Accepted Manuscript

Substituted 1-(isoxazol-3-yl)methyl-1*H*-1,2,3-triazoles: Synthesis, palladium(II) complexes, and high-turnover catalysis in aqueous media

Nikolay A. Bumagin, Alexey V. Kletskov, Sergey K. Petkevich, Irina A. Kolesnik, Alexander S. Lyakhov, Ludmila S. Ivashkevich, Alexander V. Baranovsky, Peter V. Kurman, Vladimir I. Potkin

PII: S0040-4020(18)30531-3

DOI: 10.1016/j.tet.2018.05.016

Reference: TET 29523

To appear in: Tetrahedron

Received Date: 27 February 2018

Revised Date: 28 April 2018

Accepted Date: 4 May 2018

Please cite this article as: Bumagin NA, Kletskov AV, Petkevich SK, Kolesnik IA, Lyakhov AS, Ivashkevich LS, Baranovsky AV, Kurman PV, Potkin VI, Substituted 1-(isoxazol-3-yl)methyl-1*H*-1,2,3-triazoles: Synthesis, palladium(II) complexes, and high-turnover catalysis in aqueous media, *Tetrahedron* (2018), doi: 10.1016/j.tet.2018.05.016.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron journal homepage: www.elsevier.com

Substituted 1-(isoxazol-3-yl)methyl-1*H*-1,2,3-triazoles: synthesis, palladium(II) complexes, and high-turnover catalysis in aqueous media

N.A. Bumagin,^[a]* A.V. Kletskov,^[b] S.K. Petkevich,^[b] I.A. Kolesnik,^[b] A.S. Lyakhov,^[c] L.S. Ivashkevich,^[c] A.V. Baranovsky^[d], P.V. Kurman^[d] and V.I. Potkin^[b]*

^a M.V. Lomonosov Moscow State University, Chemical Department, Leninskie Gory, 1/3, Moscow 119991, Russian Federation

^b Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganova Str., 13, Minsk 220072, Belarus

^c Research Institute for Physical Chemical Problems of Belarusian State University, Leningradskaya Str., 14, Minsk 220006, Belarus

^d Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Academician V.F. Kuprevich Str., 5/2, Minsk, 222141, Belarus

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: Ligand design Palladium Isoxazole 1,2,3-Triazole Catalysis Cross-coupling

1. Introduction

The isoxazole and 1,2,3-triazole chemistry arouse considerable interest in recent years primarily due to the unique diversity of their biological and pharmacological properties. Isoxazole and 1,2,3-triazole heterocycles are structural fragments of a large number of the bioactive molecules used in medicine as anti-cancer, antiviral, antibacterial, antiinflammatory, anti-tubercular agents, etc.¹ It has been found over the last decades that both isoxazoles and triazoles can be successfully used as ligands for the synthesis of palladium complexes, demonstrating high catalytic activity in crosscoupling reactions.² The structure and functional surrounding of the heterocycle in ligand molecule significantly affect its complexation, as well as the stability and catalytic activity of the complex.

During our previous investigations, we have synthesized the air and moisture stable square-planar *trans*dichloropalladium(II) complex, containing a 5-(*p*tolyl)isoxazol-3-amine ligand, which proved to be a highturnover-number catalyst for Suzuki-Miyaura reaction with a

ABSTRACT

New substituted 3-((1H-1,2,3-triazol-1-yl)methyl)-5-arylisoxazoles (aryl = Ph, p-Tol) and 2-(5-phenylisoxazol-3-yl)-5-(2-(1-((5-(p-tolyl)isoxazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)ethyl)-1,3,4-oxadiazole were synthesized by means of click-chemistry procedures. The obtained compounds were used as ligands in preparation of palladium(II) complexes, and the latter proved to be high-turnover-number catalysts for C–C cross-coupling reactions under Green Chemistry conditions. One of the ligands was structurally characterized by single crystal X-ray diffraction, and the structure of complexes was determined by ¹H, ¹³C, ¹⁵N NMR spectroscopy and quantum-chemical modeling.

2018 Elsevier Ltd. All rights reserved.

low Pd loading (0.0001–0.1 %) in neat water under air atmosphere.³ It is reasonable to assume that the combination of the isoxazole and triazole heterocycles in the ligand structure can increase the catalytic activity of palladium complexes. Indeed, the triazole moiety contains effective coordination N-centers and readily forms complexes with transition metals.^{2b} Moreover, the isoxazole and triazole rings differ in their electronic structure and donating capability, which will allow stabilizing both the Pd(0) and Pd(+2) species formed during the catalytic cycle in cross-coupling reaction. Recently, we have synthesized 5-(*p*-tolyl)isoxazol-3-(3-methyl-1*H*-1,2,4-triazol-5-yl)isoxazole ligand and its complex with PdCl₂, and have shown that catalytic activity of the latter is similar to that of the aminoisoxazole complex in Suzuki-Miyaura reaction in aqueous media under air but with Pd loading as low as 0.1 %.⁴

In continuation of our studies of catalysts for cross-coupling reactions⁵ and development of methods for the 1,2-azole synthesis,⁶ in the present work we report the synthesis of isoxazole-1,2,3-triazole ligands with a methylene bridge between the heterocycles. The basicity values of the 1,2,3- and 1,2,4-triazoles (pK_B 1.17 and 2.19, respectively) differ by

^{*} Corresponding author. bna51@mail.ru (N.A. Bumagin).

^{*} Corresponding author. potkin@ifoch.bas-net.by (V.I. Potkin).

almost an order of magnitude, which certainly affects the stabilization of the complexes.⁷ Furthermore, the flexibility of the nitrogen coordination of 1,2,3-triazoles provides additional

opportunities in palladium catalysis.^{2b} In addition, the methylene bridge between the heterocyclic fragments gives the ligand similarity to the well-studied 1-(2-picolyl)-1*H*-1,2,3-

Scheme 1. Preparation of 3-((1H-1,2,3-triazol-1-yl)methyl)-5-arylisoxazole derivatives 11-16.

triazole ligand, which forms stable complexes with transition metals (Pd, Pt, Cu, etc.).⁸ With this background in mind, we prepared new substituted 3-((1H-1,2,3-triazol-1-yl)methyl)-5-arylisoxazoles **11–16** (Scheme 1) (aryl = Ph, *p*-Tol) and 2-(5-phenylisoxazol-3-yl)-5-(2-(1-((5-(*p*-tolyl))isoxazol-3-yl))methyl)) -1H-1,2,3-triazol-4-yl)ethyl)-1,3,4-oxadiazole **20** (Scheme 2).

These ligands were reacted with Na₂PdCl₄ to give the palladium(II) complexes L¹PdCl₂–L⁷PdCl₂. Herein, we present the detailed synthesis of the ligands and palladium(II) complexes together with their characterization and catalytic activity testing as new catalysts for C–C cross-coupling reactions in neat water under ambient atmosphere. It is also important to note that 3-((*1H*-1,2,3-triazol-1-yl)methyl)-5-arylisoxazoles are of special interest for biological testing in different domains, for example, as anti-cancer agents and isosteres of 3-(aryl-1*H*-1,2,3-triazol-1-yl)benzisoxazole that exhibit high anticancer activity in acute myeloid leukemia cell lines.^{1b,9}

2. Results and Discussion

2.1. Design and synthesis of ligands

Our synthetic strategy for the preparation of desired 3-((1H-1,2,3-triazol-1-yl)methyl)-5-arylisoxazoles **11–16** and bisisoxazole-1,2,3-triazole-1,3,4-oxadiazole ligand **20** involved the formation of the (1H-1,2,3-triazol-1-yl)methyl molecular fragment in position 3 of the 5-arylisoxazoles by Cu(I) catalyzed 1,3-dipolar cycloaddition (click reaction)¹⁰ of the isoxazole azides with respective acetylene derivatives (Scheme 1). As azide components we chose 3-(azidomethyl)-5arylisoxazoles **9,10** which were synthesized by the action of

 NaN_3 on the 3-(chloromethyl)-5-arylisoxazoles 7,8. The synthesis of azidomethylisoxazoles 9,10 was carried out in DMF solution at 40 °C giving the products in quantitative yield. Starting 5-arylisoxazoles 7,8 were obtained via successive transformation of available 5-arylisoxazole-3-carbaldehyde oximes 1,2 into corresponding 5-arylisoxazole-3-carbaldehydes **3.4** and then 5-arylisoxazol-3-yl methanols **5.6**.^{6b,11} The obtained azidomethylisoxazoles 9,10 were introduced in the reaction of 1,3-dipolar cycloaddition with different alkynes (propargyl alcohol, 2-methylbut-3-yn-2-ol, phenylacetylene) under classic conditions of the click-chemistry (CuSO₄·5H₂O, sodium ascorbate, TBTA – tris[(1-benzyl-1H-1,2,3-triazol-4yl)methyl]amine, MeOH) and it resulted in isolation of corresponding 3-((1H-1,2,3-triazol-1-yl)methyl)-5arylisoxazoles 11-15 in high yields (91-99 %). Acylation of (1-((5-phenylisoxazol-3-yl)methyl)-1H-1,2,3-triazol-4yl)methanol 11 with pivaloyl chloride, afforded (1-((5phenylisoxazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl pivalate 16, which turned out to be useful for further NMR studies of the Pd(II) complexes structure.

