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Abstract

Extrapolating from lessons learnt with previous low molecular weight β-(1→3)-mimetics we 

designed a series of minimal 2,4-dideoxy-thioether-linked carbacyclic β-(1→3)-mimetics and 

synthesized the di-, tri- and tetramers in enantiomerically pure form by an iterative sequence based 

on a simple building block readily available from commercial (S)-(-)-3-cyclohexenecarboxylic 

acid.  These substances were screened for their ability to inhibit anti-CR3-FITC staining of human 

neutrophils and anti-Dectin-1-FITC staining of mouse macrophages, as well as for their ability to stimulate 

phagocytosis and pinocytosis.  In each assay the synthetic compounds displayed comparable activity to the 

corresponding native β-(1→3)-glucans, laminaritriose and tetraose suggesting that the exploitation 

of hydrophobic patches in the lectin-binding domains of CR3 and Dectin-1 is a promising strategy 

for the development of small molecule analogues of the β-(1→3)-glucans.
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Introduction

The β-(1→3)-glucans 1 (Fig 1) are a group of widely occurring immunostimulatory 

oligosaccharides with the potential for use as therapeutic agents and/or vaccines in a number of 

disease areas including cancer and inflammatory bowel disease.1-8  Systematic investigation of 

these many beneficial properties is however hindered by the wide structural heterogeneity of β-

(1→3)-glucans obtained from natural sources, which stems from variations in purity, of the degree 

of polymerization, and of β-(1→6)-branching.  Nevertheless, it has been established that, 

following ingestion, the β-(1→3)-glucans are taken up in the small intestine by macrophages 

through interaction with the lectin domain of Dectin-1.9  Degradation of the large β-(1→3)-glucans 

by the macrophages then provides smaller fragments which are taken up by circulating 

granulocytes, monocytes and macrophages, via binding to the lectin domain of complement 

receptor 3 (CR3), where they can induce the relevant immune responses.10,11  The relative 

inaccessibility of structurally homogeneous β-(1→3)-glucans from nature has been palliated in 

recent years by the many advances in carbohydrate chemistry12-19 culminating in numerous 

impressive syntheses of both linear and branched oligomeric glucans permitting further biological 

evaluation,20-27  and conformational analysis of the glucan chains.24,28  Work with pure oligomers 

obtained by degradation and extensive HPLC purification of natural isolates led to the conclusion 

that the shortest β-(1→3)-glucans capable of binding to Dectin-1 in a microarray format were the 

deca- and undecamers.29  Subsequent work with synthetic material and an SPR-based assay 

demonstrated that even the heptasaccharide is capable of binding to recombinant murine Dectin-

1.22  The length of the natural β-(1→3)-glucans is such that multiple Dectin-1 units can bind to a 

single polymeric glucan chain through a multivalent interaction with affinity increasing in an 

additive manner.22  STD NMR studies showed little or no binding between either recombinant 
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3

Dectin-1 or CR3 and a synthetic hexamer, whereas other STD-NMR studies revealed that a 

hexadecamer,30 but not a hexamer, binds to the lectin domain of Dectin-1.28  Work with glucans 

isolated from yeast cell walls showed the tetrasaccharide to be the smallest unit able to block the 

ingestion of zymosan (a natural β-(1→3)-glucan) by monocytes via CR3,6 while study of a series 

of homogeneous synthetic oligomers revealed the tetra- and especially the pentasaccharides 

possess immunostimulatory effects including the potentiation of phagocytosis similar to those of 

phycarine (another natural β-(1→3)-glucan).20  Chemical synthesis also revealed that penta- and 

hexameric glucans could be modified by replacement of the terminal reducing end glucopyranose 

residue by a gluco and/or manno-configured glucitol unit, by a mannopyranose ring, or by a 4-

deoxyglucopyranose ring 2 (Fig 1) without loss of the ability to promote phagocytosis.31,32  

Likewise, it was demonstrated that the glycosidic oxygen could be replaced by a thioglycoside 

moiety 3-5 without loss of activity.33

The lectin domain of Dectin-1 was revealed by X-ray crystallographic studies to consist of a 

shallow carbohydrate-binding groove in which the side chains of Trp 221 and His 223 line the 

walls of a hydrophobic pocket.34  Further, laminarin, a natural β-(1→3)-glucan, was shown by 

STD-NMR studies to bind to this hydrophobic patch in recombinant Dectin-1 by the interaction 

with the α-faces of the terminal residues at either its reducing or non-reducing ends (Fig 2).28,30  

Overall, the picture is one of a relatively weak interaction of a short carbohydrate epitope with the 

lectin domain, as is commonly found in carbohydrate-protein interactions, that is bolstered by the 

multivalent effect due to the repetitive presentation of the epitope along the length of the polymeric 

oligosaccharide.35-39
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Figure 1.  Structures of β-(1→3)-glucan and synthetic analogs
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Figure 2.  Schematic representation of the hydrophobic α-face of a disaccharide unit of a β-(1→3)-

glucan in complex with the hydrophobic binding pocket of the Dectin-1 lectin domain

In our laboratory, pursuing a glycomimetic approach as opposed to a multivalent glycoconjugate 

approach to the synthesis of improved β-(1→3)-glucan analogues,40,41 we prepared and evaluated 

the properties of the di- and trimeric hydroxylamine linked constructs 6 and 7 (Fig 3).42  We found 

both 6 and 7 to display significant affinity for Dectin-1 and CR3, and hypothesized that this arises 

from the enhanced hydrophobicity of the α-face arising from removal of the C2-hydroxyl group, 

and replacement of the ring oxygen by a methylene group.  Building on this hypothesis, and 
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5

informed by the previous development of the monothioglucoside analogs 3-5 by the Ferrières 

laboratory,33 and by the frequently observed enhancement of protein-small molecule and protein-

carbohydrate interactions on replacement of ether units by thioethers,43-52 we designed and 

prepared the di-, tri- and tetrameric 1,5-dithia analogs 8-10 (Fig 3), and were again rewarded by 

the observation of significant affinity for Dectin-1 and CR3, particularly for the trimer 9.53  

Pursuing this line of investigation further, and noting the extensive history of carbacyclic motifs 

as carbohydrate analogs,54-59 we now report the synthesis and evaluation of the thioether-linked 

carbasugar glucan mimetics 11-13 that incorporate features of the hydroxylamines 6 and 7, the 

dithiaglucans 8-10, and the 4-deoxyglucopyranose moiety in 2.  

N
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11: n = 0, 12: n = 1, 13: n = 2

SEt

Figure 3.  Previous (6-10) and Targeted (11-13) β-(1→3)-Glucan Mimetics.

Results and Discussion

Synthesis.  Following the protocol reported by Mori,60 commercially available (S)-(-)-3-

cyclohexenecarboxylic acid 14 was converted to the enone 15 in four known steps and 53% overall 

yield (Scheme 1).  Installation of a methoxymethyl ether under standard conditions then gave the 

central building block 16 in 94% yield (Scheme 1).
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Scheme 1.  Synthesis of the Monomeric Building Block 16

Treatment of 16 with sodium ethanethiolate in methanol at room temperature afforded the desired 

equatorial Michael adduct 17 and its axial isomer 18 in 56% and 31% yields, respectively.  

Resubjecting the axial isomer 18 to the reaction conditions resulted in its conversion to the 

equatorial adduct 17 in 64% yield.  Reduction with L-Selectride followed by mesylation then 

afforded the mesylate 19 in 68% yield.  Finally, mesylate displacement by cesium thioacetate in 

DMF under microwave irradiation gave the thioester 20 in 41% yield (Scheme 2).  Cleavage of 

the thioacetyl moiety from 20 with sodium methoxide in methanol followed by exposure of the 

resultant thiol to enone 16 in the presence of diazabicycloundecene (DBU) in trifluoroethanol gave 

the desired equatorial adduct 21 in 55% yield, together with 33% of its axial isomer 22.  Reduction 

of 21 with sodium borohydride in methanol afforded 78% of the equatorial alcohol 23 from which 

the methoxymethyl ethers were removed with catalytic hydrogen chloride in methanol to give the 

mimetic 24 of laminaribiose (Scheme 2).
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Scheme 2.  Synthesis of the Laminaribiose Mimetic 24

Reduction of the ketone 21 with L-Selectride in THF afforded the axial alcohol 25 in 82% yield, 

and was followed by treatment with mesyl chloride in pyridine to give the mesylate 26 in 92% 

yield.  Mesylate displacement with cesium thioacetate in DMF under microwave irradiation next 

provided the thioacetate 27 in 47% yield which, on deactylation followed by stirring with enone 

16 in the trifluoroethanol in the presence of DBU gave the all equatorial trimer 28 in 49% yield 

along with the axial isomer 29 in 30% yield.  Sodium borohydride reduction of 28 to give the 

equatorial alcohol 30 in 61% yield was followed by removal of the MOM groups with HCl in 

methanol to afford the laminaritriose mimetic 31 in 76% yield.  On the other hand reduction of 

ketone 28 with L-Selectride in THF gave 79% of the axial alcohol 32, which was converted to the 

mesylate 33 and then to the thioacetate 34 in 96 and 41% yields, respectively.  Iteration of the 
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8

protocol for the removal of the acetyl moiety followed by conjugate to enone 16 then gave the 

isomeric tetramers 35 and 36 in 53% and 28% yields, respectively.  Sodium borohydride reduction 

of 35 afforded the equatorial alcohol 37 in 54% yield, and was followed by removal of the MOM 

groups to give the laminaritetraose mimetic 38 in 76% yield (Scheme 3).
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Scheme 3.  Synthesis of the Laminaritriose and Tetraose Mimetics 31 and 38

Binding to CR3 and Dectin-1 Receptors.  

