Chemical Science

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: N. Hayama, Y. Kobayashi, E. Sekimoto, A. Miyazaki, K. Inamoto, T. Kimachi and Y. Takemoto, *Chem. Sci.*, 2020, DOI: 10.1039/D0SC01729A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemical-science

View Article Online

View Journal

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

A Solvent-dependent Chirality-switchable Thia-Michael Addition to α , β -Unsaturated Carboxylic Acids using a Chiral Multifunctional Thiourea Catalyst

Noboru Hayama,^{a,b} Yusuke Kobayashi,^a Eriko Sekimoto,^b Anna Miyazaki,^b Kiyofumi Inamoto,^b Tetsutaro Kimachi,^b and Yoshiji Takemoto^{*a}

An asymmetric thia-Michael addition of arylthiols to α , β -unsaturated carboxylic acids using a thiourea catalyst that bears arylboronic acid and tertiary amine moieties is reported. Both enantiomers of the Michael adducts can be obtained in high enantioselectivity and good yield merely by changing the solvent. The origin of the chirality switch in the products was examined in each solvent via spectroscopic analyses.

Introduction

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Open Access Article. Published on 14 May 2020. Downloaded on 5/16/2020 1:34:02 AM

Due to the importance of organosulfur compounds in medicinal chemistry and biochemistry, their asymmetric synthesis has been studied extensively.1 The catalytic asymmetric thia-Michael addition (TMA) to α , β -unsaturated carbonyl compounds (Figure 1A) is of particular importance in this context on account of its ability to furnish versatile synthetic intermediates for a variety of biologically active compounds such as benzothiazepine derivatives.^{2,3} Various activated Michael acceptors have been successfully used for TMA,⁴ e.g. α , β -unsaturated oxazolidinones,⁵ imides,⁶ nitro alkenyl isoxazoles,⁷ thioamides,⁸ acylpyrazoles,⁹ carboxylic acid anhydrides,¹⁰ and enone diesters.¹¹ However, due to their low inherent electrophilicity, catalytic asymmetric TMA to unactivated Michael acceptors such as α,β -unsaturated esters,¹² amides, and carboxylic acids¹³ remains a challenge. In general, thia-Michael adducts need derivatization to produce biologically active compounds, e.g. a conversion of the carbonyl moiety to carboxylic acid via hydrolysis or oxidation.² Considering atom and step economy, direct catalytic TMA to α , β -unsaturated carboxylic acids would thus be highly desirable.

Herein, we report a direct asymmetric TMA to α,β -unsaturated carboxylic acids using a multifunctional organocatalyst, which comprises 1.) thiourea as a hydrogen bond (HB) donor, 2.) a chiral tertiary amine derived from (*R*,*R*)-cyclohexane diamine, and 3.) aryl boronic acid moieties (Figure 1B). Based on our previous work,¹⁴ in a non-polar solvent and in the presence of two equivalents of carboxylic acid and molecular sieves (MS),

we expect the catalyst to form ternary complex **A**, which promotes the addition of a nucleophile to the 'unusual' s-*trans*-form of the α , β -unsaturated carboxylate to generate the corresponding (S)-adduct.

Furthermore, we propose that a conformational change of the catalyst¹⁵ via further dehydration may be possible in an aprotic polar solvent, producing the 'usual' (*R*)-adduct¹⁶ via addition to the s-*cis*-form of the α , β -unsaturated carboxylate in complex **B**. As the acidity of boron influences the strength of N-B dative

^{a.} Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, E-mail: takemoto@pharm.kyoto-u.ac.jp

^{b.} School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's

University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan † Electronic Supplementary Information (ESI) available: Experimental procedures,

spectroscopic data, copies of ¹H and ¹³C NMR spectra, and HPLC chromatograms. See DOI: 10.1039/x0xx00000x

Journal Name

ARTICLE

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 14 May 2020. Downloaded on 5/16/2020 1:34:02 AM

bonds,¹⁷ we altered the structure of the catalyst by modifying the aryl boronic acid moiety. Chirality-switch systems¹⁸ that use a catalyst from the same chiral source¹⁹ are rare, even though they offer great potential for the construction of chemical libraries for drug discovery.

Results and discussion

Initially, we explored the TMA of thiophenol 2a to crotonic acid 3a using 10 mol% of catalyst 1a and 4Å MS in CCl₄ (Table 1).