The 3-(azidomethyl)-5-(*p*-tolyl)isoxazole **10** was also applied in the synthesis of the polycyclic derivative - 3-((*1H*-1,2,3-triazol-1-yl)methyl)-5-arylisoxazole with several azole heterocycles in one molecule **7**. As alkyne co-reagent in the click reaction with azidomethylisoxazole **10**, 2-(but-3-yn-1-yl)-5-(5-phenylisoxazol-3-yl)-1,3,4-oxadiazole **19** was used which was synthesized from the previously described 3-(1*H*-tetrazol-5-yl)-5-phenylisoxazole **18**.⁴ The tetrazole part of isoxazolyltetrazole molecule **18** was transformed into butynyl-1,3,4-oxadiazolic molecular fragment by selective recyclisation of tetrazole heterocycle (Scheme 2).¹² This was accomplished

Scheme 2. Preparation of bis-isoxazole-1,2,3-triazole-1,3,4-oxadiazole 20.

by treating isoxazolyltetrazole 18 with pent-4-ynoic acid in the presence of DCC (N,N'-dicyclohexylcarbodiimide). The process involved tetrazole acylation and elimination of nitrogen to form 2-butynyl-5-(5-phenylisoxazoyl)-1,3,4-oxadiazole 19 in 86 % yield. The structures of synthesized isoxazolyl-1,2,3-triazoles 11-16, bis-isoxazolyl-1,2,3-triazole-1,3,4-oxadiazole 20 azidomethylisoxazoles 9,10 and isoxazolyl-1,3,4-oxadiazole 19 were confirmed by IR, ¹H and ¹³C NMR spectra as well as by single crystal X-ray analysis of (1-((5-phenylisoxazol-3yl)methyl)-1H-1,2,3-triazol-4-yl)methanol 1. The obtained isoxazole-1,2,3-triazoles 11-16 and bis-isoxazole-1,2,3-triazole-1,3,4-oxadiazole 20 were used then as ligands (L^1-L^7) in the synthesis of Pd(II) complexes $L^{1}PdCl_{2}-L^{7}PdCl_{2}$, aiming evaluation of the latter catalytic activity in cross-coupling reactions. They were synthesized by reaction of ligands with Na₂PdCl₄ in methanol solutions. Addition of 0.025 M solution of ligand (11-16, 20) in MeOH to a 0.1 M solution of sodium tetrachloropalladate in methanol induced a quick disappearance of a characteristic dark brown color of Na₂PdCl₄ and formation of the complex precipitate. Complete consumption of the starting ligands in the reaction mixture was observed within 5 min.

The obtained palladium(II) complexes were identified by elemental analysis and IR spectroscopy. According to elemental analysis data, all complexes are of general formula LPdCl₂. Because the synthesized complexes were amorphous powders with low solubility in organic solvents, we were not able to perform their X-ray analysis and faced problems with registration of NMR data and mass-spectra. Therefore, the structure determination of complexes was based on the analysis of 2D NMR (¹H, ¹³C, ¹⁵N) and mass-spectra of the most soluble complexes L¹PdCl₂ (L¹ = (1-((5-phenylisoxazol-3-yl)methyl)-1*H*-1,2,3-triazol-4-yl)methanol **11**) and L⁶PdCl₂ (L⁶ = (1-((5-phenylisoxazol-3-yl)methyl))-1*H*-1,2,3-triazol-4-yl)methyl pivalate **16**) as well as on the results of quantum-chemical calculations of molecular geometry and vibrational frequencies

2.2. Crystal structure of compound 11

frequencies with the experimental IR spectrum.

Single crystals of compound **11** suitable for X-ray analysis were obtained by slow evaporation of acetone–chloroform (1:1 v/v) solution (Figure 1).

for L¹PdCl₂ followed by comparison of the calculated values of

Figure 1. Molecular structure of 11, with the atom-numbering scheme and displacement ellipsoids drawn at the 50 % probability level. The hydrogen atoms are shown as spheres of arbitrary radii. Bond lengths in heterorings: N1–N2 = 1.3345(16), N1–C5 = 1.3383(18), N2–N3 = 1.3138(17), N3–C4 = 1.3559(18), C4–C5 = 1.3639(19) Å; C7–N8 = 1.300(2), C7–C11 = 1.405(2), N8–O9 = 1.4104(17), O9–C10 = 1.3512(18), C10–C11 = 1.342(2) Å.

Crystal data and structure refinement details for the compound are gathered in Table 1. As follows from X-ray analysis of compound **11**, it crystallizes in the triclinic space group $P\overline{1}$ with two formula units in the unit cell and one molecule in the asymmetric unit (Figure 2).

Table 1. Single crystal X-ray data and structure refinement details for 11.			
Formula	$C_{13}H_{12}N_4O_2$		
Formula weight	256.27		
Temperature [K]	296(2)		
Wavelength [Å]	0.71073		
Crystal system	Triclinic		
Space group	Р		
a [Å]	5.90940(10)		
b [Å]	7.81760(10)		
c [Å]	14.5953(3)		
α [°]	100.2381(9)		
β [°]	94.2600(11)		
γ [°]	110.7872(11)		
V [Å ³]	613.382(19)		

4

Z	2 ACCEPTEI
d _{calcd} [g cm ⁻³]	1.388
$\mu [mm^{-1}]$	0.098
Crystal size [mm]	$0.38 \times 0.20 \times 0.18$
Reflections collected	5770
Independent reflections	5770 [R(int) = 0.0186]
Restraints	0
Parameters	174
Goodness-of-fit	1.020
$R1 \; / \; wR2 \; [I > 2\sigma(I)]$	0.0429 / 0.1063
R1 / wR2 [all data]	0687 / 0.1213
CCDC	1823325

Bond lengths and valence angles in heterocycles show usual values. There are intermolecular hydrogen bonds in the crystal structure of **11** (Table 2). Classic hydrogen bonds O19–H19…N3^a between the hydroxyl H and the 1,2,3-triazole ring N atoms of neighboring molecules form centrosymmetric dimers, linked together by non-classic hydrogen bonds C18-H18A…N2^b to give polymeric ribbons running along the *a* axis (Figure 2) [symmetry codes (a) and (b) as in Table 2]. Only van der Waals interactions take place between the ribbons.

Table 2. Hydrogen bonds geometry (Å, deg) in the crystal structure of 11.				
D–H···A	D–H	D····A	D−H···A)	
O19-H19N3 ^a	0.82	2.8308(16)	170	
C18-H18AN2 ^b	0.97	3.449(2)	164	

Symmetry codes: (a) -x, 1-y, 1-z; (b) x+1, y, z.

Figure 2. Fragment of hydrogen-bonded ribbon in the crystal structure of **11**. Symmetry codes (a) and (b) as in Table 2.

2.3. NMR spectra of complexes L^1PdCl_2 and L^6PdCl_2

Along with X-ray analysis, NMR methods are powerful tools for structure elucidation of organic complexes. We have carried out a comparative study of two palladium(II) complexes and their ligands by the correlation NMR spectroscopy methods in order to estimate the most probable position of Pd and the ligand coordination. As follows from a comparison of the ¹H and ¹³C NMR spectra of ligands L^1 , L^6 and corresponding complexes L^1PdCl_2 and L^6PdCl_2 , the most significant changes in the chemical shifts are observed for the triazole part of molecules (2–3 ppm downfield in the ¹³C spectra and 0.2–0.3 ppm downfield in the ¹⁴ H spectra). Values of the chemical shifts of the isoxazole residue signals change twice as less. This allowed us to assume that the Pd is coordinated with the triazole molecular fragment. Due to a low abundance of ¹⁵N, the chemical shifts of ¹⁵N nuclei were determined by the use of the ¹H-¹⁵N-HMBC method (see Figure 3).

Figure 3. ¹⁵N chemical shifts and the observed ¹⁵N-¹H interactions in the HMBC spectra of compounds **11**, **16**, L¹PdCl₂, L⁶PdCl₂.