We screened the di-, tri-, and tetrasaccharide mimetics 24, 31, and 38, respectively, for their ability 

to inhibit staining of human neutrophils and mouse macrophages by anti-CR3 or anti-Dectin-1 
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9

fluorescent antibody conjugates (FITC), as a measure of their affinity for CR3 and Dectin-1,61 as 

reported in Table 1.  For comparison purposes commercial laminaritriose 39 and tetraose 40 were 

screened in parallel as reported in Table 1 together with the values previously obtained for the 

hydroxylamine-based mimetics 6 and 7.  

Stimulation of phagocytosis and pinocytosis.  The ability of glycan mimetics 24, 31, and 38 to 

stimulate phagocytosis of synthetic polymeric 2-hydroxyethyl methacrylate particles62 by human 

macrophage-like RAW 264 cells was examined.  In addition the ability of the mimetics to stimulate 

pinocytosis, another important mechanism of cellular internalization, was examined by 

spectrophotometric measurement of neutral red dye accumulation by mouse macrophages (Table 

2).63  Laminaritriose 39 and tetraose 40 were again screened for comparison purposes as was the 

commercial highly purified yeast-derived insoluble Glucan #300.64  Also for comparison purposes 

the previously recorded phagocytic activity of the di- and trimeric hydroxylamines 6 and 7 is 

reproduced in Table.
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10

Table 1.  Percentage Inhibition of anti-CR3 and anti-Dectin-1-FITC Antibody Staining of Neutrophils and Macrophages by 0.1 μg.mL-

1 Compound.

Cmpd Oligomer No % Inhibition of anti-CR3-FITC 
Staining of Human Neutrophilsa

% Inhibition of anti-Dectin-1-FITC 
Staining of Mouse Macrophagesa

SEt

OHOH

SHO 24
dimer 40.5 ± 3.6 48.9 ± 4.1

SEt

OHOH

SHO 31
2

trimer 33.2 ± 2.8 41.6 ± 3.6

SEt

OHOH

SHO 38
3

tetramer 45.3 ± 3.9 54.7 ± 3.8

N O

OH

N

OH

OHO 6HOHO
dimer 26.4 ± 2.7 28.2 ± 2.9

N O

OH

N

OH

OHO 7HOHO

2

trimer 34.2 ± 3.3 43.1 ± 3.5

O
OH

OH

O
OH

OHO 39HOHO

2 HOHO

trimer 16.1 ± 1.7 19.9 ± 0.9

O
OH

OH

O
OH

OHO 40HOHO

3 HOHO

tetramer 31.2 ± 2.1 44.8 ± 3.8

PBSb - 1.3 ± 0.2 0.8 ± 0.3

a Mean ± SD.  b phosphate buffered saline
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11

Table 2.  Percentage Stimulation of Phagocytosis and Pinocytosis.

Cmpd Oligomer No % Stimulation of Phagocytosis

(RAW 264 macrophages, 10 
μg/mL, 24 h) a

Stimulation of Pinocytosis

(Uptake of neutral red dye by mouse 
macrophages after 2 h (ng/L x 105 
cells) a

SEt

OHOH

SHO 24
dimer 17.7 ± 1.6 20.8 ± 2.9

SEt

OHOH

SHO 31
2

trimer 12.3 ± 1.5 9.1 ± 2.0

SEt

OHOH

SHO 38
3

tetramer 18.3 ± 0.9 16.2 ± 3.0

N O

OH

N

OH

OHO 6HOHO
dimer 7.8 ± 1.1 nd

N O

OH

N

OH

OHO 7HOHO

2

trimer 16.6 ± 2.0 nd

O
OH

OH

O
OH

OHO 39HOHO

2 HOHO

trimer 7.9 ± 1.0 14.1 ± 1.3

O
OH

OH

O
OH

OHO 40HOHO

3 HOHO

tetramer 20.5 ± 1.9 22.4 ± 2.1

Glucan #300 34.2 ± 2.6 36.8 ± 3.0

PBSb - 2.2 ± 0.3 1.6 ± 0.2

a Mean ± SD at P < 0.05 level. b phosphate buffered saline
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12

Inspection of Table 1 suggests that the simple thioether-linked carbocyclic di-, tri- and 

tetrasaccharide mimetics 24, 31, and 38, respectively, display significant affinity for CR3 and 

Dectin-1.  This activity is of a comparable magnitude to that of the earlier hydroxylamine based 

mimetics 6 and 7,42 of the more recent thiapyranoside mimetics 8-10 (data not shown)53 and 

importantly of laminaribiose 39 and tetraose 40 themselves.  These affinities are borne out by the 

ability of 24, 31, and 38 to stimulate both phagocytosis and pinocytosis (Table 2), again at levels 

comparable and even superior to the simple β-(1→3)-glucans of the same length.  Considered as 

a whole with the earlier analogues prepared in the Ferrières laboratory (Figure 1),31-33 these results 

strongly suggest that there is considerable scope for the development of potent small molecule 

analogs of the β-(1→3)-glucans.

Conclusions

Extrapolating from earlier small molecule β-(1→3)-glucans mimetics reported in the literature or 

prepared in our laboratories, we designed and synthesized a series of thioether linked 4-

deoxycarbocyclic analogues of laminaribiose, triose, and tetraose to probe the minimal 

requirements for binding to the lectin domains of CR3 and Dectin-1.  In the event the di-, tri- and 

tetrasaccharide mimetics, 24, 31, and 38 all displayed the ability to inhibit fluorescent antibody 

binding to CR3 and Dectin-1 and stimulated phagocytosis and pinocytosis at levels at least 

comparable to that of the minimal β-(1→3)-glucans laminaritriose and tetraose.  

Experimental Section
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13

General.  All reactions were performed using oven-dried glassware under an atmosphere 

of argon. All reagents and solvents were purchased from commercial suppliers and were used 

without further purification unless otherwise specified. Chromatographic purifications were 

performed on silica gel (230-400 mesh) columns (20-50 g of silica gel per gram of crude 

compound). Reactions were monitored by analytical thin-layer chromatography on pre-coated 

glass backed plates (w/UV 254) and visualized by UV irradiation (254 nm) or by staining with 

25% H2SO4 in EtOH or ceric ammonium molybdate (CAM) solution. Specific rotations were 

measured on an automatic polarimeter with a path length of 100 mm in the solvent specified. 

Concentrations are given in g/100 mL. High resolution mass spectra (HRMS) were recorded with 

an electrospray ionization (ESI) source coupled to a time-of-flight (TOF) mass analyzer or with 

an electron impact (EI) source coupled to a TOF mass analyzer. 1H, 13C, 19F, spectra were recorded 

on a 400, 500 or 600 MHz spectrometer. NMR solvents were used without purification. Chemical 

shifts are given in ppm (δ) and coupling constants (J) are given in Hz. Multiplicities are given as 

singlet (s), broad singlet (br s), doublet (d), triplet (t), doublet of doublets (dd), triplet of doublets 

(td), multiplet (m), apparent quartet (app q), apparent pentet (app p), etc.  Reactions requiring 

microwave irradiation were performed on a commercial microwave synthesizer with internal 

temperature control and magnetic stirring.