Table 1. Solvent and catalyst screening

PhSH + 2a	Me OH -	1 (10 mol%) 4Å MS (50 mg) 0.1 M solvent rt, 24 h	Ph_S_O Me_OH (S)-4a	or Me OH	
Entry	solvent	catalyst	yield ^b (%)	ee ^c (%)	
1	CCl ₄	1a	90	41 (S)	
2	CH_2CI_2	1a	21	22 (S)	
3	<i>n</i> -hexane	1a	28	48 (<i>S</i>)	
4	CH₃CN	1a	36	39 (<i>R</i>)	
5	acetone	1a	68	82 (<i>R</i>)	
6	MeOH	1a	0	-	
7 ^d	CCl ₄	1a	0	-	
8 ^d	acetone	1a	11	15 (R)	
9 e	CCl ₄	1a	91	81 (<i>S</i>)	
10	acetone	1b	35	33 (<i>R</i>)	
11	acetone	1c	67	78 (R)	
12	acetone	1d	57	81 (R)	
13	acetone	1e	61	68 (<i>R</i>)	
14	acetone	1f	35	45 (R)	
15	acetone	1g	60	92 (R)	
16	acetone	1h	53	45 (R)	
17 ^f	acetone	1g	80	92 (<i>R</i>)	
18 ^e	CCl ₄	1g	78	75 (<i>S</i>)	
R ¹ H H (HO) ₂ B		Ph H H (HO) ₂ B	Ph. M.	Ph, N,	
1a (R ¹ = H) 1b (R ¹ = NO ₂) 1c (R ¹ = OMe)		1d (R ² = CF 1e (R ² = ON	^E ₃) 1 Me) 1 1	$f (R^3 = CF_3)$ $g (R^3 = OMe)$ $h (R^3 = NMe_2)$	

 a Unless otherwise noted, the reactions were carried out using **3a** (0.1 mmol), **2a** (1.0 equiv), **1a** (0.1 equiv), and 4Å MS (50 mg) in the specified solvent (1.0 mL) at room temperature for 24 h. b Isolated yield after treatment with TMSCHN₂. c Estimated using chiral HPLC after treatment with TMSCHN₂. The absolute configuration is indicated in parentheses. d Without 4Å MS. e CCl₄ (50 μ L) and 4Å MS (20 mg). f 4Å MS (100 mg).

This reaction furnished Michael adduct (*S*)-**4a**, which exhibits the same chirality as that of the aza-Michael addition (Table 1, entry 1).^{14a} In the presence of non-polar solvents such as CCl₄, CH₂Cl₂, and *n*-hexane, the major isomer of the Michael adduct is (*S*)-**4a**²⁰ (Table 1, entries 1-3). In contrast, in the presence of aprotic polar solvents such as acetonitrile and acetone, the major product is (*R*)-**4a** (Table 1, entries 4 and 5). The reaction did not proceed in MeOH, presumably due to its coordination

to the boron atom of the catalyst (Table 1, entry 6), Notably, the catalytic activity of **1a** is significantly reduced in 1978/2086A22 of MS; this result suggests that the formation of a boron complex via dehydration is essential for the successful TMA in both polar and non-polar solvents (Table 1, entries 7 and 8). The (S)selectivity (81% ee) is significantly improved at higher concentrations in CCl₄ (Table 1, entry 1 vs 9). This is presumably due to the rapid formation of complex A (¹¹B NMR: 4 ppm; Figure S6), which supresses the undesired formation of the (R)adduct (for further details, see the ESI). Subsequently, we investigated the effect of substituents (R¹, R², R³) on the catalyst in order to improve the yield and (R)-selectivity in acetone. Thioureas 1b-c with different R¹ substituents (OMe, NO₂) neither improve the yield nor the enantioselectivity (Table 1, entries 10 and 11). Then, we examined the electronic effect of the boronic acid moiety by introducing electron-withdrawing and donating groups (R², R³) into the aromatic ring of the arylboronic acid moieties. We found that catalysts 1d and 1e, which contain substituents at the meta-position relative to the boron atom (R²), only have a marginal effect on the results (Table 1, entries 12 and 13). However, when substituents are at the para-position relative to the boron atom (R³), a significant improvement of the reactivity and enantioselectivity was observed (Table 1, entries 14-16). This is demonstrated by the excellent results from catalyst 1g, which bears a methoxy group.²¹ In addition, increasing the amount of MS provides the (R)-adduct in 80% yield with 92% ee (Table 1, entry 17).