Such method allowed assigning three nitrogen nuclei of ligand L¹: N¹ (cross-peaks with 5-H and CH₂-group), N² (cross-peak with 5-H) of the triazole ring and $N^{2^{\prime}}$ of isoxazole ring (crosspeaks with 4'-H and CH₂-group). The signal of N³ atom of the triazole ring was not found (expected cross-peak with HOCH2group^{13,14}) despite the execution of several NMR experiments by varying of the ¹H-¹⁵N coupling constant (1-8 Hz). This result caused the exact coordination of Pd determination in the complex less reliable. One of the reasons for the observed effect may be an influence of the H-bonds OH…N³ of neighboring molecules, as it was established by X-ray analysis (see Figure 2). To exclude the effect of H-bonds, we acylated the OH group of ligand L^1 with pivaloyl chloride to prepare ester 16 (ligand L⁶) as was described above. Indeed, in the ¹H-¹⁵N-HMBC spectrum of pivalate **16** we observed the signals of all four nitrogen atoms (N³ had a crosspeak with the CH₂OPiv group and resonated at 355 ppm). Comparison of the spectra of the ligand L^6 and the complex L⁶PdCl₂ unambiguously indicates the coordination of Pd with the atom N^3 . While the signals of the rest complex nitrogens resonated closely to those of ligand L^6 , the signal of N^3 was found almost 100 ppm upfield. The similar pattern of the ¹H-¹⁵N-HMBC spectrum was registered also for the complex L¹PdCl₂. Such significant shielding influence on the nitrogen nuclei coordinated with Pd was already shown for triazoles and other nitrogen heterocycles.^{15, 16} It should be noted that series of the signals in ¹H, ¹³C and ¹⁵N NMR spectra appear as couples with a close intensity. This may be due to the existence of complexes in the form of bridge structures, with the possibility of rotation around $Pd-N^3$ bond and the formation of rotamer couples. Another reason may be the existence of a complex as a mixture of E,Z-isomers in the bridge fragment of the molecule. The ratio of rotamers, as well as the ratio of isomers, should depend on the

temperature. We recorded the ¹H, ¹³C and ¹H-¹⁵N-HMBC NMR spectra for the L⁶PdCl₂ complex at 65 °C and found that the signals ratio changed substantially and one of the rotamers (or isomers) became predominant. It should be noted that after cooling to room temperature, the signal ratio remains the same as at 65 °C. This might indicate realization of the isomerization process (Scheme 3). The correlation spectra give opportunity to determinate proton/carbon signals of each rotamers (isomers) in the triazole part of the complex molecules. Thus, the complexes with the downfield N³ NMR signal (248 ppm - $L^{1}PdCl_{2}$ and 253 ppm - $L^{6}PdCl_{2}$) have downfield proton signals (5.33 and 5.78 ppm - CH₂O, 8.50 and 8.73 ppm - $H_{triazol}$ for L¹PdCl₂ and $L^{\circ}PdCl_2$ respectively). The resonances of the carbon nuclei depend on the position of these nuclei in the molecule. For example, the signals of CH2-group and Ctriazol carbons are upfield (47.32, 57.69 and 145.12 ppm) whereas the CH_{triazol} signal is observed in downfield (128.17 ppm) of the L⁶PdCl₂ isomer with $253 \text{ ppm of the N}^3 \text{ NMR signal.}$

Scheme 3. Principal scheme of dimeric complex isomerization.

2.4. Mass-spectometry of complexes $L^{1}PdCl_{2}$ and $L^{6}PdCl_{2}$

Our numerous attempts to perform a mass-spectrometric study of the complexes were unsuccessful. The problem lays not only in a low solubility of the complexes compounds, but it is connected with their stability in the ESI-MS-experiment as well as nature of the ligands. Nevertheless, we were able to observe fragment ions of low intensity ($[M - CI]^+$ for dimers) in the case of the most soluble complexes $[L^1PdCl_2]_2$ and $[L^6PdCl_2]_2$ (Figure 1, SI). As shown in Figure 1 (SI), the fragment ions $[M - CI]^+$ at m/z 826-839 (830.942) for $[L^1PdCl_2]_2$ and 994-1006 (998.988) for $[L^6PdCl_2]_2$ were detected. Moreover, peaks due to species containing Pd were easily detected by the characteristic isotope distribution of the metal $[^{101.9}Pd (1\%), ^{103.9}Pd (11.1\%), ^{104.9}Pd (22.3\%), ^{105.9}Pd (27.3\%), ^{107.9}Pd (26.5\%) and ^{109.9}Pd (11.7\%)]$. Theoretical isotope patterns were calculated by MestReNova program and used to help the assignment (file mass-spectra, SI).

2.5. Quantum-chemical modeling of L^1PdCl_2 complex

Additionally, we compared experimental IR spectra of synthesized complex L¹PdCl₂ with modeled vibrational spectra for the complex of dimeric structure. Full geometry optimization of the latter and its normal-mode vibrational frequencies calculations were carried out at DFT level of theory, using B3LYP1¹⁷ functional in combination with Pople's 6-31+G* basis set^{18,19} for main-groups elements, and LANL2TZ(f) basis set with corresponding effective core potential²⁰ for palladium. All basis sets were obtained through EMSL Basis Set Exchange Library.²¹ The applicability of this level of theory for modeling of some 1,2-azoles palladium complexes structures and their normalmode vibrational frequencies calculation was shown previously,^{6b} as well as the application of scale factors for analysis of obtained frequencies.²² In the present work, we used a scale factor of 0.978. For calculations we used Firefly QC package.²³ which is partially based on the GAMESS (US)²⁴ source code. The results of the calculations were analyzed with the help of ChemCraft package.²⁵ Experimental frequencies for complex L¹PdCl₂ and calculated vibrational frequencies are listed in Table 3, obtained geometry for the dimeric complex is presented in Figure 3.

Figure 4. The optimized geometry of dimeric complex L¹PdCl₂.

Calculated vibrational frequencies appeared to be in good agreement with experimental IR spectra of synthesized compound L^1PdCl_2 . Therefore, these data support the hypothesis about a dimeric structure of the complex with coordination of palladium atom by the triazole ring N³ atom. It should be noted that we also modeled structural parameters for ligand L^1 on the same level of theory. The difference between calculated geometrical parameters and parameters obtained through single crystal X-Ray diffraction for substance **11** (L¹) did not exceed 0.03Å for bond lengths and 3 degrees for angles. The only significant difference that was observed is the conformational position of isoxazole ring relatively to the triazole fragment.

Table 3. Main experimental	IR spectra	bands and	calculated	vibrational	frequencies
for complex L ¹ PdCl ₂ .					

Oscillation type (highest contribution)	Experimental frequencies, cm ⁻¹	Calculated frequencies, cm ⁻¹
δ(C-C) _{arom}	492	494
δ (C-C, C-H) _{arom} + δ (C-H) _{isox}	688	686
$\delta(\text{C-C},\text{C-H})_{arom} + \delta(\text{C-H})_{isox} + \delta(\text{C-H})_{triaz}$	764	765
$\delta(\text{C-H})_{isox} + \delta(\text{C-H})_{triaz} + \delta(\text{CH}_2)$	797	786
$\delta(CH_2) + \delta(C-CH-C)_{isox} + \delta(O-H)$	950	952
v(C-O) _{OH}	1024	1027
$v(\text{C-O})_{OH} + \delta(\text{N-N-N})_{triaz} + \delta(\text{C-CH-N})_{triaz}$	1050	1047
$\delta(\text{C-H})_{isox} + v(\text{C-O})_{isox} + v(\text{C-H})_{arom}$	1062	1054
$\delta(C\text{-}H)_{triaz} + \delta(N\text{-}N_{Pd}\text{-}C)_{triaz} + v(C\text{-}C)_{triaz}$	1095	1093
$\delta(C\text{-}H)_{triaz} + \delta(N\text{-}N\text{-}CH)_{triaz} + \delta(CH_2)$	1147	1146
δ (C-H) _{arom} + v(O-C) _{isox} +v(C _{isox} -C _{arom})	1250	1256
$v(N_{Pd}\text{-}N)_{triaz} + \delta(CH_2) + \delta(O\text{-}H)$	1259	1272
δ(CH ₂)	1340	1354
$\delta(CH_2) + v(CH\text{-}N)_{triaz}$	1420	1444
$\delta(C\text{-}H)_{arom} + \delta(C\text{-}H)_{isox} + v(C\text{-}CH)_{isox}$	1455	1463
$\delta(C\text{-}H)_{arom} + v(C\text{-}N)_{isox} + v(C\text{-}CH)_{isox}$	1474	1475
$v(C\text{-}N)_{isox} + v(C\text{-}C)_{arom} + \delta(C\text{-}H)_{arom}$	1504	1512
$\delta(C\text{-}H)_{triaz} + v(C\text{-}C)_{triaz}$	1573	1561
$\delta(\text{C-H})_{arom} + v(\text{C-C})_{isox} + v(\text{C-C})_{arom}$	1591	1584
$\delta(C\text{-}H)_{arom} + v(C\text{-}C)_{arom} + v(C\text{-}C)_{isox}$	1609	1603