(5S)-5-((Methoxymethoxy)methyl)cyclohex-2-en-1-one (16).  A stirred solution of enone 1560 

(1.0 g, 7.93 mmol) in N,N-diisopropylethylamine (2 mL) and DCM (2 mL) at 0 oC was treated 

with chloromethyl methyl ether (1.2 mL, 15.85 mmol), and stirred at room temperature for 6 h 

before it was diluted with ethyl acetate, washed with 1 N HCl and brine, dried over Na2SO4, and 

concentrated under reduced pressure. Chromatographic purification (33% ethyl acetate/hexanes) 

afforded the title compound as a colorless oil (16, 1.27 g, 94%) with spectral data consistent with 
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the literature values:65 [α]D
21 73.0 (c 1.15, CHCl3). 1H NMR (400 MHz, CDCl3) δ 6.96 (ddd, J = 

10.1, 5.4, 2.7 Hz, 1H), 6.06 – 5.95 (m, 1H), 4.60 (s, 2H), 3.52 – 3.41 (m, 2H), 3.33 (s, 3H), 2.55 – 

2.18 (m, 5H). 13C{1H} NMR (101 MHz, CDCl3) δ 199.1, 149.3, 129.7, 96.5, 70.6, 55.2, 41.0, 35.5, 

28.9. HRMS (ESI-TOF) m/z: Calcd. for C9H14O3Na ([M + Na]+): 193.0841; found: 193.0837. 

(3R,5R)-3-(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexan-1-one (17) and (3S,5R)-3-

(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexan-1-one (18).  To a stirred solution of 16 

(300 mg, 1.76 mmol) in MeOH (3.5 mL) at room temperature was added sodium ethanethiolate 

(444.8 mg, 5.29 mmol). The reaction mixture was stirred at the same temperature for 25 min before 

it was diluted with ethyl acetate, washed with brine, dried over Na2SO4, and concentrated under 

reduced pressure. Chromatographic purification (18% ethyl acetate/hexanes) afforded the title 

compound as a colorless oil (17, 265.2 mg, 56%): [α]D
21 58.6 (c 0.63, CHCl3). 1H NMR (400 MHz, 

CDCl3) δ 4.59 (s, 2H), 3.49 – 3.39 (m, 2H), 3.33 (s, 3H), 2.93 (tt, J = 12.7, 4.0 Hz, 1H), 2.68 (ddt, 

J = 14.1, 4.2, 2.0 Hz, 1H), 2.58 (q, J = 7.4 Hz, 2H), 2.42 (ddt, J = 13.9, 3.9, 2.0 Hz, 1H), 2.33 – 

2.21 (m, 2H), 2.16 (t, J = 13.4 Hz, 1H), 2.10 – 1.98 (m, 1H), 1.51 (app q, J = 12.3 Hz, 1H), 1.24 

(t, J = 7.4 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 208.2, 96.5, 71.3, 55.3, 48.2, 44.0, 40.9, 

37.8, 35.8, 24.4, 14.9. HRMS (ESI-TOF) m/z: Calcd. for C11H20O3SNa ([M + Na]+): 255.1031; 

found: 255.1036.

Further elution (25% ethyl acetate/hexanes) gave 18 as a colorless oil (147.8 mg, 31%): [α]D
21 -

22.9 (c 0.89, CHCl3). 1H NMR (400 MHz, CDCl3) δ 4.59 (s, 2H), 3.52 – 3.41 (m, 3H), 3.34 (s, 

3H), 2.68 (ddd, J = 14.7, 4.7, 0.9 Hz, 1H), 2.59 – 2.42 (m, 5H), 2.23 (ddd, J = 14.3, 9.7, 1.2 Hz, 

1H), 2.03 – 1.98 (m, 2H), 1.24 (t, J = 7.4 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 208.3, 

96.5, 70.9, 55.3, 46.5, 43.9, 40.1, 34.3, 33.1, 24.7, 14.5. HRMS (ESI-TOF) m/z: Calcd. for 

C11H20O3SNa ([M + Na]+): 255.1031; found: 255.1038.
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(1R,3R,5R)-3-(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexan-1-ol.  To a stirred solution 

of 17 (252.6 mg, 1.09 mmol) in THF (3 mL) at -78 oC was added a solution of L-Selectride in THF 

(1.0 M, 3.26 mL, 3.26 mmol). The reaction mixture was stirred at the same temperature for 5 h 

before it was warmed to room temperature. The reaction was quenched by adding MeOH and the 

mixture was concentrated under reduced pressure. Chromatographic purification (33% ethyl 

acetate/hexanes) afforded the title compound as a colorless oil (188.6 mg, 74%): [α]D
21 -12.5 (c 

1.06, CHCl3). 1H NMR (400 MHz, CDCl3) δ 4.59 (s, 2H), 4.23 (app p, J = 3.0 Hz, 1H), 3.40 – 

3.34 (m, 2H), 3.34 (s, 3H), 3.07 (tt, J = 12.5, 3.6 Hz, 1H), 2.58 (q, J = 7.4 Hz, 2H), 2.18 – 2.05 (m, 

3H), 1.82 (ddt, J = 13.8, 3.4, 1.3 Hz, 1H), 1.44 (td, J = 13.2, 2.7 Hz, 1H), 1.29 – 1.19 (m, 4H), 1.05 

(q, J = 12.8 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 96.5, 72.6, 66.7, 55.1, 39.9, 37.1, 36.8, 

35.6, 32.2, 24.0, 15.1. HRMS (ESI-TOF) m/z: Calcd. for C11H22O3SNa ([M + Na]+): 257.1187; 

found: 257.1189.

(1R,3R,5R)-3-(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexyl Methanesulfonate (19).  

To a stirred solution of (1R,3R,5R)-3-(ethylthio)-5-((methoxymethoxy)methyl)cyclohexan-1-ol 

(167.4 mg, 0.71 mmol) in pyridine (2 mL) at room temperature was added methanesulfonyl 

chloride (0.28 mL, 3.57 mmol). The reaction mixture was stirred at the same temperature for 11 h 

before it was diluted with ethyl acetate, washed with 1 N HCl and brine, dried over Na2SO4, and 

concentrated under reduced pressure. Chromatographic purification (25% ethyl acetate/hexanes) 

afforded the title compound as a colorless oil (19, 204.4 mg, 92%): [α]D
21 -1.3 (c 1.19, CHCl3). 1H 

NMR (400 MHz, CDCl3) δ 5.11 (app p, J = 2.9 Hz, 1H), 4.58 (s, 2H), 3.37 (d, J = 5.4 Hz, 2H), 

3.33 (s, 3H), 3.05 – 2.95 (m, 4H), 2.58 (q, J = 7.4 Hz, 2H), 2.38 (dtt, J = 14.4, 3.7, 2.0 Hz, 1H), 

2.17 – 2.03 (m, 3H), 1.52 (ddd, J = 14.8, 12.6, 2.5 Hz, 1H), 1.35 (t, J = 13.7 Hz, 1H), 1.24 (t, J = 

7.4 Hz, 3H), 1.12 (app q, J = 13.3, 12.9 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 96.5, 78.7, 
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71.8, 55.2, 38.6, 38.2, 36.6, 36.1, 33.7, 32.5, 24.1, 15.0. HRMS (ESI-TOF) m/z: Calcd. for 

C12H24O5S2Na ([M + Na]+): 335.0963; found: 335.0969.

S-((1S,3R,5S)-3-(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexyl) Thioacetate (20).  A 

mixture of 19 (60.0 mg, 0.19 mmol) and cesium thioacetate (798.9 mg, 3.84 mmol) in DMF (0.6 

mL) was heated to 100 oC by irridation with microwave for 1 h. After cooling to room temperature, 

the reaction mixture was diluted with ethyl acetate, washed with brine, dried over Na2SO4, and 

concentrated under reduced pressure. Chromatographic purification (6% ethyl acetate/hexanes) 

afforded the title compound as a light yellow oil (20, 23.0 mg, 41%): [α]D
21 -24.3 (c 0.68, CHCl3). 

1H NMR (400 MHz, CDCl3) δ 4.58 (s, 2H), 3.44 (tt, J = 12.7, 3.9 Hz, 1H), 3.36 (d, J = 6.1 Hz, 

2H), 3.34 (s, 3H), 2.75 (tt, J = 12.2, 3.7 Hz, 1H), 2.58 (q, J = 7.4 Hz, 2H), 2.32 – 2.24 (m, 4H), 

2.09 (ddq, J = 11.1, 3.5, 1.7 Hz, 1H), 2.02 (ddq, J = 12.7, 3.7, 1.9 Hz, 1H), 1.90 – 1.77 (m, 1H), 

1.32 (q, J = 12.4 Hz, 1H), 1.24 (t, J = 7.4 Hz, 3H), 1.10 (q, J = 12.5 Hz, 1H), 1.03 (q, J = 12.4 Hz, 

1H). 13C{1H} NMR (101 MHz, CDCl3) δ 195.4, 96.5, 72.0, 55.2, 41.5, 40.9, 39.9, 38.5, 36.0, 35.4, 

30.7, 24.2, 15.0. HRMS (ESI-TOF) m/z: Calcd. for C13H24O3S2Na ([M + Na]+): 315.1065; found: 

315.1070. 

