous stirring. After removing the solvent under vacuum, the crude product was purified by silica gel column to afford a pure red solid product **MXSO** (272 mg, 61 % yield). HRMS m/z = 446.1790 calcd for $C_{27}H_{28}NO_3S^+[M]^+$, found: 446.1796. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.6 Hz, 1H), 8.11 (d, *J* = 8.8 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 2H), 7.84 (d, *J* = 16.3 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.30-7.28 (m, 2H), 7.17-7.14 (m, 2H), 6.85 (s, 1H), 4.01 (s, 3H), 3.71 (s, 4H), 2.88 (s, 3H), 1.37 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.70, 158.88, 158.64, 158.23, 157.47, 156.56, 154.97, 144.24, 144.07, 138.33, 132.22, 130.00, 129.38, 124.81, 121.17, 117.35, 116.89, 116.22, 115.41, 114.21, 113.38, 100.64, 96.65, 56.76, 46.78, 42.47, 30.92, 29.69, 27.93.

 Table S1 Spectral data of MXS in different solvents.

Solvents	λ _{abs} (nm)	λ_{em} (nm)	ε (mol ⁻¹ cm ⁻¹ L)	Φ^a
DCM	532	662	26000	0.168
EtOH	530	661	19000	0.113
DMSO	538	674	20000	0.064
PBS	524	654	20100	0.028
MeCN	528	669	23600	0.054
DMF	533	664	8900	0.085

^{*a*} Relative fluorescence quantum yield estimated by using Nile Blue ($\Phi_B = 0.27$ in ethanol)¹ as a fluorescence standard.

Fig. S1. Absorption and fluorescence spectra of MXS in different solvents.

Organic & Biomolecular Chemistry Accepted Manuscript

Structure	Stokes shifts (nm)	Emission (nm)	LOD (nM)	Reference
N COOH	97	672	92	Org. Biomol. Chem., 2019, 17, 108–114
N SI N	18	670	-	J. Am. Chem. Soc. 2011, 133, 5680–5682
HN O NH	17	547	25	Org. Lett., 2009, 859-861,
	27	580	9	Chem. Sci., 2015, 6, 4884- 4888
	18	579	300	Sensors and Actuators B, 2010, 150, 774–780
	35	580	192.1	Anal. Chem. 2018, 90, 7510- 7516
	50	618	4.5	Tetrahedron, 2020, 76, 131291

View Article Online 39/D0OB01563F

				View Article Online
$\begin{bmatrix} n \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	12	582	12	DOI: 10.1039/D00B01563F Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117355
	18	581	52	Sensors and Actuators B: Chemical, 2020,304, 127299
	20	730	10	Sensors & Actuators: B. Chemical, 2020, 307, 127652
	20	570	52	Sensors & Actuators: B. Chemical, 2019, 291, 207– 215
	19	589	10.2	Analytica Chimica Acta, 2019, 1052, 124-130
	22	590	140	Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219, 232–239
	97	730	2.3	Dyes and Pigments, 2019, 160, 989–994
	24	592	71.5	Analytica Chimica Acta, 2019, 1046, 185-191

Organic & Biomolecular Chemistry Accepted Manuscrip

Fig. S2. Absorption responses of **MXS** (10 μ M) in the presence of different relevant analytes (5 equiv.) in PBS (10 mM, pH = 7.4), 1: ${}^{1}O_{2}$, 2: $H_{2}O_{2}$, 3: blank, 4: NO, 5: NO₂⁻, 6: NO₃⁻, 7: O₂⁻, 8: •OH, 9: ONOO⁻, 10: TBHP, and 11: ClO⁻.

Fig. S3. HRMS spectra of MXS upon addition of OCl-.

Solvents	λ _{abs} (nm)	λ _{em} (nm)	ε (mol ⁻¹ cm ⁻¹ L)	Φ^a
DCM	533	570, 626	8900	0.082
EtOH	530	573, 628	6800	0.067
DMSO	536	631	6800	0.036
PBS	504	649	5700	0.018
MeCN	530	632	8300	0.031
DMF	533	578, 633	3300	0.053

Table S3 Spectral data of MXSO in different solvents.

^{*a*} Relative fluorescence quantum yield estimated by using Nile Blue ($\Phi_B = 0.27$ in ethanol)¹ as a fluorescence standard.

Fig. S4. Absorption and fluorescence spectra of MXSO in different solvents.

Fig. S5. (a) The absorption changes of MXS (10 µM) treated with increasing concentrations of OCl-(0.5 - 7 equiv.) in PBS (10 mM, pH = 7.4). (b) The plot of the fluorescence intensities at 524 nm versus the equivalents of OCl-.

Fig. S7 ¹H NMR spectra of MXS in CDCl₃

Fig. S9 HRMS spectra of MXS

Fig. S10¹H NMR spectra of MXSO in CDCl₃ (400 MHz).

Fig. S11 ¹³C NMR spectra of MXSO in CDCl₃ (100 MHz).

Fig. S12 HRMS spectra of MXSO.

References:

1. R. Sens, K. H. Drexhage, J. Luminesc., 1981, 24, 709.