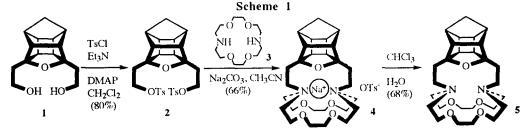


Tetrahedron Letters 39 (1998) 1861-1864

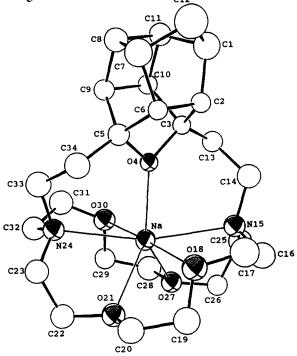
TETRAHEDRON LETTERS

Synthesis and Alkali Metal Picrate Extraction Capabilities of a 4-Oxahexacyclo[5.4.1.02,6.03,10.05,9.08,11]dodecane-derived Cryptand. A New Ionophore for Selective Ion Complexation

Alan P. Marchand*, Sulejman Alihodžić, Artie S. McKim and Kaipenchery A. Kumar Department of Chemistry, University of North Texas, Denton, Texas 76203-5070


Kata Mlinarić-Majerski* and Tatjana Šumanovac Department of Chemistry, Rudjer Bošković Institute, P. O. Box 1016, 10000 Zagreb, Croatia

Simon G. Bott* Department of Chemistry, University of Houston, Houston, Texas 77204-5641


Received 4 December 1997; accepted 5 January 1998

Abstract. The synthesis of a novel cage-functionalized cryptand, 5, and the X-ray crystal structure of its 1:1 complex with Na⁺, i.e. 4, are reported. Host molecule 5 displays high avidity toward Na⁺ and K⁺ picrates and appears to extract these cations selectively. The X-ray crystal structure of 4 clearly indicates that Na⁺ is bonded to all seven Lewis base centers (i.e., nitrogen and oxygen atoms) in the complex. In addition, the corresponding alkali metal picrate extraction profile was obtained for 10, an adamantane-containing analog of 5. With the possible exception of its ability to extract K⁺ picrate, there appears to be relatively little difference between the alkali metal picrate extracting capabilities of host molecule 10 and a corresponding monocyclic model system, i.e., *N*,*N*'-diethyl-4,13-diaza-18-crown-6 (6). © 1998 Elsevier Science Ltd. All rights reserved.

Introduction. Pursuant to our ongoing interests in the synthesis and chemistry of novel polycarbocyclic cage compounds,¹ we recently reported the preparation of several examples of cage functionalized molecular clefts,²⁻⁴ crown ethers,^{5,6} and adamantane-containing macrocyclic thioethers.⁷ Compounds of this type are of interest as members of a new class of "host" systems for the study of host-guest interactions (i.e., molecular recognition and inclusion phenomena). As an extension of these past studies, our attention has turned to the preparation of a new, cage-functionalized cryptand (i.e., 5, Scheme 1). Compound 5 and related systems are of interest as complexing agents for selective metal ion separation and transport. The synthesis and characterization of 5 and the subsequent determination of its alkali metal picrate extraction profile are described herein.

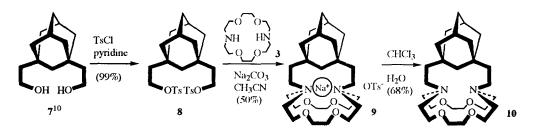

0040-4039/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4039(98)00120-8 **Results and Discussion.** Cryptand 5 was synthesized via the method shown in Scheme 1. Thus, diol 1⁵ was converted into the corresponding ditosylate, 2. Subsequent Na⁺ templated, base-promoted reaction of 2 with 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (i.e., "4,13-diaza-18-crown-6", 3) in CH₃CN solvent produced the corresponding Na⁺ complexed cryptand, 4 (66% yield). Unequivocal verification of the suggested structure for 4 was secured via application of X-ray crystallographic methods;⁸ the resulting X-ray structure drawing of 4 appears in Figure 1.