(3R,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-5-

((methoxymethoxy)methyl)cyclohexan-1-one (21) and (3S,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-

5-((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexan-1-

one (22).  To a stirred solution of 20 (378.6 mg, 1.29 mmol) in MeOH (2 mL) at room temperature 

was added sodium methoxide (139.9 mg, 2.59 mmol). After stirring at room temperature for 30 

min, the reaction mixture was diluted with ethyl acetate, washed with 1 N HCl and brine, dried 

over Na2SO4, and concentrated under reduced pressure to give the free thiol (328.2 mg). To a 

solution of the free thiol and enone 16 (330.5 mg, 1.94 mmol) in 2,2,2-trifluoroethanol (3 mL) at 
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room temperature was added a solution of DBU (197.1 mg, 1.29 mmol) in  2,2,2-trifluoroethanol 

(0.5 mL). After stirring at room temperature for 30 min, the reaction mixture was concentrated 

under reduced pressure at 40 oC. Chromatographic purification (33% ethyl acetate/hexanes) 

afforded the title compound as a colorless oil (21, 300.0 mg, 55%):  [α]D
21 19.6 (c 0.25, CHCl3). 

1H NMR (600 MHz, CDCl3) δ 4.59 (s, 2H), 4.58 (s, 2H), 3.47 – 3.41 (m, 2H), 3.37 – 3.33 (m, 5H), 

3.33 (s, 3H), 3.01 (tt, J = 12.6, 4.0 Hz, 1H), 2.74 (tt, J = 12.2, 3.7 Hz, 1H), 2.70 – 2.61 (m, 2H), 

2.57 (q, J = 7.4 Hz, 2H), 2.42 (ddt, J = 14.0, 4.0, 1.9 Hz, 1H), 2.29 (t, J = 13.6 Hz, 1H), 2.26 – 

2.18 (m, 2H), 2.16 (t, J = 13.6 Hz, 1H), 2.10 – 2.01 (m, 3H), 1.76 – 1.68 (m, 1H), 1.51 (app q, J = 

12.5 Hz, 1H), 1.29 (app q, J = 12.4 Hz, 1H), 1.23 (t, J = 7.4 Hz, 3H), 1.07 – 0.98 (m, 2H). 13C{1H} 

NMR (151 MHz, CDCl3) δ 208.0, 96.5 (2 Cs), 72.1, 71.2, 55.3, 55.2, 48.9, 44.0, 41.6, 41.1, 40.9, 

39.8, 38.5, 37.8, 36.8, 36.3 (2 Cs), 24.0, 15.0. HRMS (ESI-TOF) m/z: Calcd. for C20H36O5S2Na 

([M + Na]+): 443.1902; found: 443.1908.

Further elution (40% ethyl acetate/hexanes) gave 22 as a colorless oil (177.2 mg, 33%): [α]D
21 -

28.6 (c 0.21, CHCl3). 1H NMR (600 MHz, CDCl3) δ 4.59 (s, 2H), 4.58 (s, 2H), 3.57 (app p, J = 

5.1 Hz, 1H), 3.48 – 3.42 (m, 2H), 3.36 – 3.33 (m, 5H), 3.33 (s, 3H), 2.71 – 2.60 (m, 3H), 2.57 (q, 

J = 7.4 Hz, 2H), 2.55 – 2.49 (m, 1H), 2.45 (m, 2H), 2.28 – 2.19 (m, 2H), 2.09 (ddt, J = 12.8, 3.6, 

1.9 Hz, 1H), 2.06 – 1.94 (m, 3H), 1.78 – 1.68 (m, 1H), 1.29 (app q, J = 12.3 Hz, 1H), 1.23 (t, J = 

7.4 Hz, 3H), 1.08 – 0.98 (m, 2H). 13C{1H} NMR (151 MHz, CDCl3) δ 208.2, 96.51, 96.49, 72.1, 

70.9, 55.3, 55.2, 47.1, 43.8, 41.6, 41.1, 40.8, 38.9, 38.5, 36.4, 36.3, 34.4, 33.7, 24.0, 15.0. HRMS 

(ESI-TOF) m/z: Calcd. for C20H36O5S2Na ([M + Na]+): 443.1902; found: 443.1913.

(1S,3R,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-5-

((methoxymethoxy)methyl)cyclohexan-1-ol (23).  To a stirred solution of 21 (20.0 mg, 0.05 

mmol) in MeOH (0.3 mL) at room temperature was added sodium borohydride (5.4 mg, 0.14 
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mmol). The reaction mixture was stirred at room temperature for 20 min before it was diluted with 

ethyl acetate, washed with 1 N HCl and brine, dried over Na2SO4, and concentrated under reduced 

pressure. Chromatographic purification (50% ethyl acetate/hexanes) afforded the title compound 

as a colorless oil (23, 15.7 mg, 78%): [α]D
21 -17.8 (c 0.32, CHCl3). 1H NMR (600 MHz, CDCl3) δ 

4.60 (s, 2H), 4.59 (s, 2H), 3.65 (tt, J = 10.9, 4.3 Hz, 1H), 3.41 – 3.37 (m, 2H), 3.37 – 3.35 (m, 2H), 

3.34 (s, 3H), 3.33 (s, 3H), 2.79 – 2.71 (m, 2H), 2.66 (tt, J = 12.2, 3.7 Hz, 1H), 2.58 (q, J = 7.4 Hz, 

2H), 2.30 – 2.23 (m, 2H), 2.12 – 1.99 (m, 4H), 1.77 – 1.68 (m, 2H), 1.52 (d, J = 4.8 Hz, 1H), 1.30 

(app q, J = 12.3 Hz, 1H), 1.26 – 1.21 (m, 4H), 1.07 – 0.95 (m, 4H). 13C{1H} NMR (151 MHz, 

CDCl3) δ 96.53, 96.51, 72.2, 72.1, 69.6, 55.2 (2 Cs), 43.1, 41.7, 41.1, 40.7, 38.6, 38.5, 38.4, 36.9, 

36.7, 36.4 (2 Cs), 24.0, 15.0. HRMS (ESI-TOF) m/z: Calcd. for C20H38O5S2Na ([M + Na]+): 

445.2058; found: 445.2070.

(1S,3R,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-5-(hydroxymethyl)cyclohexyl)thio)-5-

(hydroxymethyl)cyclohexan-1-ol (24).  A mixture of alcohol 23 (22.6 mg, 0.05 mmol), MeOH 

(1 mL) and concentrated HCl (10 µL) was heated to 60 oC for 6 h. After cooling to room 

temperature, the reaction mixture was concentrated under reduced pressure. Chromatographic 

purification (9% methanol/dichloromethane) afforded the title compound as a colorless oil (24, 

15.5 mg, 87%): [α]D
21 -16.4 (c 0.14, CH3OH). 1H NMR (600 MHz, CD3OD) δ 3.58 (tt, J = 11.1, 

4.2 Hz, 1H), 3.44 – 3.35 (m, 4H), 2.84 – 2.74 (m, 2H), 2.70 (tt, J = 12.1, 3.6 Hz, 1H), 2.57 (q, J = 

7.4 Hz, 2H), 2.26 (dtd, J = 14.4, 3.6, 1.7 Hz, 1H), 2.23 – 2.18 (m, 1H), 2.08 – 1.99 (m, 3H), 1.99 

– 1.93 (m, 1H), 1.66 – 1.54 (m, 2H), 1.22 (t, J = 7.4 Hz, 3H), 1.20 – 1.10 (m, 2H), 0.96 – 0.83 (m, 

4H). 13C{1H} NMR (151 MHz, CD3OD) δ 68.9, 66.33, 66.31, 42.9, 41.4 (2 Cs), 40.6, 40.5, 38.6, 

38.5, 37.5, 36.6, 36.6, 36.0, 23.4, 14.0. HRMS (ESI-TOF) m/z: Calcd. for C16H30O3S2Na ([M + 

Na]+): 357.1534; found: 357.1543.