6	Tetrahedron	
2.	6. Complexes in catalysis of cross-coupling reactions PTED MANUSCRIPT	100

With synthesized water and air-stable complexes $L^1PdCl_2 - L^7PdCl_2$ in hand, we further tested their catalytic activity in crosscoupling reactions. Primarily, to test the activity of LPdCl₂ for the Suzuki-Miyaura reactions, the model reaction of 3bromobenzoic acid **21** with 4-methoxyphenylboronic acid **22** in the presence of 0.1 mol % of LPdCl₂ was studied under air atmosphere (Scheme 4, Table 4). Water and aqueous methanol were used as solvents and K₂CO₃ as a base for these reactions, based on our previous results.^{3,51}

Scheme 4. Model Suzuki-Miyaura reaction: cross-coupling of 3bromobenzoic acid 21 with 4-methoxyphenylboronic acid 22 (0.1 mol % of LPdCl₂) yielding 4-methoxybiphenyl-3-carboxylic acid 23.

Table 4. Suzuki-Miyaura reaction of 3-bromobenzoic acid 21 with 4-methoxyphenylboronic acid 22 in the presence of complexes $LPdCl_2^{a}$.				
Entry	LPdCl ₂	T ^b , °C	Time, min	Yield, ^c % TON/TOF, h ⁻¹
1	L^1PdCl_2	20	15	99 9.9·10 ² /3.96·10 ³
2	L^1PdCl_2	100	2	100 1·10 ³ /3·10 ⁴
3	L^2PdCl_2	20	15	$\frac{100}{1 \cdot 10^{3}/4 \cdot 10^{3}}$
4	L^2PdCl_2	75	2	100 1·10 ³ /3·10 ⁴
5	L^2PdCl_2	35	10	100 1·10 ³ /6·10 ³
6	L^2PdCl_2	100	2	100 1·10 ³ /3·10 ⁴
7	L ² PdCl ₂ 0.01 mol %	100	4	100 1·10 ⁴ /1.5·10 ⁵
8	L ² PdCl ₂ 0.001 mol %	100	5	100 1·10 ⁵ /1.2·10 ⁶
9 ^d	L ² PdCl ₂ 0.0001 mol %	100	5	100 1·10 ⁶ /1.2·10 ⁷
10	L ³ PdCl ₂	20	15	98 9.8·10 ² /3.92·10 ³
11	L ³ PdCl ₂	100	2	99 9.9·10 ² /2.97·10 ⁴
12	L^4PdCl_2	20	20	98 9.8·10 ² /2.94·10 ³
13	L^4PdCl_2	100	<1	$\frac{100}{1 \cdot 10^3 / 6 \cdot 10^4}$
14	L^5PdCl_2	35	15	$\frac{100}{1 \cdot 10^3 / 4 \cdot 10^3}$
15	L ⁵ PdCl ₂	75	<1	99 9.9·10 ² /5.94·10 ⁴

NUS(CRIPT L [®] PdCl ₂	20	15	$100 \\ 1 \cdot 10^3 / 4 \cdot 10^3$
17	L ⁶ PdCl ₂	100	<1	98 9.8·10 ² /5.88·10 ⁴
18	L^7PdCl_2	20	20	97 9.7·10 ² /2.91·10 ³
19	$L^7 PdCl_2$	100	3	$100 \\ 1 \cdot 10^3 / 2 \cdot 10^4$
20	Na ₂ PdCl ₄	20	10 4 h	89 92
21	Na ₂ PdCl ₄	100	5	99 9.9·10 ² /1.19·10 ⁴

^a Aryl halide (0.5 mmol), arylboronic acid (0.6 mmol), K₂CO₃ (1.25 mmol), 5 ml of solvent: H₂O or H₂O-MeOH (1:1).

 $^{\rm b}$ The experiments were performed in aqueous methanol solution at 20 and 75 °C or in water at 35 and 100 °C.

^{c 1}H NMR yield with 1,1,2,2-tetrachloroethane (0.5 mmol) as internal standard.

^dReaction with 3-iodobenzoic acid.

It should be noted that in the presence of the base, 3bromobenzoic acid was converted into the corresponding soluble potassium benzoate and the reaction proceeded under homogeneous conditions. We found that the reaction proceeded smoothly at 20-35 °C in 10-15 min in a high yield without any inert gas protection in the presence of tested complexes (Table 4, entries 1, 3, 5, 10, 12, 14 and 16). At elevated temperatures (75-100 °C), the reaction time did not exceed 1-4 min (entries 2, 4, 6, 11, 13, 15, 17 and 19). Much to our surprise, in all cases the reaction proceeded without any apparent formation of Pd-black, even after the complete conversion of the aryl halide. To understand this phenomenon, we assumed that only a negligible part of the original Pd(II) complex was reduced to the active complex Pd(0) and participated in the catalytic cycle. Consequently, if this assumption is correct, the reaction can be carried out with a lower catalyst loading. Indeed, the amount of catalyst can be reduced by an order of magnitude or more, without appreciable decrease in activity. For example, in the presence of 0.01–0.001 mol % of complex L²PdCl₂, 3bromobenzoic acid reacted with 4-methoxyphenylboronic acid in water at 100 °C in 4-5 min in quantitative yields with turnover numbers (TON) up to 100,000 and turnover frequencies (TOF) up to 1,200,000 h^{-1} (entries 7 and 8). In the case of aryl iodides, the reaction was completed in less than 5 min with high yield in the presence of 0.0001 mol % of catalyst (1 ppm level). Remarkably high TON of 1,000,000 and TOF of 12,000,000 h^{-1} were achieved (entry 9). These results indicate that isoxazolyl-1,2,3-triazole complexes $L^{1}PdCl_{2}-L^{7}PdCl_{2}$ are very effective and high-turnover catalysts for Suzuki-Miyaura reaction in aqueous media.

On the other hand, the use of Na_2PdCl_4 as the catalyst in aqueous methanol at room temperature afforded cross-coupling product in 89 % yield in 10 min (Table 4, entry 20). However, at this moment, the catalyst agglomerated completely into Pd-black. After the formation of the Pd-black, the reaction almost stopped, and within 4 h the yield increased to only 92 % (entry 20). At elevated temperature, the cross-coupling product was formed with a quantitative yield in 5 min (entry 21).

The catalytic activity of $LPdCl_2$ complexes was not limited to Suzuki-Miyaura reactions. It can be readily extended to other cross-coupling reactions such as Mizoroki-Heck²⁶ and Sonogashira²⁷ reactions.

Scheme 5. Model Mizoroki–Heck reaction: cross-coupling of *m*-iodobenzoic acid 24 and acrylic acid 25.

Table 5. Mizoroki–Heck reaction between m-iodobenzoic acid **24** and acrylic acid **25** in the presence of complexes LPdCl₂^a.

Entry	LPdCl ₂	Time, min	Yield, ^b % TON/TOF, h ⁻¹
1	L^2PdCl_2	30	99 9.9·10 ² /1.98·10 ³
2	L^4PdCl_2	30	$100 \\ 1 \cdot 10^3 / 2 \cdot 10^3$
3	L ⁶ PdCl ₂	30	$100 \\ 1 \cdot 10^3 / 2 \cdot 10^3$
4	L^7PdCl_2	40	98 9.8·10 ² /1.96·10 ³

 a Aryl halide (0.5 mmol), acrylic acid (0.6 mmol), K_{2}CO_{3} (1.25 mmol), 5 mL of H_2O, 100 °C.

^b¹H NMR yield with 1,1,2,2-tetrachloroethane (0.5 mmol) as internal standard.

For all tested complexes, almost quantitative isolated yields of **26** were obtained in 30–40 min in air atmosphere. No byproducts were detected for any of the catalysts, and cinnamic acid **26** was isolated in pure form without the need of chromatographic purification.