Figure 2. Substrate scope with respect to thiols ^{a-d}

^a The reaction was carried out using **3a** (0.1 mmol), **2a** (1.0 equiv), **1a** (0.1 equiv), and 4Å MS (20 mg) in CCl₄ (50 µL) at room temperature for 24 h. ^b The reaction was carried out using **3a** (0.1 mmol), **2a** (1.0 equiv), **1g** (0.1 equiv), and 4Å MS (100 mg) in acetone (1.0 mL) at room temperature for 24 h. ^c Isolated yield after treatment with TMSCHN₂. ^d Ee values were estimated using chiral HPLC analysis after treatment with TMSCHN₂. ^e The reaction was performed for 48 h.

With the optimized conditions in hand, we investigated the electronic and steric effects of thiols²² on the asymmetric TMA in two different solvents (Figure 2). In both solvents, electronrich aryl thiols generally produce the corresponding adducts (**4b-4d**) in good yield (64-88%) with high enantioselectivity (80-91% ee). However, a slight decrease in reaction rate was observed for *ortho*-substituted thiols (**4d**). Similarly, *tert*-butyl-

Journal Name

substituted benzenethiol produced both enantiomers of **4e** with high yield and enantioselectivity. In contrast, the use of thiols with electron-withdrawing substituents, such as chlorine (Cl) and trifluoromethyl (CF₃) groups on the aromatic ring, dramatically decreases the enantioselectivity of the adducts **4f**

and **4g**, which was partially ascribed to background reactions and **4g**, which was partially ascribed to background reactions are the constraint of **4g** was not improved with the temperature, and the chemical yield of **4g** significantly dropped presumably due to the decreased solubility of the substrates.

^a Unless otherwise noted, the reaction was carried out using **3** (0.1 mmol), **2** (1.0 equiv), **1a** (0.1 equiv), and 4Å MS (20 mg) in CCl₄ (50 µL) at room temperature for 24 h. ^bThe reaction was carried out using **3** (0.1 mmol), **2** (1.0 equiv), **1g** (0.1 equiv), and 4Å MS (100 mg) in acetone (1.0 mL) at room temperature for 24 h. ^cIsolated yield after treatment with TMSCHN₂. ^d ee Values were estimated using chiral HPLC analysis after treatment with TMSCHN₂. ^eThe reaction was performed for 48 h. ^fOne equivalent of benzoic acid was added.

Using the optimized conditions, we then investigated the substrate scope with respect to α , β -unsaturated carboxylic acids **3** (Figure 3). Several different aliphatic α , β -unsaturated carboxylic acids furnish the corresponding adducts (**4h-4q**) in good yield with good to high ee values in both solvents. An efficient TMA was observed for the linear alkyl Michael acceptors producing ee values of 81-91% (**4o-4q**). Notably, a γ -branched α , β -unsaturated carboxylic acid generates adducts

(*R*)-**4r** (88% ee) and (*S*)-**4r** (91% ee) in CCl₄ and acetone, respectively; however, the yield is somewhat decreased due to steric hindrance. Although enantioselectivity was not observed for adduct **4s** using highly reactive trifluoromethyl-substituted α , β -unsaturated carboxylic acids as Michael acceptors, our solvent-dependent chirality-switchable TMA successfully produces both enantiomers of **4t-x** in combination with substrates bearing ether, ester, and various aryl groups. One of

Journal Name

ARTICLE

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 14 May 2020. Downloaded on 5/16/2020 1:34:02 AM

the limitations of this method is the addition to cinnamic acid derivatives, which resulted in recovery of the starting materials. It is worth mentioning that, using benzoic acid as an additive, a slight increase in ee (ca. 10%) is observed, especially when bulky substrates are employed to obtain (*R*)-**4r** and (*S*)-**4x** in CCl₄. A similar effect was observed in the asymmetric aza-Michael addition to α , β -unsaturated carboxylic acids in CCl₄.^{14c}

Mechanistic insight into the solvent-dependent chiralityswitchable TMA was obtained using NMR spectroscopic analysis (Figure 4) in CDCl₃ and CD₂Cl₂ as substitutes for CCl₄ (Figure S1-S2), as well as in acetone- d_6 (Figure S3).