Page 18 of 37

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19

(1R,3R,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-5-

((methoxymethoxy)methyl)cyclohexan-1-ol (25).  To a stirred solution of 21 (277.7 mg, 0.66 

mmol) in THF (3 mL) at -78 oC was added a solution of L-Selectride in THF (1.0 M, 1.98 mL, 

1.98 mmol). The reaction mixture was stirred at the same temperature for 4 h before it was warmed 

to room temperature. The reaction was quenched by adding MeOH and the mixture was 

concentrated under reduced pressure. Chromatographic purification (15% acetone/hexanes) 

afforded the title compound as a colorless oil (25, 228.1 mg, 82%): [α]D
21 -22.2 (c 0.36, CHCl3). 

1H NMR (600 MHz, CDCl3) δ 4.58 (s, 2H), 4.57 (s, 2H), 4.22 (app p, J = 2.9 Hz, 1H), 3.38 – 3.30 

(m, 10H), 3.15 (tt, J = 12.4, 3.7 Hz, 1H), 2.74 (tt, J = 12.1, 3.7 Hz, 1H), 2.65 (tt, J = 12.1, 3.6 Hz, 

1H), 2.57 (q, J = 7.5 Hz, 2H), 2.30 (dtd, J = 14.6, 3.6, 1.7 Hz, 1H), 2.17 – 2.01 (m, 5H), 1.80 (dtt, 

J = 13.9, 3.7, 2.1 Hz, 1H), 1.77 – 1.68 (m, 1H), 1.42 (td, J = 13.3, 2.7 Hz, 1H), 1.28 (app q, J = 

12.5 Hz, 1H), 1.25 – 1.20 (m, 4H), 1.09 – 0.98 (m, 3H). 13C{1H} NMR (151 MHz, CDCl3) δ 96.50, 

96.47, 72.5, 72.2, 66.7, 55.2, 55.1, 41.7, 41.3, 40.7, 40.5, 38.6, 37.7, 36.9, 36.4, 36.0, 35.6, 32.2, 

24.0, 15.0. HRMS (ESI-TOF) m/z: Calcd. for C20H38O5S2Na ([M + Na]+): 445.2058; found: 

445.2066.

(1R,3R,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-5-

((methoxymethoxy)methyl)cyclohexyl Methanesulfonate (26).  To a stirred solution of 25 (88.4 

mg, 0.21 mmol) in pyridine (2 mL) at room temperature was added methanesulfonyl chloride (80.9 

µL, 1.05 mmol). The reaction mixture was stirred at the same temperature for 20 h before it was 

diluted with ethyl acetate, washed with 1 N HCl and brine, dried over Na2SO4, and concentrated 

under reduced pressure. Chromatographic purification (40% ethyl acetate/hexanes) afforded the 

title compound as a colorless oil (26, 95.9 mg, 92%): [α]D
21 -11.6 (c 0.56, CHCl3). 1H NMR (600 

MHz, CDCl3) δ 5.08 (app p, J = 3.0 Hz, 1H), 4.57 (s, 2H), 4.56 (s, 2H), 3.37 – 3.33 (m, 4H), 3.32 
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(s, 3H), 3.31 (s, 3H), 3.07 (tt, J = 12.4, 3.7 Hz, 1H), 3.01 (s, 3H), 2.74 (tt, J = 12.2, 3.7 Hz, 1H), 

2.65 (tt, J = 12.2, 3.6 Hz, 1H), 2.57 (q, J = 7.4 Hz, 2H), 2.36 (dtt, J = 14.4, 3.9, 2.0 Hz, 1H), 2.26 

(ddt, J = 12.6, 3.8, 1.9 Hz, 1H), 2.14 – 2.02 (m, 5H), 1.77 – 1.68 (m, 1H), 1.51 (ddd, J = 14.8, 12.6, 

2.5 Hz, 1H), 1.37 – 1.25 (m, 2H), 1.23 (t, J = 7.4 Hz, 3H), 1.12 (app q, J = 12.9 Hz, 1H), 1.06 – 

0.98 (m, 2H). 13C{1H} NMR (151 MHz, CDCl3) δ 96.5 (2 Cs), 78.6, 72.1, 71.8, 55.20, 55.17, 41.6, 

41.1, 41.0, 38.8, 38.7, 38.5, 36.9, 36.8, 36.3, 35.7, 33.6, 32.5, 24.0, 15.0. HRMS (ESI-TOF) m/z: 

Calcd. for C21H40O7S3Na ([M + Na]+): 523.1834; found: 523.1841.

S-((1S,3R,5S)-3-(((1S,3R,5S)-3-(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-5-

((methoxymethoxy)methyl)cyclohexyl) Thioacetate (27).  A mixture of 26 (10.0 mg, 0.02 

mmol) and cesium thioacetate (12.5 mg, 0.06 mmol) in DMF (0.05 mL) was heated to 100 oC by 

irridation with microwave for 50 min. After cooling to room temperature, the reaction mixture was 

diluted with ethyl acetate, washed with brine, dried over Na2SO4, and concentrated under reduced 

pressure. Chromatographic purification (14% ethyl acetate/hexanes) afforded the title compound 

as a light yellow oil (27, 4.5 mg, 47%): [α]D
21 -16.7 (c 0.18, CHCl3). 1H NMR (600 MHz, CDCl3) 

δ 4.59 (s, 2H), 4.57 (s, 2H), 3.42 (tt, J = 12.6, 3.9 Hz, 1H), 3.37 – 3.33 (m, 7H), 3.32 (s, 3H), 2.81 

(tt, J = 12.1, 3.8 Hz, 1H), 2.72 (tt, J = 12.2, 3.7 Hz, 1H), 2.66 (tt, J = 12.2, 3.6 Hz, 1H), 2.57 (q, J 

= 7.4 Hz, 2H), 2.29 (s, 3H), 2.27 – 2.20 (m, 2H), 2.11 – 1.97 (m, 4H), 1.88 – 1.78 (m, 1H), 1.77 – 

1.69 (m, 1H), 1.36 – 1.26 (m, 2H), 1.24 (t, J = 7.4 Hz, 3H), 1.12 – 0.97 (m, 4H). 13C{1H} NMR 

(151 MHz, CDCl3) δ 195.3, 96.52 (2 Cs), 96.50, 72.2, 72.0, 55.2, 41.7, 41.1, 40.9, 40.8, 40.6, 40.5, 

38.5 (2 Cs), 37.0, 36.6, 36.3, 35.4, 30.7, 24.0, 15.0. HRMS (ESI-TOF) m/z: Calcd. for 

C22H40O5S3Na ([M + Na]+): 503.1936; found: 503.1946.

(3R,5R)-3-(((1S,3R,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-5-

((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-
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5-((methoxymethoxy)methyl)cyclohexan-1-one (28) and (3S,5R)-3-(((1S,3R,5R)-3-

(((1S,3R,5S)-3-(Ethylthio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-5-

((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexan-1-one 

(29).  To a stirred solution of 27 (24.6 mg, 0.05 mmol) in MeOH (0.6 mL) at room temperature 

was added sodium methoxide (5.5 mg, 0.10 mmol). After stirring at room temperature for 25 min, 

the reaction mixture was diluted with ethyl acetate, washed with 1 N HCl and brine, dried over 

Na2SO4, and concentrated under reduced pressure to give the free thiol (21.8 mg). To a solution of 

the free thiol and enone 16 (10.5 mg, 0.06 mmol) in 2,2,2-trifluoroethanol (0.6 mL) was added a 

solution of DBU (7.8 mg, 0.05 mmol) in  2,2,2-trifluoroethanol (0.1 mL). After stirring at room 

temperature for 30 min, the reaction mixture was concentrated under reduced pressure at 40 oC. 

Chromatographic purification (40% ethyl acetate/hexanes) afforded the title compound as a 

colorless oil (28, 15.4 mg, 49%): [α]D
21 13.6 (c 0.39, CHCl3). 1H NMR (600 MHz, CDCl3) δ 4.59 

(s, 2H), 4.58 (s, 2H), 4.57 (s, 2H), 3.48 – 3.41 (m, 2H), 3.38 – 3.29 (m, 13H), 3.01 (tt, J = 12.6, 

4.1 Hz, 1H), 2.78 – 2.70 (m, 3H), 2.70 – 2.62 (m, 2H), 2.57 (q, J = 7.4 Hz, 2H), 2.42 (ddt, J = 14.0, 

3.9, 1.9 Hz, 1H), 2.33 – 2.12 (m, 5H), 2.10 – 2.01 (m, 5H), 1.77 – 1.67 (m, 2H), 1.52 (app q, J = 

12.5 Hz, 1H), 1.33 – 1.20 (m, 5H), 1.07 – 0.97 (m, 4H). 13C{1H} NMR (151 MHz, CDCl3) δ 208.0, 

96.5 (3 Cs), 72.2, 72.0, 71.2, 55.3, 55.22, 55.20, 48.9, 44.0, 41.7, 41.3, 41.11, 41.07, 40.6, 40.5, 

39.8, 38.51, 38.48, 37.8, 36.94, 36.86, 36.7, 36.32, 36.28, 24.0, 15.0. HRMS (ESI-TOF) m/z: 

Calcd. for C29H52O7S3Na ([M + Na]+): 631.2773; found: 631.2780.