Finally, LPdCl₂ complexes were assayed in the Sonogashira reaction between methyl *p*-iodobenzoate **27** and prop-2-yn-1-ol (propargyl alcohol) **28**, to afford methyl 4-(3-hydroxyprop-1-yn-1-yl)benzoate **29** (Scheme 6), under the conditions summarized in Table 5 (2-methyltetrahydrofuran, 1.5 eq. of triethylamine as base, 0.2 mol % LPdCl₂ + 2PPh₃, 1 mol % CuI, 20 °C, 15 min, argon).

Scheme 6. Model Sonogashira reaction: cross-coupling of *p*-iodobenzoate 27 and prop-2-yn-1-ol 28.

It is important to note that it was the use of an additional phosphine ligand that provided a smooth reaction and a high yield (Table 6, entries 1, 3, 4 and 6). In the absence of triphenylphosphine, the reaction proceeded quickly but mainly resulted in the formation of tar products of an unidentified structure (entries 2 and 5). It is possible that without additives the activity of the resulting palladium catalyst is so high that it causes oligomerization ²⁸ of the acetylene compounds, both the starting propargyl alcohol and the cross-coupling product. The practical advantage of this protocol is the use of water-insoluble 2-MeTHF as a solvent, which provides convenient isolation of

cross-coupling products by separation of 2-MeTHF–water layers, then evaporation and full regeneration of 2-MeTHF. The growing interest towards 2-MeTHF from both academia and industries is also due to its abidance of Green Chemistry principles.²⁹

Table 6. Sonogashira reaction between methyl p-iodobenzoate 27 and prop-2- yn-1-ol 28 in the presence of complexes $LPdCl_2^a$.					
Entry	LPdCl ₂	Additives	Time, min	Yield, ^b % TON/TOF, h ⁻¹	
1	L^2PdCl_2	PPh ₃	15	97 9.7·10 ² /3.88·10 ³	
2	L^2PdCl_2	-	10	23	
3	L^4PdCl_2	PPh ₃	15	99 9.9·10 ² /3.96·10 ³	
4	L ⁶ PdCl ₂	PPh ₃	15	98 9.8·10 ² /3.92·10 ³	
5	L ⁶ PdCl ₂		10	19	
6	L ⁷ PdCl ₂	PPh ₃	20	96	

 $^{\rm a}$ Aryl halide (0.5 mmol), prop-2-yn-1-ol (0.65 mmol), NEt_3 (0.75 mmol), 1 mol % CuI, 5 mL of 2-MeTHF, 20 °C.

^{b 1}H NMR yield with 1,1,2,2-tetrachloroethane (0.5 mmol) as internal standard.

It is worthwhile noting that $(PPh_3)_2PdCl_2$ afforded **29** in 82 % yield after a prolonged reaction time (THF, 4 eq. of triethylamine, 1.5 mol % Pd-catalyst, 1.5 mol % Cul, 20 °C, overnight, argon).³⁰

3. Conclusions

An efficient and convenient synthesis of new substituted 3-((1H-1,2,3-triazol-1-yl)methyl)-5-arylisoxazoles (aryl = Ph, p-Tol) and 2-(5-phenylisoxazol-3-yl)-5-(2-(1-((5-(p-tolyl)isoxazol-3-yl)methyl)-1*H*-1,2,3-triazol-4-yl)eth-yl)-1,3,4-oxadiazole was elaborated by means of click-chemistry procedures. The new compounds served as ligands in preparation of water and airstable palladium(II) complexes. The obtained complexes demonstrated high catalytic activity in the cross-coupling reactions: 3-bromobenzoic acid with 4-methoxyphenylboronic acid (Suzuki-Miyaura reaction), *m*-iodobenzoic acid with acrylic acid (Mizoroki-Heck reaction) and methyl p-iodobenzoate with propargyl alcohol (Sonogashira reaction). All reactions proceeded in short time in water or environment friendly solvent with quantitative yields of the target products. Currently, these palladium complexes are being studied as precursors for the development of effective homogeneous and reusable heterogeneous catalysts for the synthesis of useful products in environmentally safe conditions (Green Chemistry).

4. Experimental Section

4.1. General Information

The IR spectra were recorded on a FTIR spectrometer Protege-460 (Nicolet) in KBr pellets. ¹H, ¹³C and ¹⁵N NMR spectra were recorded on a Bruker Avance-500 spectrometer operating at 500, 125, and 51 MHz for ¹H, ¹³C and, ¹⁵N, respectively. Chemical shifts are given on the δ scale (ppm) and were determined relative to the residual solvent signal (δ H 7.26 ppm, δ C 77.2 ppm for CDCl₃; δ H 2.5 ppm, δ C 40.1 -ppm for DMSO-d₆, δ H 8.0 ppm, δ C 162.5 ppm for DMF-d₇). Nitrogen chemical shift values for ¹⁵N NMR spectra were assigned relative to the nitromethane used as an internal reference (δ N 380.0 ppm). Coupling constants (J) are given in Hertz. Assignments of proton and carbon resonances were performed by standard 2D NMR

techniques (¹H, ¹H-COSY, HSQC, HMBC). Mass spectra were M recorded on an instrument Agilent 5975 inert MSD/6890N Network GC System (EI ionisation at 70 eV), HP-5MS capillary column 30 m \times 0.25 mm, 5% PhMe Silicon stationary phase (0.25 µm), evaporator temperature 250 °C. Data are reported as m/z (relative intensity in %). HPLC-MS studies were performed using an Agilent 1200 liquid chromatograph with mass-selective detector Agilent 6410 Triple Quad in Positive ESI mode. Elemental analysis was performed on a Vario Micro cube CHNSanalyser. The chlorine content was determined by classical microanalysis according to the modified Pregl method.³¹ The palladium content of complexes and residual palladium contamination in target products was determined by atomic absorption spectroscopy on a MGA-915 spectrometer. TLC was performed on Merck Silica gel 60 F₂₅₄ plates; the eluent was hexane-Et₂O, 2:1-1:3. Melting points were determined on Boetius apparatus. All purchased chemicals were used as such.

Single crystal X-ray diffraction data of 11 were collected on a SMART Apex II diffractometer using graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at a temperature of 296 K. The structure was solved by direct methods (SIR2014³²) and refined F^2 bv the full-matrix least-squares technique on (SHELXL2016³³). The intensities were corrected for absorption. For all compounds, non-hydrogen atoms were refined anisotropically. The investigated crystal was a non-merohedral twin, with a fractional contribution of 0.5079 (12) of the major twin component. The hydrogen atoms were placed in calculated positions and refined in a "riding" model, with $U_{iso}(H) =$ $1.5U_{eq}(O)$ for the hydroxyl H atom and $U_{iso}(H) = 1.2U_{eq}(C)$ for remaining H atoms. Molecular graphics was performed with the programs ORTEP-3 for Windows³⁴ and PLATON.³⁵

4.2. General Procedure for the Synthesis of 3-(Azidomethyl)-5-arylisoxazoles (9,10)

Sodium azide (11 mmol) was added to the corresponding 3-(chloromethyl)-5-arylisoxazole **7,8** (10 mmol) in 20 mL anhydrous DMF and the mixture was stirred for 4 h at 65–70 °C. The reaction mixture was then poured into ice water saturated with NaCl. The precipitate was filtered off, washed with water (3 x 20 mL) and dried over P_2O_5 .

4.3. 3-(Azidomethyl)-5-phenylisoxazole (9)

White solid (99 % yield); m.p. 45–46 °C. ¹H NMR (500 MHz, CDCl₃): δ = 4.45 (s, 2H, CH₂), 7.23–7.19 (m, 1H), 6.65 (s, 1H_{isox}), 7.38–7.51 (m, 3H_{arom}), 7.70–7.82 (m, 2H_{arom}) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 45.82 (CH₂), 98.59 (CH_{isox}), 125.93 (2CH_{arom}), 129.11 (2CH_{arom}), 130.58 (1CH_{arom}), 127.06, 159.88, 171.04 (3C_{quat}) ppm. IR (KBr): \tilde{v}_{max} = 3129, 3068, 3008, 2950, 2852, 2133, 2098, 2077, 1612, 1592, 1573, 1499, 1459, 1428, 1253, 1209, 1048, 1021, 947, 908, 880, 810, 764, 690, 673, 649, 559, 493 cm⁻¹. GC-MS (EI) m/z (I, %): 200 (76) [*M*]⁺, 172 (13), 105 (100), 77 (91), 51 (46). Anal. Calcd for C₁₀H₈N₄O: C 59.99; H 4.03; N 27.99. Found C 60.12; H 4.09; N 27.87.