Figure 1. X-ray structure drawing of 4.

In order to assess the role of the bridging ether oxygen atom located in the cage moiety in promoting complexation of cryptand 5 with alkali metal cations, a series of three model host compounds was obtained, i.e., 4,13-diaza-18-crown-6 (3), N,N'-diethyl-4,13-diaza-18-crown-6 (6)⁹, and an N,N'-adamantane-bridged 4,13-diaza-18-crown-6 system, 10. Compound 10 was prepared in three steps by starting with 7¹⁰ (see Scheme 2).

Scheme 2

With all four host systems in hand, it then became of interest to compare the alkali metal picrate extraction profile of **5** with the corresponding extraction data obtained for these three model systems. Relevant extraction data is shown in Table 1. Inspection of the data reveals three important features: (i) cryptand **5** is *by far* the most efficient alkali metal picrate extracting agent among the four host compounds studied; (ii) cryptand **5** displays pronounced selectivity in this regard, thereby showing a strong preference to form complexes with Na⁺ and K⁺ *vis-à-vis* the remaining alkali metal picrates; (iii) with the exception of its ability to extract K⁺ picrate, there appears to be relatively little difference between the alkali metal picrate extracting capabilities of host molecule **10** and its corresponding monocyclic model system, **6**. All of these features clearly point to the pivotal role played by the bridging ether oxygen atom in promoting complexation of cryptand **5** with alkali metal cations. This conclusion is supported by the X-ray crystal structure of **4** (Figure 1), which clearly indicates that Na⁺ is bonded to all seven Lewis base centers (i.e., nitrogen and oxygen atoms) in the complex.^{11,12}

	Percent of Picrate Extracted (%)				
Host Molecule	Li ⁺	Na ⁺	К+	Rb ⁺	Cs ⁺
4,13-diaza- 18-crown-6 (3) ^a	11.0 ± 0.7	10.4 ± 1.3	13.0 ± 2.0	9.1 ± 0.6	10.1 ± 0.3
<i>N,N</i> '-diethyl 4,13-diaza- 18-crown-6 (6) ^b	3.3 ± 0.5	22.4 ± 0.6	34.8 ± 0.8	21.2 ± 0.7	16.0 ± 0.7
Host Molecule 10 ^b	11.2 ± 0.4	22.4 ± 0.6	46.7 ± 0.5	25.4 ± 0.7	22.1 ± 0.7
Cryptand 5 ^a	39.8 ± 0.8	95.1 ± 0.8	89.7 ± 1.2	56.1 ± 0.1	33.7 ± 0.7
^a Averages and standard deviations calculated for data obtained from five independent extraction experiments. ^b Averages and standard deviations calculated for data obtained from four independent experiments.					

Table. 1. Alkali metal picrate extraction data.

Current efforts in our respective laboratories are directed toward the isolation and characterization of additional crystalline complexes of 5 with metal ions of the type M⁺ and M⁺². In addition, we hope to be able to determine the relative stabilities of complexes of 5 with Na⁺ vis- ∂ -vis K⁺, either via competitive extraction experiments or via direct determination of their respective dissociation constants.¹³ The results of these efforts, when completed, will be described in the full paper.

Acknowledgment. We thank the Robert A. Welch Foundation (Grant B-0963 to A. P. M.) and the Croatian-American Joint Fund, in cooperation with the Croatian Ministry of Science and Technology and the U. S. National Science Foundation, for support of this study (Grant JF-141 to K. M. and A. P. M).