Further elution (50% ethyl acetate/hexanes) gave 29 as a colorless oil (9.4 mg, 30%): [α]D
21 -18.3 

(c 0.30, CHCl3). 1H NMR (600 MHz, CDCl3) δ 4.60 – 4.56 (m, 6H), 3.57 (app p, J = 5.1 Hz, 1H), 

3.50 – 3.42 (m, 2H), 3.40 – 3.28 (m, 13H), 2.78 – 2.62 (m, 5H), 2.57 (q, J = 7.4 Hz, 2H), 2.55 – 

2.48 (m, 1H), 2.48 – 2.41 (m, 2H), 2.29 – 2.17 (m, 3H), 2.11 – 1.92 (m, 6H), 1.78 – 1.67 (m, 2H), 
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1.32 – 1.20 (m, 5H), 1.07 – 0.97 (m, 4H). 13C{1H} NMR (151 MHz, CDCl3) δ 208.2, 96.53, 96.52, 

96.49, 72.2, 72.0, 70.9, 55.3, 55.2 (2 Cs), 47.1, 43.8, 41.6, 41.2, 41.13, 41.09, 40.6, 40.5, 39.0, 

38.53, 38.49, 37.0, 36.9, 36.33, 36.26, 34.4, 33.7, 24.0, 15.0. HRMS (ESI-TOF) m/z: Calcd. for 

C29H52O7S3Na ([M + Na]+): 631.2773; found: 631.2766.

(1S,3R,5R)-3-(((1S,3R,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-5-

((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-

5-((methoxymethoxy)methyl)cyclohexan-1-ol (30).  To a stirred solution of 28 (5.7 mg, 0.009 

mmol) in MeOH (0.1 mL) at room temperature was added sodium borohydride (1.1 mg, 0.03 

mmol). The reaction mixture was stirred at room temperature for 20 min before it was diluted with 

ethyl acetate, washed with 1 N HCl and brine, dried over Na2SO4, and concentrated under reduced 

pressure. Chromatographic purification (20% acetone/hexanes) afforded the title compound as a 

colorless oil (30, 3.5 mg, 61%): [α]D
21 -11.4 (c 0.14, CHCl3). 1H NMR (600 MHz, CDCl3) δ 4.62 

– 4.55 (m, 6H), 3.65 (tt, J = 11.1, 4.2 Hz, 1H), 3.43 – 3.29 (m, 15H), 2.80 – 2.70 (m, 4H), 2.66 (tt, 

J = 12.2, 3.6 Hz, 1H), 2.58 (q, J = 7.4 Hz, 2H), 2.31 – 2.20 (m, 3H), 2.11 – 1.97 (m, 6H), 1.78 – 

1.68 (m, 3H), 1.34 – 1.20 (m, 6H), 1.08 – 0.94 (m, 6H). 13C{1H} NMR (151 MHz, CDCl3) δ 96.54 

(2 Cs), 96.51, 72.22, 72.16, 72.1, 69.6, 55.22 (2 Cs), 55.19, 43.3, 41.70, 41.65, 41.1, 40.8, 40.6, 

40.5, 38.7, 38.6, 38.5, 38.3, 36.92, 36.89, 36.8, 36.7, 36.4, 36.3, 24.0, 15.0. HRMS (ESI-TOF) 

m/z: Calcd. for C29H54O7S3Na ([M + Na]+): 633.2929; found: 633.2931.

(1S,3R,5R)-3-(((1S,3R,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-5-(hydroxymethyl)cyclohexyl)thio)-

5-(hydroxymethyl)cyclohexyl)thio)-5-(hydroxymethyl)cyclohexan-1-ol (31).  A mixture of 

alcohol 30 (5.2 mg, 0.009 mmol), MeOH (0.5 mL) and concentrated HCl (5 µL) was heated to 60 

oC for 5 h. After cooling to room temperature, the reaction mixture was concentrated under reduced 

pressure. Chromatographic purification (9% methanol/dichloromethane) afforded the title 
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compound as a colorless oil (31, 3.1 mg, 76%): [α]D
21 -11.4 (c 0.07, CH3OH). 1H NMR (600 MHz, 

CD3OD) δ 3.58 (tt, J = 10.9, 4.1 Hz, 1H), 3.45 – 3.35 (m, 6H), 2.88 – 2.75 (m, 4H), 2.72 (tt, J = 

12.1, 3.6 Hz, 1H), 2.58 (q, J = 7.4 Hz, 2H), 2.31 – 2.23 (m, 2H), 2.20 (dtt, J = 12.1, 4.0, 2.1 Hz, 

1H), 2.11 – 1.99 (m, 5H), 1.96 (d, J = 12.1 Hz, 1H), 1.73 – 1.52 (m, 3H), 1.22 (t, J = 7.4 Hz, 3H), 

1.20 – 1.11 (m, 3H), 1.01 – 0.78 (m, 6H). 13C{1H} NMR (151 MHz, CD3OD) δ 68.9, 66.3 (3 Cs), 

42.8, 42.0, 41.44, 41.42, 40.6, 40.52, 40.51, 40.47 (2 Cs), 38.6, 38.5, 37.4, 36.64, 36.56 (2 Cs), 

36.5, 35.9, 23.4, 14.1. HRMS (ESI-TOF) m/z: Calcd. for C23H42O4S3Na ([M + Na]+): 501.2143; 

found: 501.2155.

 (1R,3R,5R)-3-(((1S,3R,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-5-

((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-

5-((methoxymethoxy)methyl)cyclohexan-1-ol (32).  To a stirred solution of 28 (14.9 mg, 0.02 

mmol) in THF (0.3 mL) at -78 oC was added a solution of L-Selectride in THF (1.0 M, 73.4 µL, 

0.07 mmol). The reaction mixture was stirred at the same temperature for 12 h before it was 

warmed to room temperature. The reaction was quenched by adding MeOH and the mixture was 

concentrated under reduced pressure. Chromatographic purification (14% acetone/hexanes) 

afforded the title compound as a colorless oil (32, 11.8 mg, 79%): [α]D
21 -18.7 (c 0.47, CHCl3). 1H 

NMR (600 MHz, CDCl3) δ 4.59 (s, 2H), 4.58 (s, 2H), 4.57 (s, 2H), 4.22 (br s, 1H), 3.42 – 3.28 (m, 

15H), 3.14 (tt, J = 12.4, 3.7 Hz, 1H), 2.78 – 2.69 (m, 3H), 2.66 (tt, J = 12.2, 3.6 Hz, 1H), 2.57 (q, 

J = 7.4 Hz, 2H), 2.31 – 2.22 (m, 2H), 2.17 – 1.99 (m, 7H), 1.80 (dtd, J = 14.1, 3.6, 1.8 Hz, 1H), 

1.77 – 1.69 (m, 2H), 1.42 (td, J = 13.5, 2.6 Hz, 1H), 1.33 – 1.18 (m, 6H), 1.10 – 0.94 (m, 5H). 

13C{1H} NMR (151 MHz, CDCl3) δ 96.51 (2 Cs), 96.47, 72.5, 72.21, 72.19, 66.6, 55.2 (2 Cs), 

55.1, 41.9, 41.7, 41.2, 40.9, 40.7, 40.6 (2 Cs), 38.6, 38.5, 37.8, 37.0, 36.92, 36.85, 36.3, 36.2, 35.5, 
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32.2, 24.0, 15.0. HRMS (ESI-TOF) m/z: Calcd. for C29H54O7S3Na ([M + Na]+): 633.2929; found: 

633.2932.