4.4. 3-(Azidomethyl)-5-(p-tolyl)isoxazole (10)

White solid (99 % yield); m.p. 37.5–38.5 °C. 1H NMR (500 MHz, CDCl₃): δ = 2.38 (s, 3H, CH₃), 4.43 (s, 2H, CH₂), 6.49 (s, 1H_{isox}), 7.24 (d, *J* = 7.4 Hz, 2H_{arom}), 7.65 (d, *J* = 7.4 Hz, 2H_{arom}) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 21.49 (CH₃), 45.80 (CH₂), 97.95 (CH_{isox}), 125.82 (2CH_{arom}), 129.75 (2CH_{arom}), 124.34, 140.89, 159.78, 171.19 (4C_{quat}) ppm. IR (KBr): \tilde{v}_{max} = 3136, 3038, 3030, 3008, 2954, 2925, 2864, 2130, 2098, 2077, 1618, 1598, 1566, 1511, 1463, 1455, 1436, 1408, 1378, 1341, 1313, 1252, 1216, 1209, 1114, 1045, 1023, 949, 904, 883, 826, 806, 768, 716, 680, 661, 557, 506 cm⁻¹. GC-MS (EI): m/z (I, %)

214 (100) $[M]^{+}$, 186 (15), 119 (97), 91 (79), 65 (31). Anal. Calcd for C₁₁H₁₀N₄O: C 61.67; H 4.71; N 26.15. Found C 61.78; H 4.68; N 26.19.

4.5. General Procedure for the Synthesis of 3-((1H-1,2,3-triazol-1-yl)methyl)-5-arylisoxazoles (11–15)

The mixture of 0.23 mmol $CuSO_4 \cdot 5H_2O$ and 0.45 mmol TBTA in 15 mL MeOH was stirred for 10 min at room temperature and 0.91 mmol Na ascorbate was then added. After stirring for 30 min, the solution of 4.5 mmol isoxazolylazide **9,10** and 4.6 mmol corresponding alkyne (propargyl alcohol, 2-methylbut-3-yn-2-ol, phenyl acetylene) in 15 mL MeOH was added. The reaction mixture was stirred for 4 h and diluted with 150 mL of brine. Precipitate was filtered off, washed with water (3 x 20 mL), dried in vacuum and recrystallized from acetone – CH_2Cl_2 (1 : 1).

4.6. (1-((5-Phenylisoxazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methanol (11)

White solid (85 % yield); m.p. 156–157 °C. ¹H NMR (500 MHz, DMF- d_7): $\delta = 4.66$ (d, J = 5.5 Hz, 2H, CH₂O), 5.25 (t, J =5.5 Hz, 1H, OH), 5.87 (s, 2H, CH₂N), 7.05 (s, 1H_{isox}), 7.49–7.57 (m, 3H_{arom}), 7.86–7.92 (m, 2H_{arom}), 8.19 (s, 1H_{triazol}). ¹³C NMR (125 MHz, DMF- d_7): $\delta = 45.36$ (CH₂N), 55.18 (CH₂O), 100.12 (CH_{isox}), 123.69 (CH_{triazol}), 126.17 (2CH_{arom}), 129.74 (2CH_{arom}), 131.10 (1CH_{arom}), 127.40, 149.54, 161.10, 170.85 (4C_{quat}). ۶N NMR (50.7 MHz, DMF- d_7): $\delta = 240$ (N¹), 361 (N²), 372 (N_{isox}). IR (KBr): ṽ_{max}= 3286, 3139, 3126, 3085, 3058, 2992, 2930, 2883, 1614, 1594, 1576, 1553, 1505, 1468, 1454, 1427, 1372, 1303, 1232, 1137, 1065, 1049, 1039, 1022, 950, 913, 843, 787, 760, 742, 686, 676, 491 cm⁻¹. HPLC-MS, m/z (I, %): 535 [2M + Na] $J^{+}(19)$, 279 $[M + Na]^{+}(18)$, 257 $[M + H]^{+}(100)$. Anal. Calcd for C₁₃H₁₂N₄O₂: C 60.93; H 4.72; N 21.86. Found C 61.08; H 4.62; N 21.99.

4.7. (1-((5-(p-Tolyl)isoxazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methanol (12)

White solid (97 % yield); m.p. 150–152 °C. ¹H NMR (500 MHz, DMSO- d_6): δ = 2.33 (s, 3H, CH₃), 4.56 (d, J = 5 Hz, 2H, CH₂O), 5.29 (t, 1H, J = 5 Hz, OH,), 5.78 (s, 2H, CH₂N), 6.93 (s, 1 H_{isox}), 7.31 (d, J = 8 Hz, 2H_{arom}), 7.73 (d, J = 8 Hz, 2H_{arom}), 8.14 (s, 1H_{triazol}). ¹³C NMR (125 MHz, DMSO- d_6): 21.57 (CH₃), 45.24 (CH₂N), 55.62 (CH₂O), 99.74 (CH_{isox}), 124.01 (CH_{triazol}), 126.19 (2CH_{arom}), 130.40 (2CH_{arom}), 124.39, 141.21, 149.09, 160.80, 170.65 (5C_{quat}). IR (KBr): \tilde{v}_{max} = 3289, 3147, 3132, 3123, 3059, 3037, 2992, 2958, 2921, 2853, 1619, 1598, 1568, 1515, 1470, 1436, 1376, 1368, 1319, 1226, 1132, 1116, 1063, 1049, 1038, 1017, 949, 842, 820, 810, 790, 737, 629, 503 cm⁻¹. GC-MS (EI), m/z (I, %): 270 (21) [M]⁺, 242 (24), 119 (100), 91 (59). Anal. Calcd for C₁₄H₁₄N₄O₂: C 62.21; H 5.22; N 20.73. Found C 62.40; H 5.03; N 20.66.

4.8. 2-(1-((5-(p-Tolyl)isoxazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)propan-2-ol (13)

White solid (95 % yield); m.p. 152–153 °C. ¹H NMR (500 MHz, DMSO- d_6): $\delta = 1.47$ (s, 6H, 2CH₃), 2.35 (s, 3H, CH₃), 5.13 (s, 1H, OH), 5.74 (s, 2H, CH₂), 6.95 (s, 1H_{isox}.), 7.33 (d, J = 8 Hz, 2H_{arom}.), 7.75 (d, J = 8 Hz, 2H_{arom}.), 8.00 (s, 1H_{triazol}). ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 21.56$ (CH₃), 31.22 (2CH₃), 45.09 (CH₂), 99.82 (CH_{isox}.), 121.66 (CH_{triazol}), 126.17 (2CH_{arom}.), 130.38 (2CH_{arom}.), 67.62, 124.36, 141.19, 156.84, 160.71, 170.59 (6C_{quat}.). IR (KBr): \tilde{v}_{max} = 3355, 3129, 3075, 3038, 3001, 2970, 2930, 2874, 1619, 1600, 1568, 1515, 1469, 1441, 1368, 1355, 1301, 1218, 1181, 1135, 1116, 1062, 1047, 1019, 967, 949, 837, 825, 808, 779, 743, 722, 678, 502 cm⁻¹. Anal. Calcd for

$C_{16}H_{18}N_4O_2;$ C 64.41; H 6.08; N 18.78. Found C 64.75; H 6.20; \bigwedge N 18.54.

4.9. 5-Phenyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)isoxazole (14)

White solid (98 % yield); m.p. 194–195 °C. ¹H NMR (500 MHz, DMSO- d_6): $\delta = 5.88$ (s, 2H, CH₂), 7.07 (s, 1H_{isox}.), 7.34 (t, J = 7.4 Hz, 1H_{arom}), 7.45 (t, J = 7.7 Hz, 2H_{arom}), 7.48–7.54 (m, 3H_{arom}), 7.82–7.93 (m, 4H_{arom}), 8.73 (s, 1H_{triazol}). ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 45.61$ (CH₂), 100.38 (CH_{isox}.), 122.65 (CH_{triazol}), 125.83 (2CH_{arom}.), 126.26 (2CH_{arom}.), 128.60 (1CH_{arom}.), 129.50 (2CH_{arom}.), 129.85 (2CH_{arom}.), 131.27 (1CH_{arom}.), 127.03, 131.10, 147.39, 160.76, 170.58 (5C_{quat}.). IR (KBr): \tilde{v}_{max} = 3122, 3098, 3054, 2999, 2957, 2918, 2850, 1612, 1593, 1574, 1465, 1453, 1440, 1355, 1347, 1227, 1200, 1182, 1076, 1048, 1027, 1011, 973, 947, 912, 830, 786, 764, 749, 685, 507, 490 cm⁻¹. HPLC-MS, m/z (I, %): 303 [M + H]⁺ (100). Anal. Calcd for C₁₈H₁₄N₄O: C 71.51; H 4.67; N 18.53. Found C 71.65; H 4.64; N 18.39.