(c) Detection of complex ${\bf B}$ using ESI-MS in acetone in the presence of 4Å MS

In the presence of thiol **2a** (10 equiv), carboxylic acid **3a** (10 equiv), and 4Å MS in CDCl₃, the ¹¹B NMR resonances for **1a** converge at 4 ppm after 1 h (Figure 4a). This result indicates the

formation of the tetrahedral boron complex A and is consistent with previous work on aza-Michael additions.19Ae3addition769a nucleophile to the s-trans form of α , β -unsaturated carboxylate A (Figure 1B) is favored over the addition to the s-cis form, which is due to steric repulsion between the s-cis form and the aromatic ring of the catalyst.^{14c} Interestingly, in acetone- d_6 , the peaks of 1a gradually converge at 10 ppm in the presence of thiol 2a (10 equiv), carboxylic acid 3a (10 equiv), and 4Å MS (Figure 4b). We assume that the 10 ppm peak is derived from an N-B dative bond in e.g. complex B, as the N-B dative bond signals shift ca. 4-7 ppm downfield relative to the signals of tetrahedral borate complexes coordinated by water.¹⁵ An ESI-MS analysis of mixtures of 1a, 2a, and 4Å MS in acetone further support the formation of an N-B dative bond (Figure 4c). The exact mass peak of complex **B** (m/z calculated for C₂₉H₃₅BN₃O₄S [M-H]⁻: 532.2447) was detected at 532.2440 with an error of no more than 5 ppm. It should be mentioned here that such a peak was not detected in CCl₄ or CHCl₃ (Figure S4). Complex B is allegedly generated by the dehydration of complex A or its dimer,^{14c} which is assisted by coordination of acetone to the boron atom. Preliminary computational studies suggest that nucleophilic addition to the s-cis form of complex B (Figure 1B) is by 2.0 kcal/mol more favorable than addition to the s-trans form (Figure S6-S7),²⁴ as the N-B chelation forces the carboxylate moiety away from the aromatic ring of the catalyst. The formation of an N-B bond is further supported by experimental results using catalyst 1g; the methoxyl group at the para-position relative to the boron atom on the aromatic ring of 1g facilitates dehydration via the mesomeric effect to form complex B, resulting in high enantioselectivity in acetone

Finally, using 'the same' catalyst, we demonstrate the efficient production of both enantiomers of biologically active compounds^{2b} (Scheme 1). For example, β -sulfonylhydroxamic acid derivatives show potent inhibitory activity towards peptide deformylase and matrix metalloproteases, whereby the activity of one enantiomer is by two orders of magnitude higher than that of the other.^{2b,c} The construction of a library of both enantiomers can be expected to aid clarifying the exact biological activity and to suppress adverse effects caused by these compounds. The chirality-switchable system based on catalyst **1a** allows the production of enantiomers **4b,c** from thiols **2** and α , β -unsaturated carboxylic acids **3** simply by changing the solvent from CCl₄ to acetone.

(Table 1).25

Manus

Science Accepted

Journal Name

Scheme 1. An efficient approach to generate both target enantiomers of **4b,c** using catalyst **1a**.

Conclusions

We have developed a solvent-dependent asymmetric thia-Michael addition (TMA) of thiols to α , β -unsaturated carboxylic acids, wherein both (*S*)- and (*R*)-adducts can be obtained in good yield and high enantioselectivity. Using ¹¹B NMR spectroscopy and ESI-MS analyses, we found that the coordination state of boron in the catalyst depends on the coordinating nature of the aprotic solvent. These findings can be expected to lead to the development of new organoboron catalysts and the construction of chemical libraries. Studies to extend the synthetic applications of this catalytic system are currently in progress in our laboratory.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by JSPS KAKENHI grant 16H06384.