(1R,3R,5R)-3-(((1S,3R,5R)-3-(((1S,3R,5S)-3-(Ethylthio)-5-

((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-

5-((methoxymethoxy)methyl)cyclohexyl Methanesulfonate (33).  To a stirred solution of 32 

(10.5 mg, 0.02 mmol) in pyridine (0.25 mL) at room temperature was added methanesulfonyl 

chloride (6.7 µL, 0.09 mmol). The reaction mixture was stirred at the same temperature for 11 h 

before it was diluted with ethyl acetate, washed with 1 N HCl and brine, dried over Na2SO4, and 

concentrated under reduced pressure. Chromatographic purification (45% ethyl acetate/hexanes) 

afforded the title compound as a colorless oil (33, 11.4 mg, 96%): [α]D
21 -9.0 (c 0.41, CHCl3). 1H 

NMR (600 MHz, CDCl3) δ 5.09 (br s, 1H), 4.60 – 4.56 (m, 6H), 3.43 – 3.28 (m, 15H), 3.07 (tt, J 

= 12.4, 3.6 Hz, 1H), 3.01 (s, 3H), 2.80 – 2.70 (m, 3H), 2.67 (tt, J = 12.2, 3.6 Hz, 1H), 2.57 (q, J = 

7.4 Hz, 2H), 2.38 (dd, J = 14.2, 3.7 Hz, 1H), 2.30 – 2.20 (m, 2H), 2.16 – 2.00 (m, 7H), 1.79 – 1.69 

(m, 2H), 1.51 (ddd, J = 14.8, 12.7, 2.5 Hz, 1H), 1.34 (t, J = 13.5 Hz, 1H), 1.31 – 1.25 (m, 2H), 

1.23 (t, J = 7.4 Hz, 3H), 1.12 (app q, J = 12.7 Hz, 1H), 1.07 – 0.97 (m, 4H). 13C{1H} NMR (151 

MHz, CDCl3) δ 96.52, 96.51 (2 Cs), 78.6, 72.2, 72.1, 71.8, 55.20 (2 Cs), 55.19, 41.63, 41.59, 41.1, 

41.0, 40.6, 40.5, 38.9, 38.7, 38.49, 38.47, 37.0, 36.9 (2 Cs), 36.8, 36.4, 35.7, 33.6, 32.6, 24.0, 15.0. 

HRMS (ESI-TOF) m/z: Calcd. for C30H56O9S4Na ([M + Na]+): 711.2705; found: 711.2727.

S-((1S,3R,5S)-3-(((1S,3R,5S)-3-(((1S,3R,5S)-3-(Ethylthio)-5-

((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-

5-((methoxymethoxy)methyl)cyclohexyl) Thioacetate (34).  

A mixture of 33 (11.4 mg, 0.02 mmol) and cesium thioacetate (10.3 mg, 0.05 mmol) in DMF (0.1 

mL) was heated to 100 oC by irridation with microwave for 35 min. After cooling to room 
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temperature, the reaction mixture was diluted with ethyl acetate, washed with brine, dried over 

Na2SO4, and concentrated under reduced pressure. Chromatographic purification (22% ethyl 

acetate/hexanes) afforded the title compound as a light yellow oil (34, 4.5 mg, 41%): [α]D
21 -16.1 

(c 0.18, CHCl3). 1H NMR (600 MHz, CDCl3) δ 4.59 (m, 4H), 4.57 (s, 2H), 3.43 (tt, J = 12.6, 3.9 

Hz, 1H), 3.39 – 3.29 (m, 15H), 2.81 (tt, J = 12.9, 4.1 Hz, 1H), 2.77 – 2.70 (m, 3H), 2.67 (tt, J = 

12.2, 4.0 Hz, 1H), 2.58 (q, J = 7.4 Hz, 2H), 2.29 (s, 3H), 2.28 – 2.19 (m, 3H), 2.12 – 1.96 (m, 6H), 

1.89 – 1.79 (m, 1H), 1.79 – 1.69 (m, 2H), 1.36 – 1.25 (m, 3H), 1.24 (t, J = 7.4 Hz, 3H), 1.09 (app 

q, 1H), 1.06 – 0.97 (m, 5H). 13C{1H} NMR (151 MHz, CDCl3) δ 195.3, 96.54 (2 Cs), 96.51, 72.22, 

72.16, 72.0, 55.21, 55.19 (2 Cs), 41.7, 41.5, 41.1, 40.83, 40.80, 40.5 (4 Cs), 38.5 (3 Cs), 36.98, 

36.96, 36.9, 36.6, 36.4, 35.3, 30.7, 24.0, 15.0. HRMS (ESI-TOF) m/z: Calcd. for C31H56O7S4Na 

([M + Na]+): 691.2807; found: 691.2817.

(3R,5R)-3-(((1S,3R,5R)-3-(((1S,3R,5S)-3-(((1S,3R,5S)-3-(Ethylthio)-5-

((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-

5-((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexan-1-

one (35) and (3S,5R)-3-(((1S,3R,5R)-3-(((1S,3R,5S)-3-(((1S,3R,5S)-3-(Ethylthio)-5-

((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-

5-((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexan-1-

one (36).  To a stirred solution of 34 (3.3 mg, 0.005 mmol) in MeOH (0.2 mL) at room temperature 

was added sodium methoxide (0.5 mg, 0. 01 mmol). After stirring at room temperature for 10 min, 

the reaction mixture was diluted with ethyl acetate, washed with 1 N HCl and brine, dried over 

Na2SO4, and concentrated under reduced pressure to give the free thiol (4.5 mg). To a solution of 

the free thiol and enone 16 (1.0 mg, 0.006 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added a 

solution of DBU (750 µg, 0.005 mmol) in  2,2,2-trifluoroethanol (10 µL). After stirring at room 
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temperature for 30 min, the reaction mixture was concentrated under reduced pressure at 40 oC. 

Chromatographic purification (45% ethyl acetate/hexanes) afforded the title compound as a 

colorless oil (35, 2.1 mg, 53%): [α]D
21 2.0 (c 0.15, CHCl3). 1H NMR (600 MHz, CDCl3) δ 4.61 – 

4.58 (m, 8H), 3.49 – 3.41 (m, 2H), 3.41 – 3.30 (m, 18H), 3.02 (tt, J = 12.6, 4.1 Hz, 1H), 2.81 – 

2.71 (m, 5H), 2.71 – 2.63 (m, 2H), 2.58 (q, J = 7.4 Hz, 2H), 2.43 (ddt, J = 13.9, 4.0, 1.9 Hz, 1H), 

2.30 (t, J = 13.6 Hz, 1H), 2.29 – 2.20 (m, 4H), 2.17 (t, J = 13.7 Hz, 1H), 2.13 – 2.00 (m, 7H), 1.79 

– 1.69 (m, 3H), 1.52 (t, J = 12.5 Hz, 1H), 1.32 – 1.22 (m, 6H), 1.09 – 0.97 (m, 6H). 13C{1H} NMR 

(151 MHz, CDCl3) δ 208.0, 96.6, 96.5 (3 Cs), 72.20, 72.17, 72.0, 71.2, 55.3, 55.23 (2 Cs), 55.20, 

48.9, 44.0, 41.7, 41.5, 41.3, 41.2, 41.1, 40.6 (2 Cs), 40.54, 40.46, 39.8, 38.53, 38.49, 38.47, 37.8, 

36.94 (3 Cs), 36.88, 36.8, 36.4, 36.3, 24.0, 15.0. HRMS (ESI-TOF) m/z: Calcd. for C38H68O9S4Na 

([M + Na]+): 819.3644; found: 819.3643.

Further elution (50% ethyl acetate/hexanes) gave 36 as a colorless oil (1.1 mg, 28%): [α]D
21 -10.9 

(c 0.11, CHCl3). 1H NMR (600 MHz, CDCl3) δ 4.62 – 4.56 (m, 8H), 3.58 (app p, J = 4.9 Hz, 1H), 

3.50 – 3.42 (m, 2H), 3.42 – 3.30 (m, 18H), 2.81 – 2.62 (m, 7H), 2.58 (q, J = 7.4 Hz, 2H), 2.56 – 

2.49 (m, 1H), 2.48 – 2.41 (m, 2H), 2.32 – 2.17 (m, 4H), 2.13 – 1.93 (m, 8H), 1.80 – 1.69 (m, 3H), 

1.34 – 1.21 (m, 6H), 1.09 – 0.96 (m, 6H). 13C{1H} NMR (151 MHz, CDCl3) δ 208.2, 96.6, 96.54 

(2 Cs), 96.50, 72.20, 72.17, 72.1, 70.9, 55.3, 55.23, 55.22, 55.21, 47.1, 43.8, 41.7, 41.5, 41.2, 

41.14, 41.08, 40.6 (2 Cs), 40.53, 40.46, 39.0, 38.53 (2 Cs), 38.48, 37.1, 37.0, 36.9 (2 Cs), 36.4, 

36.3, 34.4, 33.7, 24.0, 15.0. HRMS (ESI-TOF) m/z: Calcd. for C38H68O9S4Na ([M + Na]+): 

819.3644; found: 819.3656.

