Tetrahedron Letters 52 (2011) 6072-6075

Contents lists available at SciVerse ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# Biomimetic synthetic studies on lactonamycin: an expedient synthesis of dihydroxy-isoindolinone-carboxylates

Sylvain A. Jacques, Bhavesh H. Patel, Anthony G. M. Barrett\*

Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom

### ARTICLE INFO

#### ABSTRACT

Article history: Received 22 July 2011 Revised 16 August 2011 Accepted 30 August 2011 Available online 10 September 2011

Keywords: Lactonamycin C-Acylation Aromatization Lactamization Dioxinones

#### Introduction

Lactonamycin (1) possesses several intriguing structural features (Fig. 1).<sup>1</sup> The novel, highly functionalized hexacyclic aglycone core, contains, in the western half, a highly-oxygenated fused perhydrofuran-furanone ring with a labile tertiary methoxy group, and in the eastern half, a naphtha[*e*]isoindole ring system. In addition to its interesting structure, the biological evaluation of lactonamycin (1) against Gram-positive bacteria showed significant levels of antimicrobial activity.<sup>2</sup> It was especially active against clinically isolated methicillin-resistant *Staphylococcus aureus* (MRSA) and vancomycin-resistant *Enterococcus* (VRE) with minimum inhibitory concentration levels of 0.39 and 0.20 µg/mL, respectively. Lactonamycin (1) also showed significant levels of cytotoxicity against various tumor cell lines.<sup>2</sup>

We<sup>3</sup> and others<sup>4</sup> have reported studies on the syntheses of the ABCD and CDEF ring systems of **1**. Our approach was based on the use of an intramolecular Friedel–Crafts acylation of acid **3**, which was synthesized from bromide **4** and triflate **5** via a Suzuki coupling reaction (Scheme 1).<sup>3b</sup> Although the original route provided sufficient quantities of triflate **5**, the synthesis was insufficiently concise and, therefore, we have investigated alternative routes toward the synthesis of triflate **5**.

Simple phthalimidines  $6^5$ (Fig. 2) are typically synthesized from 2-methylbenzoyl ester derivatives via radical benzylic bromination followed by condensation with a primary amine and cyclization;<sup>6</sup>

\* Corresponding author. *E-mail address*: agm.barrett@imperial.ac.uk (Anthony G. M. Barrett). condensation of isobenzofuran-1(3*H*)-one derivatives<sup>7</sup> or *o*-phthalaldehyde derivatives<sup>8</sup> with a primary amine; nitrile reduction of 2cyanobenzoyl ester derivatives and subsequent lactamization;<sup>9</sup> palladium-catalyzed reactions,<sup>10</sup> and finally the reduction of phthalimide derivatives.<sup>11</sup> Albeit usually high yielding, many of these conditions are often not suitable for phthalimidine derivatives bearing sensitive substituents on the aromatic ring.

The synthesis of dihydroxy-isoindolinone-carboxylates from a dioxinone keto-ester and N-protected

sarcosine without the use of phenolic protection is described. Base-induced aromatization of the dioxi-

We recently published the biomimetic synthesis of several resorcylate natural products by late-stage aromatization reactions from triketo-ester derivatives.<sup>12</sup> Based on this methodology,<sup>13</sup> we sought a second-generation biomimetic approach toward the synthesis of triflate **5**. Herein, we report the synthesis of an advanced intermediate toward triflate **5** using a late-stage base-induced aromatization of dioxinone diketo-ester.











© 2011 Elsevier Ltd. All rights reserved.

<sup>0040-4039/\$ -</sup> see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.08.173



Scheme 1. Retrosynthetic analysis of model CDEF tetracyclic target 2.



Figure 2. Generic structure of phthalimidine derivatives 6.

### **Results and discussion**

Our retrosynthesis is illustrated in Scheme 2. Dihydroxy-isoindolinone-carboxylates **7** should be available by deprotection followed by lactamization from isopropylidene-protected resorcylates **8**, which in turn could be prepared from dioxinone diketo-esters **9** by base-induced aromatization. Finally, C-acylation between keto-ester dioxinones **10** and acid chloride **11** derived from N-protected sarcosine could generate dioxinone diketo-esters **9**.