4.10. 3-((4-Phenyl-1H-1,2,3-triazol-1-yl)methyl)-5-(p-tolyl)isoxazole (15)

White solid (91 % yield); m.p. 178–179 °C. ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.33$ (s, 3H, CH₃), 5.86 (s, J = 7.4 Hz, 2H, CH₂), 6.99 (s,1H_{isox}), 7.31 (d, J = 8.1 Hz, 2H_{arom}), 7.34 (t, J = 7.4 Hz, 1H_{arom}), 7.45 (t, J = 7.7 Hz, 2H_{arom}), 7.75 (d, J = 8.1 Hz, 2H_{arom}), 7.89 (d, J = 7.2 Hz, 2H_{arom}), 8.73 (s, 1H_{triazol}). ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 21.56$ (CH₃), 45.62 (CH₂), 99.71 (CH_{isox}), 122.64 (CH_{triazol}), 125.83 (2CH_{arom}), 126.20 (2CH_{arom}), 128.59 (1CH_{arom}), 129.49 (2CH_{arom}), 130.38 (2CH_{arom}), 124.38, 131.11, 141.21, 147.39, 160.68, 170.75 (6C_{quat}). IR (KBr): \tilde{v}_{max} =3108, 3088, 3047, 3032, 2991, 2946, 2917, 2856, 1619, 1597, 1517, 1463, 1440, 1431, 1350, 1223, 1200, 1184, 1117, 1079, 1047, 973, 948, 912, 839, 821, 783, 761, 752, 694, 517, 505 cm⁻¹. Anal. Calcd for C₁₉H₁₆N₄O: C 72.13; H 5.10; N 17.71. Found: C 72.29; H 5.05; N 17.60.

4.11. 2-(But-3-yn-1-yl)-5-(5-phenylisoxazol-3-yl)-1,3,4oxadiazole (19)

DCC (0.97 g, 4.7 mmol) was added to a solution of pent-4inoic acid (0.94 g, 9.58 mmol) in 10 mL anhydrous toluene. The reaction mixture was stirred for 30 min at room temperature, precipitate filtered off, and 3-(1*H*-tetrazol-5-yl)-5phenylisoxazole 18 (1g, 4.69 mmol) was added to the filtrate. The obtained suspension was refluxed for 6 h, toluene was removed, solid residue washed with chilled toluene, hexane and dried on air to give 0.84 g compound 19 which used without further purification. White solid (86% yield); m.p. 145-147 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 2.05$ (t, 1H, J = 2.5 Hz, =CH,), 2.80 (dt, J = 7.2 and 2.5 Hz, 2H, CH₂CH₂C=), 3.23 (t, 2H, J = 7.2Hz, $CH_2CH_2C\equiv$), 7.15 (s, $1H_{isox}$), 7.48–7.54 (m, $3H_{arom}$), 7.82– 7.87 (m, 2H_{arom}). ¹³C NMR (125 MHz, CDCl₃): $\delta = 16.27$ $(CH_2CH_2C\equiv)$, 25.21 $(CH_2CH_2C\equiv)$, 70.29 $(\equiv CH)$, 98.69 (CH_{isox}) , 126.22 (2CH_{arom}), 129.39 (2CH_{arom}), 131.26 (1CH_{arom}), 81.06, 126.40, 150.89, 157.77, 166.49, 172.10 (6C_{quat.}). IR (KBr): \tilde{v}_{max} = 3257, 3142, 3068, 3051, 2923, 2853, 2118, 1617, 1607, 1565, 1494, 1470, 1459, 1445, 1428, 1327, 1227, 1119, 1048, 949, 938, 803, 767, 731, 692, 678 cm⁻¹. Anal. Calcd for C₁₅H₁₁N₃O₂: C 67.92, H 4.18, N 15.84. Found C 67.84, H 4.09, N 15.94.

4.12. 2-(5-Phenylisoxazol-3-yl)-5-(2-(1-((5(p-tolyl)isoxazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)ethyl)-1,3,4-oxadiazole (20)

The compound was prepared by the same procedure described for **11–15**, but reaction was carried out at 40 °C. Compound was obtained (91 % yield) as white solid; m.p. 183–184 °C (decomp.). ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.32$ (s, 3H,

CH₃), 3.22 (t, J = 7.2 Hz, 2H, CH₂,), 3.38 (t, J = 7.2 Hz, 2H, CH₂,), 5.75 (s, 2H, CH₂N), 6.85 (s, 1H_{isox}), 7.30 (d, J = 8 Hz, 2H_{arom}), 7.55–7.61 (m, 3H_{arom}), 7.71 (d, J = 8 Hz, 2H_{arom}), 7.73 (s, 1H_{isox}), 7.95–8.03 (m, 2H_{arom}), 8.10 (s, 1H_{triazol}). ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 21.52$ (CH₃), 22.45 (CH₂), 25.09 (CH₂), 45.24 (CH₂N), 99.58 (CH_{isox}), 100.05 (CH_{isox}), 123.75 (CH_{triazol}), 126.11 (2CH_{arom}), 126.52 (2CH_{apom}), 129.93 (2CH_{apom}), 130.33 (2CH_{apom}), 131.78 (1CH_{arom}), 124.31, 126.37, 141.13, 151.32, 157.21, 160.71, 167.81, 170.57, 171.73 (9C_{quat}). IR (KBr): \tilde{v}_{max} =3144, 3125, 3116, 3064, 3034, 2992, 2923, 2853, 1619, 1600, 1566, 1493, 1462, 1447, 1427, 1353, 1222, 1120, 1050, 995, 950, 816, 765, 688, 679, 498 cm⁻¹. Anal. Calcd for C₂₆H₂₁N₇O₃: C 65.13; H 4.41; N 20.45. Found C 65.27; H 4.75; N 20.51.

4.13. (1-((5-Phenylisoxazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl pivalate (16)

Anhydrous Et₃N (0.10 g, 0.99 mmol) was added to a solution of hydroxytriazol-isoxazole 11 (0.23 g, 0.90 mmol) and pivaloyl chloride (0.11 g, 0.91 mmol) in 30 mL anhydrous dichloromethane. The reaction mixture was stirred for 4 h at reflux, diluted with water, acidified with HCl, organic layer separated and dried over sodium sulfate. After removal of the solvent in vacuo 0.30 g ester 16 was obtained which does not need further purification. White solid (99 % yield); m.p. 117-119 °C. ¹H NMR (500 MHz, DMF- d_7): $\delta = 1.13$ (s, 9H, 3Me), 5.21 (s, 2H, CH₂O), 5.92 (s, 2H, CH₂N), 7.05 (s, 1H_{isox}), 7.50–7.56 (m, 3H_{arom}), 7.86–7.91 (m, 2H_{arom}), 8.38 (s, 1H_{triazol}). ^{13}C NMR (125 MHz, DMF- d_7): $\delta = 26.96 (3CH_3), 45.53 (CH_2N), 57.99 (CH_2O),$ 100.11 (CH_{isox}), 125.52 (CH_{triazol}), 126.17 (2CH_{arom}), 129.74 (2CH_{apom}), 131.12 (1CH_{apom}), 38.79, 127.38, 143.65, 160.91, 170.90, 177.84 (6C_{quat}). ¹⁵N NMR (50.7 MHz, DMF- d_7): $\delta = 242$ (N^1) , 355 (N^3) , 364 (N^2) , 372 $(N_{isox.})$. IR (KBr): \tilde{v}_{max} = 3118, 3094, 3074, 2981, 2970, 2935, 2874, 1731, 1613, 1593, 1575, 1480, 1468, 1452, 1429, 1396, 1366, 1313, 1283, 1227, 1165, 1154, 1133, 1051, 1037, 1007, 964, 947, 916, 842, 821, 787, 764, 740, 689, 681, 500 cm $^{-1}$. Anal. Calcd for $C_{18}H_{20}N_4O_3$: C 63.52; H 5.92; N 16.46. Found: C 63.75; H 5.88; N 16.35.

4.14. General procedure for the synthesis of $LPdCl_2$ complexes

General procedure for the synthesis of LPdCl₂ complexes. 40 mL of 0.025 M solution (1 mmol) of the corresponding ligand (L¹⁻⁷) in MeOH was added dropwise under stirring to 10 mL of 0.1 M methanol solution of Na₂PdCl₄ (1 mmol), and the mixture was stirred at room temperature. After 10 min, the precipitate was filtered off, washed with water, methanol, and dried in air at room temperature for one day.