Notes and references

- 1 (a) J. Clayden, P. MacLellan, *Beilstein J. Org.Chem.* 2011, **7**, 582–595. (b) P. Chauhan, S. Mahajan, D. Enders, *Chem. Rev.* 2014, **114**, 8807-8864.
- (a) C. J. Burns, R. D. Groneberg, J. M. Salvino, G. McGeehan, S. M. Condon, R. Morris, M. Morrissette, R. Mathew, S. Darnbrough, K. Neuenschwander, A. Scotese, S. W. Djuric, J. Ullrich, R. Labaudiniere, *Angew. Chem., Int. Ed.* 1998, **37**, 2848-2850. (b) C. Apfel, D. W. Banner, D. Bur, M. Dietz, T. Hirata, C. Hubschwerlen, H. Locher, M. G. P. Page, W. Pirson, G. Rossé, J.-L. Specklin, *J. Med. Chem.* 2000, **43**, 2324-2331. (c) J. M. Salvino, R. Mathew, T. Kiesow, R. Narensingh, H. J. Mason, A. Dodd, R. Groneberg, C. J. Burns, G. McGeehan, J. Kline, E. Orton, S.-Y. Tang, M. Morrisette, R. Labaudininiere, *Bioorg. Med. Chem. Lett.* 2000, **10**, 1637-1640. (d) M. Sani, G. Candiani, F. Pecker, L. Malpezzi, M. Zanda, *Tetrahedron Lett.* 2005, **46**, 2393-2396.
- 3 J. B. Bariwal, K. D. Upadhyay, A. T. Manvar, J. C. Trivedi, J. S. Singh, K. S. Jain, A. K. Shah, *Eur. J. Med. Chem.* 2008, **43**, 2279-2290.
- 4 (a) D. Enders, K. Lüttgen, A. A. Narine, *Synthesis* 2007, 959-980. (b) P. Wadhwa, A. Kharbanda, A. Sharma, *Asian J. Org. Chem.* 2018, 7, 634-661.
- 5 (a) S. Kanemasa, Y. Oderatoshi, E. Wada, J. Am. Chem. Soc. 1999, 121, 8675-8676. (b) S. Kobayashi, C. Ogawa, M. Kawamura, M. Sugiura, Synlett 2001, 983-985. (c) K. Matsumoto, A. Watanabe, T. Uchida, K. Ogi, T. Katsuki, Tetrahedron Lett. 2004, 45, 2385-2388. (d) S. J. K. Sauerland, E. Kiljunen, A. M. P. Koskinen, Tetrahedron Lett. 2006, 47, 1291-1293. (e) S. Lauzon, H. Keipour, V. Gandon, T. Ollevier, Org. Lett. 2017, 19, 6324-6327.
- 6 B.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L. S. Ding, Y. Wu, *Synlett* 2005, 603-606.
- 7 Q.-L. Pei, H.-W. Sun, Z.-J. Wu, X.-Li. Du, X.-M. Zhang, W.-C. Yuan, J. Org. Chem. 2011, **76**, 7849-7859.