Reaction of Meldrüm's acid **12** with *tert*-butanol at 100 °C gave the half malonate ester **13** in 52% yield (Scheme 3).<sup>14</sup> The corresponding acid chloride **14a**, synthesized with oxalyl chloride, was allowed to react with the lithium enolate **15a** derived from dioxinone **15** by treatment with lithium hexamethyldisilazide to afford keto-ester dioxinone **10a** in 76% yield. In a similar manner, keto-ester dioxinone **10b** was prepared from acid chloride **14b**<sup>15</sup> in a lower yield of 35%.

The next step involved the key C-acylation of keto-ester dioxinones via Mg-enolate formation (Scheme 4). Sarcosine (**16**) was protected by sequential reaction with trimethylsilyl chloride<sup>16</sup> and 2-Me<sub>3</sub>SiCH<sub>2</sub>CH<sub>2</sub>SO<sub>2</sub>Cl (SESCl) followed by de-trimethylsilylation upon acid work-up to give **17**.<sup>17</sup> Upon treatment with oxalyl chloride, SES-protected sarcosine **17** was converted into the corresponding acid chloride **11a**, which was directly allowed to react with the Mg-enolates **18a** and **18b** of **10a** and **10b** to form dioxinone diketo-esters **9a** and **9b**.<sup>12</sup> These crude adducts were unstable and, therefore, were directly cyclized using triethylamine<sup>18</sup> to give resorcylates **8a** and **8b** in moderate yields of 49% and 30% over three steps, respectively.

Methanolysis of **8a** and **8b** in the presence of cesium carbonate gave methyl esters **19a** and **19b** in good yields (Scheme 5).<sup>18</sup> The deprotection of the SES group with Bu<sub>4</sub>NF was followed by subsequent lactamization to give dihydroxy-lactams **7a** and **7b** in 78% and 65% yields, respectively.<sup>19</sup>

In summary, we have developed a concise five-step synthesis to dihydroxy-isoindolinone-carboxylates **8a** and **8b** in good yield. Both could serve as potential precursors toward the synthesis of the EF-ring system of lactonamycin (**1**). This methodology could be further applied for the synthesis of a wider range of dihydroxy-isoindolinone derivatives starting from different amino acids or dioxinone keto-esters.



Scheme 2. Retrosynthetic analysis.



Scheme 3. Synthesis of dioxinone keto-esters 10a and 10b.







Scheme 5. Synthesis of dihydroxy-isoindolinone-carboxylates 7a and 7b.

### Acknowledgments

We thank the Engineering and Physical Sciences Research Council (EPSRC) and GlaxoSmithKline for grant support, and P. R. Haycock and R. N. Sheppard (Imperial College) for high-resolution NMR spectroscopy.

# Supplementary data

Supplementary data (experimental procedures, characterization data and copies of <sup>1</sup>H and <sup>13</sup>C NMR spectra for all new compounds) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2011.08.173.

## **References and notes**

 (a) Matsumoto, N.; Tsuchida, T.; Maruyama, M.; Sawa, R.; Kinoshita, N.; Homma, Y.; Takahashi, Y.; linuma, H.; Naganawa, H.; Sawa, T.; Hamada, M.; Takeuchi, T. J. Antibiot. **1996**, 49, 953; (b) Matsumoto, N.; Tsuchida, T.; Nakamura, H.; Sawa, R.; Takahashi, Y.; Naganawa, H.; linuma, H.; Sawa, T.; Takeuchi, T. J. Antibiot. **1999**, 52, 276.