(1S,3R,5R)-3-(((1S,3R,5R)-3-(((1S,3R,5S)-3-(((1S,3R,5S)-3-(Ethylthio)-5-

((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexyl)thio)-

5-((methoxymethoxy)methyl)cyclohexyl)thio)-5-((methoxymethoxy)methyl)cyclohexan-1-ol 
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(37).  To a stirred solution of 35 (4.9 mg, 0.006 mmol) in MeOH (0.1 mL) at room temperature 

was added sodium borohydride (0.7 mg, 0.018 mmol). The reaction mixture was stirred at room 

temperature for 20 min before it was diluted with ethyl acetate, washed with 1 N HCl and brine, 

dried over Na2SO4, and concentrated under reduced pressure. Chromatographic purification (25% 

acetone/hexanes) afforded the title compound as a colorless oil (37, 2.7 mg, 54%): [α]D
21 -10.0 (c 

0.11, CHCl3). 1H NMR (600 MHz, CDCl3) δ 4.61 – 4.57 (m, 8H), 3.65 (tt, J = 10.9, 3.8 Hz, 1H), 

3.44 – 3.31 (m, 20H), 2.80 – 2.70 (m, 6H), 2.66 (tt, J = 12.2, 3.6 Hz, 1H), 2.58 (q, J = 7.4 Hz, 2H), 

2.32 – 2.19 (m, 4H), 2.13 – 1.98 (m, 8H), 1.79 – 1.69 (m, 4H), 1.34 – 1.20 (m, 7H), 1.09 – 0.94 

(m, 8H). 13C{1H} NMR (151 MHz, CDCl3) δ 96.6, 96.54 (2 Cs), 96.51, 72.20 (2 Cs), 72.16, 72.1, 

69.6, 55.3, 55.22, 55.20, 55.19, 43.3, 41.8, 41.7, 41.5, 41.2, 40.8, 40.60, 40.57 (3 Cs), 40.5, 38.8, 

38.6, 38.54, 38.50, 38.3, 37.0, 36.92 (2 Cs), 36.88, 36.7, 36.37, 36.36, 24.0, 15.0. HRMS (ESI-

TOF) m/z: Calcd. for C38H70O9S4Na ([M + Na]+): 821.3800; found: 821.3766.

(1S,3R,5R)-3-(((1S,3R,5R)-3-(((1S,3R,5S)-3-(((1S,3R,5S)-3-(Ethylthio)-5-

(hydroxymethyl)cyclohexyl)thio)-5-(hydroxymethyl)cyclohexyl)thio)-5-

(hydroxymethyl)cyclohexyl)thio)-5-(hydroxymethyl)cyclohexan-1-ol (38).  A mixture of 

alcohol 37 (2.2 mg, 0.003 mmol), MeOH (0.3 mL) and concentrated HCl (3 µL) was heated to 60 

oC for 6 h. After cooling to room temperature, the reaction mixture was concentrated under reduced 

pressure. Chromatographic purification (11% methanol/dichloromethane) afforded the title 

compound as a colorless oil (38, 1.3 mg, 76%): [α]D
21 -22.5 (c 0.04, CH3OH). 1H NMR (600 MHz, 

CD3OD) δ 3.62 – 3.55 (m, 1H), 3.44 – 3.35 (m, 8H), 2.88 – 2.75 (m, 6H), 2.72 (tt, J = 12.2, 3.6 

Hz, 1H), 2.58 (q, J = 7.4 Hz, 2H), 2.30 – 2.23 (m, 3H), 2.21 (d, J = 11.9 Hz, 1H), 2.10 – 1.99 (m, 

7H), 1.96 (d, J = 12.3 Hz, 1H), 1.68 – 1.54 (m, 4H), 1.22 (t, J = 7.4 Hz, 3H), 1.20 – 1.10 (m, 4H), 

0.98 – 0.83 (m, 8H). 13C{1H} NMR (151 MHz, CD3OD) δ 68.9, 66.3 (4 Cs), 42.9, 42.09, 42.05, 
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42.0, 41.5, 41.4, 40.54 (4 Cs), 40.48 (4 Cs), 38.7, 38.5, 37.4, 36.7, 36.6 (4 Cs), 36.0, 23.4, 14.1. 

HRMS (ESI-TOF) m/z: Calcd. for C30H54O5S4Na ([M + Na]+): 645.2752; found: 645.2753.

Laminaritriose 39 and tetraose 40 were purchased from commercial sources.  They were found 

to be pure by 1H and 13C NMR spectroscopy and ESI mass spectrometry, and had spectral data 

consistent with the literature:20  

39: 1H NMR (600 MHz, D2O) δ 5.09 (d, J = 3.7 Hz, 0.42H, H-1α), 4.65-4.60 (m, 2H), 4.53 (d, J 

= 8.1 Hz, 0.58H, H-1β), 3.81 – 3.55 (m, 9H), 3.44 – 3.22 (m, 9H).13C{1H} NMR (151 MHz, D2O) 

δ 102.7, 102.55, 102.46, 95.6, 92.0, 84.4, 84.21, 84.17, 82.2, 75.9, 75.6, 75.55, 75.52, 73.8, 73.4, 

73.20, 73.17, 71.2, 71.0, 69.5, 68.05, 68.01, 60.6, 60.5. ESIHRMS calculated for C18H32O16 

[M+Na]+, 527.1588; found, 527.1578.

40: 1H NMR (600 MHz, D2O) δ 5.09 (d, J = 3.7 Hz, 0.37H, H-1α), 4.66 – 4.61 (m, 3H), 4.53 (d, J 

= 8.0 Hz, 0.63H, H-1β), 3.81 – 3.54 (m, 12H), 3.45 – 3.22 (m, 12H). 13C{1H} NMR (151 MHz, 

D2O) δ 102.7, 102.6, 102.5, 102.4, 95.6, 91.9, 84.4, 84.2, 84.03, 83.99, 82.2, 75.9, 75.6, 75.56, 

75.54, 75.51, 73.8, 73.4, 73.3, 73.25, 73.22, 71.2, 71.0, 69.5, 68.05, 68.01, 60.62, 60.59, 60.5. 

ESIHRMS calculated for C24H42O21 [M+Na]+, 689.2116; found, 689.2111.

Inhibition of anti-CR3-FITC antibody staining of human neutrophils 

and of anti-Dectin 1-FITC antibody staining of mouse macrophages.  

For fluorescent staining, anti-CR3-FITC antibodies (MN-41 donated by 

Drs. Allison Eddy and Alfred Michael of the University of Minnesota, 

Minneapolis, MN, and rat anti Mouse Dectin-1 antibody labeled with FITC 

(purchased from AbD Serotec, Raleigh, NC) were employed. Either human 

neutrophils or mouse peritoneal macrophages were incubated with 0.1 

g.mL-1 of tested samples for 0.5 h on ice and washed. Subsequently, the 
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cells were stained with antibodies on ice using standard techniques. 

After centrifugation of cells through a 3 mL cushion of 12% BSA in PBS, 

the cells were re-suspended in PBS containing 1% BSA and 10 mM sodium 

azide. Cell cytometry was performed with a Becton Dickinson-LSRII 

instrument. The inhibition of CR3 receptor and Dectin-1 receptor staining 

was calculated as described.61

Stimulation of phagocytosis.  The technique employing phagocytosis of synthetic polymeric 

microspheres was described earlier.66  Human cells (cell line RAW 264) were incubated in vitro with 10 

μg.mL-1 of tested samples for 24 h at 37 oC.  After washing, 0.05 mL of 2-hydroxyethyl methacrylate 

particles (HEMA; 5x108/mL) was added.  The test tubes were incubated at 37 oC for 1 h, with intermittent 

shaking.  Smears were stained with Wright stain.  Cells with three or more HEMA particles were 

considered positive.  The insoluble glucan Glucan #300 used as comparison standard was obtained from 

Yeast-derived insoluble Glucan #300 (>85% dry w/w basis) was purchased from Transfer Point 

(Columbia, SC, USA).  This glucan contains 96% carbohydrates and 2.1% proteins. Neutral 

sugar analysis confirmed 91.3% glucose and 8% mannose. 

Stimulation of pinocytosis.  Stimulation of pinocytosis was determined spectrophotometrically as 

described.63

Supporting Information.  The Supporting Information is available free of charge on the ACS 

Publications website at DOI: 10.1021/acs.joc.8b01645.

Copies of the 1H and 13C NMR spectra of all new compounds (PDF)
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