- 8 T. Ogawa, N. Kumagai, M. Shibasaki, *Angew. Chem. Int. Ed.* 2012, **51**, 8551-8554. DOI: 10.1039/DOSC01729A
- 9 (a) X.-Q. Dong, X. Fang, H.-Y. Tao, X. Zhou, C.-J. Wang, Adv. Synth. Catal. 2012, 354, 1141-1147. (b) G. Wang, Y. Tang, Y. Zhang, X. Liu, L. Lin, X. Feng, Chem.-Eur. J. 2017, 23, 554 557. (c) S. Meninno, C. Volpe, A. Lattanzi, Chem.-Eur. J. 2017, 23, 4547-4550. (d) S. Meninno, S. Naddeo, L. Varricchio, A. Capobianco, A. Lattanzi, Org. Chem. Front. 2018, 5, 1967-1977.
- 10 (a) Y. Fukata, K. Asano, S. Matsubara, *J. Am. Chem. Soc.* 2015, 137, 5320-5323. (b) Y. Fukata, K. Yao, R. Miyaji, K. Asano, S. Matsubara, *J. Org. Chem.* 2017, 82, 12655-12668.
- (a) R. Wang, J. Liu, J. Xu, Adv. Synth. Catal. 2015, 357, 159-167.
 (b) J. L. Fulton, M. A. Horwitz, E. L. Bruske, J. S. Johnson, J. Org. Chem. 2018, 83, 3385-3391.
- (a) K. Nishimura, M. Ono, Y. Nagaoka, K. Tomioka, *J. Am. Chem. Soc.* 1997, **119**, 12974-12975. (b) X.-Q. Dong, X. Fang, C.-J. Wang, *Org. Lett.* 2011, **13**, 4426-4429. (c) X. Fang, J. Li, C.-J. Wang, *Org. Lett.* 2013, **15**, 3448-3451. (d) P. Yuan, S. Meng, J. Chen, Y. Huang, *Synlett* 2016, **27**, 1068–1072. (e) J. Yang, A. J. M. Farley, D. J. Dixon, *Chem. Sci.* 2017, **8**, 606-610.
- 13 To the best of our knowledge, there is only one report of a catalytic asymmetric thia-Michael addition involving α , β -unsaturated carboxylic acids; for details, see: P. N. Kalaria, J. R. Avalani, D. K. Raval, *Tetrahedron: Asymmetry* 2016, **27**, 947-953.
- 14 (a) N. Hayama, T. Azuma, Y. Kobayashi, Y. Takemoto, *Chem. Pharm. Bull.* 2016, **64**, 704-717. (b) T. Azuma, A. Murata, Y. Kobayashi, T. Inokuma, Y. Takemoto, *Org. Lett.* 2014, **16**, 4256-4259. (c) N. Hayama, R. Kuramoto, T. Földes, K. Nishibayashi, Y. Kobayashi, I. Pápai, Y. Takemoto, *J. Am. Chem. Soc.*, 2018, **140**, 12216-12225. (d) K. Michigami, H. Murakami, T. Nakamura, N. Hayama, Y. Takemoto, *Org. Biomol. Chem.*, 2019, **17**, 2331-2335.
- (a) L. Zhu, S. H. Shabbir, M. Gray, V. M. Lynch, S. Sorey, E. V. Anslyn, J. Am. Chem. Soc., 2006, **128**, 1222-1232. (b) B. E. Collins, S. Sorey, A. E. Hargrove, S. H. Shabbir, V. M. Lynch, E. V. Anslyn, J. Org. Chem. 2009, **74**, 4055-4060. (c) I. Georgiou, G. Ilyashenko, A. Whiting, Acc. Chem. Res. 2009, **42**, 756-768. (d) J. D. Larkin, J. S. Fossey, T. D. James, B. R. Brooks, C. W. Bock, J. Phys. Chem. A 2010, **114**, 12531–12539. (e) A. Sakakura, T. Ohkubo, R. Yamashita, M. Akakura, K. Ishihara, Org. Lett. 2011, **13**, 892–895. (f) X. Sun, B. M. Chapin, P. Metola, B. Collins, B. Wang, T. D. James, E. V. Anslyn, Nat. Chem. 2019, **11**, 768–778.
- 16 (a) Y. Kobayashi, Y. Taniguchi, N. Hayama, T. Inokuma, Y. Takemoto, *Angew. Chem., Int. Ed.*, 2013, **52**, 11114-11118. (b)
 Y. Kobayashi, S. Li, Y. Takemoto, Asian. *J. Org. Chem.*, 2014, **3**, 403-407.
- 17 B. G. Janesko, J. Chem. Theory Comput. 2010, 6, 1825–1833.
- 18 For reviews, see: (a) G. Romanazzi, L. Degennaro, P. Mastrorilli, R. Luisi, ACS Catal. 2017, 7, 4100-4114. For examples of solvent-controlled chirality-switchable systems, see: (b) Y. Sohtome, S. Tanaka, K. Takada, T. Yamaguchi, K. Nagasawa, Angew. Chem., Int. Ed. 2010, 49, 9254-9257. (c) J. Flores-Ferrándiz, R. Chinchilla, Tetrahedron: Asymmetry 2014, 25, 1091-1094. (d) R. J. Chew, X.-R. Li, Y. Li, S. A. Pullarkat, P.-H. Leung, Chem.-Eur. J. 2015, 21, 4800-4804. For an example of solvent-controlled diastereoselectivity, see: (e) X. Tian, C. Cassani, Y. Lin, A. Moran, A. Urakawa, P. Galzerano, E. Arceo, P. Melchiorre, J. Am. Chem. Soc., 2011, 133, 17934-17941.
- 19 Y. Fukata, K. Asano, S. Matsubara, J. Am. Chem. Soc. 2013, 135, 12160–12163.
- 20 The absolute configuration of **4a** was determined by comparing the specific optical rotation to that of an authentic sample. For further details, see the ESI.
- 21 Presumably, these moderate results were caused by the poor solubility of **1h** in acetone.

ARTICLE

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 14 May 2020. Downloaded on 5/16/2020 1:34:02 AM.

- 22 Benzyl mercaptan (BnSH) did not produce the corresponding adduct in both solvents, presumably due to the insufficient acidity of S-H proton.
- 23 For example, the TMA of 4-trifluoromethylbenzenthiol with crotonic acid proceeded in ca. 50% yield in acetone (in the presence of MS without a catalyst).
- 24 Alternative pathways for the formation of the (*R*)-adduct, including the coordination of thiol to the boron atom, cannot be ruled out at this point.
- 25 In the presence of acetone, the reaction via complex A was unlikely to proceed. See the Supplementary Information for the effect of acetone in CCl₄ (Scheme S3a). The effect of premixing of catalyst and **3a** in acetone was also described in Scheme S3b,c.

Page 6 of 6

View Article Online DOI: 10.1039/D0SC01729A