- Matsumoto, N.; Tsuchida, T.; Maruyama, M.; Kinoshita, N.; Homma, Y.; Iinuma, H.; Sawa, T.; Hamada, M.; Takeuchi, T.; Heida, N.; Yoshioka, T. J. Antibiot. 1999, 52, 269.
- (a) Henderson, D. A.; Collier, P. N.; Pave, G.; Rzepa, P.; White, A. J. P.; Burrows, J. N.; Barrett, A. G. M. J. Org. Chem. 2006, 71, 2434; (b) Wehlan, H.; Jezek, E.; Lebrasseur, N.; Pave, G.; Roulland, E.; White, A. J. P.; Burrows, J. N.; Barrett, A. G. M. J. Org. Chem. 2006, 71, 8151; (c) Le Vezouet, R.; White, A. J. P.; Burrows, J. N.; Barrett, A. G. M. Tetrahedron 2006, 62, 12252.
- (a) Deville, J. P.; Behar, V. Org. Lett. 2002, 4, 1403; (b) Kelly, T. R.; Xu, D.; Martinez, G.; Wang, H. Org. Lett. 2002, 4, 1527; (c) Kelly, T. R.; Cai, X.; Tu, B.; Elliott, E. L.; Grossmann, G.; Laurent, P. Org. Lett. 2004, 6, 4953;
   (d) Parsons, P. J.; Waters, A. J.; Walter, D. S.; Board, J. J. Org. Chem. 2007, 72, 1395; (e) Parsons, P. J.; Board, J.; Waters, A. J.; Hitchcock, P. B.; Wakenhut, F.; Walter, D. S. Synlett 2006, 3243; (f) Parsons, P. J.; Board, J.; Faggiani, D.; Hitchcock, P. B.; Preece, L.; Waters, A. J. Tetrahedron 2010, 66, 6526; (g) Cox, C.; Danishefsky, S. J. Org. Lett. 2000, 2, 3493; (h) Cox, C.; Danishefsky, S. J. Org. Lett. 2001, 3, 2899; (i) Cox, C. D.; Siu, T.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 5625; (j) Siu, T.; Cox, C. D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 5629; (k) Watanabe, K.; Iwata, Y.; Adachi, S.; Nishikawa, T.; Yoshida, Y.; Kameda, S.; Ide, M.; Saikawa, Y.; Nakata, M. J. Org. Chem. 2010, 75, 5573; (l) Tatsuta, K.; Tanaka, H.; Tsukagoshi, H.; Kashima, T.; Hosokawa, S. Tetrahedron Lett. 2010, 51, 5546.
- 5. For recent representative examples, see: (a) Hardcastle, I. R.; Ahmed, S. U.; Atkins, H.; Farnie, G.; Golding, B. T.; Griffin, R. J.; Guyenne, S.; Hutton, C.; Källblad, P.; Kemp, S. J.; Kitching, M. S.; Newell, D. R.; Norbedo, S.; Northen, J. S.; Reid, R. J.; Saravanan, K.; Willems, H. M. G.; Lunec, J. J. Med. Chem. 2006, 49, 6209; (b) Lawson, E. C.; Luci, D. K.; Ghosh, S.; Kinney, W. A.; Reynolds, C. H.; Qi, J.; Smith, C. E.; Wang, Y.; Minor, L. K.; Haertlein, B. J.; Parry, T. J.; Damiano, B. P.; Maryanoff, B. E. J. Med. Chem. 2009, 52, 7432; (c) Kung, P. P.; Huang, B.; Zhang, G.; Zhongxiang Zhou, J.; Wang, J.; Digits, J. A.; Skaptason, J.; Yamazaki, S.; Neul, D.; Zientek, M.; Elleraas, J.; Mehta, P.; Yin, M.-J.; Hickey, M. J.; Gajiwala, K. S.; Rodgers, C.; Davies, II, J. F.; Gehring, M. R. J. Med. Chem. **2010**, 53, 499; (d) Hardcastle, I. R.; Liu, J.; Valeur, E.; Watson, A.; Ahmed, S. U.; Blackburn, T. J.; Bennaceur, K.; Clegg, W.; Drummond, C.; Endicott, J. A.; Golding, B. T.; Griffin, R. J.; Gruber, J.; Haggerty, K.; Harrington, R. W.; Hutton, C.; Kemp, S.; Lu, X.; McDonnell, J. M.; Newell, D. R.; Noble, M. E. M.; Payne, S. L.; Revill, C. H.; Riedinger, C.; Xu, Q.; Lunec, J. J. Med. Chem. 2011, 54, 1233; (e) Patel, B. H.; Mason, A. M.; Patel, H.; Coombes, R. C.; Ali, S.; Barrett, A. G. M. J. Org. Chem. 2011. 76. 6209.
- (a) Ganesan, A.; Wang, H. *Tetrahedron Lett.* **1998**, 39, 9097; (b) Wydysh, E. A.; Medghalchi, S. M.; Vadlamudi, A.; Townsend, C. A. *J. Med. Chem.* **2009**, *52*, 3317.