References and Footnotes

- (a) Marchand, A. P. In: Thummel, R. P. (Editor) Advances in Theoretically Interesting Molecules, JAI: Greenwich, CT, Vol. 1, 1989, pp. 357-399. (b) Marchand, A. P. Synlett 1991, 73. (c) Marchand, A. P. Aldrichimica Acta, 1995, 28, 95-104.
- (a) Marchand, A. P.; Annapurna, P.; Flippen-Anderson, J. L.; Gilardi, R.; George, C. Tetrahedron Lett. 1988, 29, 6681. (b) Marchand, A. P.; Annapurna, P.; Taylor, R. W.; Simmons, D. L.; Watson, W. H.; Nagl, A. Tetrahedron 1990, 46, 5077.
- 3. Haddadin, M. J.; Wang, Y.; Frenkel, S.; Bott, S. G.; Yang, L.; Braterman, P. S.; Carvallo, C.; Marchand, A. P.; Watson, W. H.; Kashyap, R. P.; Krawice, M.; Bourne, S. A. *Heterocycles* **1994**, *37*, 869-882.
- (a) Marchand, A. P.; Reddy, G. M.; Zaragoza, F.; Bartsch, R. A.; Eley, M. D. Tetrahedron Lett. 1993, 34, 5377. (b) Bartsch, R. A.; Eley, M.; Marchand, A. P.; Shukla, R.; Kumar, K. A. Tetrahedron 1996, 52, 8979.
- 5. Marchand, A. P.; Kumar, K. A.; McKim, A. S.; Mlinaric-Majerski, K.; Kragol, G. Tetrahedron 1997, 53, 3467.
- 6. Castro, R.; Davidov, P. D.; Kumar, K. A.; Marchand, A. P.; Evanseck, J. D.; Kaifer, A. E. J. Phys. Org. Chem. 1997, 10, 369.
- 7. Mlinaric-Majerski, K.; Pavlovic, D.; Luic, M.; Kojic-Prodic, B. Chem. Ber. 1994, 127, 1237.
- 8. Selected X-ray crystallographic data for 4 ($C_{34}H_{49}N_2O_8NaS$): Space group: P2₁/c; a = 17.602 (8) Å; b =10.320 (4) Å; c = 18.111 (5) Å; β = 90.07 (3) °; V = 3290 (2) Å³; Z = 4; μ = 1.57 cm⁻¹; D_{calc} = 1.350 g-cm⁻³; R = 0.0642; R_w = 0.0676. A complete description will be given in the full paper.
- 9. Model crown ether 6 was prepared by starting with 3 via a modification of a literature procedure. See: Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H.; Marsau, P.; Lehn, J.-M.; Kotzyba-Hibert, F.; Albrecht-Gary, A.-M.; Al-Joubbeh, M. J. Ann. Chem. Soc. 1989, 111, 8672.
- (a) Hayashita, T.; Higuchi, T.; Fujimoto, T.; Marchand, A. P.; Kumar, K. A.; Elkarim, N.; Hwang, H.-S.; Bartsch, R. A.; Mlinaric-Majerski, K.; Šumanovac, T. *Talanta* Manuscript in preparation. (b) Majerski, Z.; Škare, D.; Vuliz, L. Synth. Commun. 1986, 16, 51.
- 11. Similarly, Na⁺ is associated with all heteroatoms in, e. g., Na[2.2.2]NCS cryptate,^{12a} Na[2.2.2]I cryptate,^{12b,12c} and Na[2.2.2]Cl·3H₂O cryptate.^{12d} We thank a Referee for having brought these examples to our attention.
- (a) Mathieu, F.; Metz, B.; Moras, D.; Weiss, R. J. Am. Chem. Soc. 1978, 100, 4412. (b) Bush, M. A.; Truter, M. R. J. Chem. Soc., Perkin Trans. 2 1972, 341. (c) Moras, D.; Weiss, R. Acta Crystallogr., Sect. B 1973, B29, 396. (d) Dalley, N. K.; Krakowiak, K. E.; Bradshaw, J. S.; Kou, X. S.; Izatt, R. M. J. Heterocyclic Chem. 1995, 32, 1201.
- 13. The importance of determining the relative stabilities of complexes of 5 with Na⁺ vis-à-vis K⁺ has been noted by a Referee.