- (a) Takebayashi, S.; John, J. M.; Bergens, S. H. J. Am. Chem. Soc. 2010, 132, 12832;
  (b) Albrecht, B. K.; Bauer, D.; Bellon, S.; Bode, C. M.; Booker, S.; Boezio, A.; Choquette, D.; D'Amico, D.; Harmange, J.-C.; Hirai, S.; Hungate, R. W.; Kim, T.-S.; Lewis, R. T.; Liu, L.; Lohman, J.; Norman, M. H.; Potashman, M.; Siegmund, A. C.; Springer, S. K.; Stec, M.; Xi, N.; Yang, K. US Pat. Appl. 20090318436, 2009; *Chem. Abstr.* 2009, 152, 75083.
- (a) DoMinh, T.; Johnson, A. L.; Jones, J. E.; Senise, P. P., Jr. J. Org. Chem. 1977, 42, 4217; (b) Grigg, R.; Gunaratne, H. Q. N.; Sridharan, V. J. Chem. Soc., Chem. Commun. 1985, 1183.
- 9. Clift, M. D.; Silverman, R. B. J. Med. Chem. 2008, 28, 3122. and Ref. 4b.
- (a) Wu, X.; Mahalingam, A. K.; Wan, Y.; Alterman, M. Tetrahedron Lett. 2004, 45, 4635; (b) Marosvölgyi-Haskó, D.; Takács, A.; Riedl, Z.; Kollár, L. Tetrahedron 2011, 67, 1036.
- 11. Cosford, N. D. P. J. Med. Chem. 2011, 54, 342. and Ref. 4c.
- (a) Navarro, I.; Basset, J.-F.; Hebbe, S.; Major, S. M.; Werner, T.; Howsham, C.; Bräckow, J.; Barrett, A. G. M. *J. Am. Chem. Soc.* **2008**, *130*, 10293; (b) Calo, F.; Richardson, J.; Barrett, A. G. M. *Org. Lett.* **2009**, *11*, 4910. and Ref. 5e.
- 13. Harris, T. M.; Harris, C. M. Tetrahedron 1977, 33, 2159.
- 14. Sato, M.; Ban, H.; Kaneko, C. Tetrahedron Lett. 1997, 38, 6689.
- 15. Acid chloride 14b was purchased from Aldrich and used as received.
- (a) Weinreb, S. M.; Chase, C. E.; Wipf, P.; Venkatraman, S. Org. Synth. 1997, 75, 161; (b) Han, X.; Civiello, R. L.; Fang, H.; Wu, D.; Gao, Q.; Chaturvedula, P. V.; Macor, J. E.; Dubowchik, G. M. J. Org. Chem. 2008, 73, 8502; (c) Huang, J.; Widlanski, T. S. Tetrahedron Lett. 1992, 33, 2657; For alternative synthesis of SESCI, see: (d) Weinreb, S. M.; Demko, D. M.; Lessen, T. A.; Demers, J. P. Tetrahedron Lett. 1986, 27, 2099.
- 17. Ribière, P.; Declerck, P.; Martinez, J.; Lamaty, F. Chem. Rev. 2006, 106, 2249. and references therein.
- (a) Basset, J.-F.; Leslie, C.; Hamprecht, D.; White, A. J. P.; Barrett, A. G. M. Tetrahedron Lett. **2010**, *51*, 783; (b) Patel, B. H.; Heath, S. F. A.; Mason, A. M.; Barrett, A. G. M. Tetrahedron Lett. **2011**, *52*, 2258.
- 19. The first attempt to remove the remaining tetrabutylammonium salts by acid/ base extractions was difficult. Based on the work developed by Parlow et al. (Parlow, J. J.; Vazquez, M. L.; Flynn, D. L. *Bioorg. Med. Chem. Lett.* **1998**, 8, 2391 and improved by Kishi et al. (Kaburagi, Y.; Kishi, Y. Org. Lett. **2007**, 9, 723) the addition of a sulfonic acid resin (DOWEX 50WX8-400) and calcium carbonate successfully sequestered the Bu<sub>4</sub>NF and other tetrabutylammonium salts giving **7a** and **7b** in 75% and 63% isolated yields, respectively, after a single filtration. In order to decrease the reaction time, 10 equiv of Bu<sub>4</sub>NF were used, and the reaction went to completion after 6 h and dihydroxy-isoindolinones **7a** and **7b** were isolated in 78% and 65% yields, respectively.