4.15. Complex $L^{1}PdCl_{2}$

Pale yellow solid (96 % yield); ¹H NMR (500 MHz, DMF- d_7): δ (rotamer1 / rotamer2) = 5.29 / 5.33 (s, 2H, CH₂O), 5.75 (br.s, 1H, OH), 6.01 / 6.04 (s, 2H, CH₂N), 7.10 / 7.12 (s, 1H, CH_{isox}), 7.49–7.66 (m, 3H_{arom}), 7.80–7.95 (m, 2H_{arom}), 8.47 / 8.50 (s, 1H, CH_{triazol}). ¹³C NMR (125 MHz, DMF- d_7): δ = 47.15 / 47.25 (CH₂N), 57.01 / 57.15 (CH₂O), 100.24 (CH_{isox}), 126.16 (2CH_{arom}), 126.33 (CH_{triazol}), 129.78 (2CH_{arom}), 131.22 (1CH_{arom}), 127.25, 151.26 / 151.86; 160.00 / 160.06; 171.10 (4C_{quat}). ¹⁵N NMR (50.7 MHz, DMF- d_7): δ = 228 / 248 (N³), 244 (N¹), 354 (N²), 372 (N_{isox}). IR (KBr): \tilde{v}_{max} =3417, 3111, 2988, 2943, 2871, 1610, 1591, 1573, 1607, 1455, 1420, 1340, 1243, 1147, 1093, 1062, 1024, 950, 797, 764, 688, 493 cm⁻¹. HPLC-MS, m/z: 830.942 (calcd for [M – CI⁻]⁺ 830.905). Anal. Calcd for C₂₆H₂₄Cl₄N₈O₄Pd₂: C 36.01; H 2.79; Cl 16.35; N 12.92; Pd 24.54. Found C 36.28; H 3.02; Cl 14.95; N 13.09; Pd 24.38.

4.16. Complex L^2PdCl_2

Pale yellow solid (94% yield); $\tilde{v}_{max} = 3429$, 3132, 3097, 2949, 2922, 1612, 1595, 1476, 1454, 1407, 1161, 1020, 951, 820, 802 cm⁻¹. Anal. Calcd for C₁₄H₁₄Cl₂N₄O₂Pd: C 37.57; H 3.15; Cl 15.84; N 12.52; Pd 23.78. Found C 37.41; H 3.25; Cl 15.73; N 12.57; Pd 23.41.

4.17. Complex L^3PdCl_2

Pale yellow solid (91% yield); IR (KBr): $\tilde{v}_{max} = 3435$, 3118, 2976, 2917, 2870, 1614, 1597, 1474, 1369, 1184, 1175, 1124, 1078, 951, 816, 781 cm⁻¹. Anal. Calcd for $C_{16}H_{18}Cl_2N_4O_2Pd$: C 40.40; H 3.81; Cl 14.91; N 11.78; Pd 22.37. Found C 40.47; H 3.97; Cl 15.04; N 11.72; Pd 22.05.

4.18. Complex L^4PdCl_2

Pale beige solid (90% yield); IR (KBr): $\tilde{v}_{max} = 3119, 3062, 3000, 2951, 1610, 1590, 1574, 1457, 1368, 1342, 1239, 1160, 1114, 1054, 951, 921, 818, 764, 691 cm⁻¹. Anal. Calcd for C₁₈H₁₄Cl₂N₄O₂Pd: C 45.07; H 2.94; Cl 14.78; N 11.68; Pd 22.19. Found C 45.17; H 3.16; Cl 14.83; N 11.63; Pd 22.08.$

4.19. Complex L^5PdCl_2

Pale beige solid (88 % yield); IR (KBr): $\tilde{v}_{max} = 3431, 3131, 2920, 2855, 1615, 1598, 1565, 1515, 1488, 1467, 1459, 1441, 1369, 1339, 1331, 1315, 1239, 1206, 1184, 1158, 1111, 1058, 1019, 1004, 949, 822, 762, 744, 695, 503 cm⁻¹. Anal. Calcd for C₁₉H₁₆Cl₂N₄O₂Pd: C 46.23; H 3.27; Cl 14.36; N 11.35; Pd 21.56. Found C 46.15; H 3.36; Cl 14.48; N 11.39; Pd 21.41.$

4.20. Complex $L^{6}PdCl_{2}$

Yellow solid (67 % yield); ¹H NMR (500 MHz, DMF- d_7): δ $(rotamer1/rotamer2) = 1.24 / 1.25 (s, 9H, 3CH_3), 5.73 / 5.78 (s,)$ 2H, CH₂O), 6.06 / 6.08 (s, 2H, CH₂N), 7.09 / 7.11 (s, 1H, CH_{isox}), 7.52–7.56 (m, 3H_{arom}), 7.86–7.91 (m, 2H_{arom}), 8.70 / 8.73 (s,1H_{triazol}). ¹³C NMR (125 MHz, DMF- d_7): δ (rotamer1 / rotamer2) = $27.09 (3CH_3), 47.32 / 47.41 (CH_2N), 57.69 / 57.81$ (CH₂O), 100.22 / 100.25 (CH_{isox}), 126.16 (2CH_{arom}), 128.09 / 128.17 (CH_{triazol}), 129.79 (2CH_{arom}), 131.24 (1CH_{arom}), 38.98 / 39.01; 127.24; 145.12 / 145.72; 159.85 / 159.88; 171.12; 177.89 (6C_{quat.}). ¹⁵N NMR (50.7 MHz, DMF- d_7): δ (rotamer1 / rotamer2) = 235 / 253 (N³), 246 (N¹), 358 (N²), 373 (N_{isox}). IR (KBr): \tilde{v}_{max} = 3442, 3153, 2971, 2933, 2871, 1731, 1611, 1592, 1575, 1457, 1398, 1280, 1147, 1101, 1049, 1035, 951, 803, 766, 690 cm⁻¹. HPLC-MS, m/z: 998.988 (calcd for [M - CI]⁺ 999.020). Anal. Calcd for C₃₆H₄₀Cl₄N₈O₆Pd₂: C 41.76; H 3.89; Cl 13.70; N 10.82; Pd 20.56. Found C 41.56; H 3.91; Cl 13.64; N 10.90; Pd 20.41.

4.21. Complex L^7PdCl_2

Pale brown solid (88% yield); IR (KBr): $\tilde{v}_{max} = 3473$, 3111,3066, 2947, 2858, 2922, 1614, 1589, 1566, 1464, 1444, 1431, 1400, 951, 766 cm⁻¹. Anal. Calcd for $C_{26}H_{21}Cl_2N_7O_3Pd$: C 47.55; H 3.22; Cl 10.79; N 14.93; Pd 16.20. Found C 47.44; H 3.31; Cl 10.64; N 14.87; Pd 16.01.

4.22. General procedure for the Suzuki-Miyaura reaction

A 20 mL Schlenk tube with a magnetic stir bar was charged with 3-bromobenzoic acid **21** (0.5 mmol), 4methoxyphenylboronic acid **22** (0.6 mmol), K₂CO₃ (1.25 mmol), 5 ml of solvent [H₂O, H₂O-MeOH (1:1)] and 50 µL of solution $(1\cdot10^{-2}-1\cdot10^{-5} \text{ M})$ of palladium complexes LPdCl₂ in DMF under air atmosphere. The reaction mixture was placed in a preheated oil bath: at 100 °C for MeOH-H₂O and at 35 °C or 100 °C for H₂O; and stirred for the appropriate time and under conditions required (Tables 4). After this time, the mixture was cooled, diluted with 5 mL of H₂O, 5 mL of Et₂O and acidified by 1 M HCl. The organic phase was separated, and the aqueous layer was extracted with Et_2O (2 x 5 mL). The combined organic layers were washed with brine (5 mL), dried over Na_2SO_4 , concentrated in vacuo and the yield was determined by ¹H NMR analysis with 1,1,2,2-tetrachloroethane (0.5 mmol) as internal standard (Tables 4). The pure product was obtained by a simple filtration of ether solution through silica gel pad and evaporation of solvent.

4.23. 4-Methoxybiphenyl-3-carboxylic Acid (23)

White crystalline powder (98 % yield), m.p. 203-204°C (m.p. 202–203 °C³⁶). ¹H NMR (400 MHz, DMSO-d₆): $\delta = 3.79$ (s, 3H), 7.03 (d, J = 8.8 Hz, 2H), 7.54 (t, J = 7.8 Hz, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.54 (t, J = 7.8 Hz, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.82—7.90 (m, 2H), 8.12 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 55.2$, 114.5, 126.8, 127.5, 127.9, 129.2, 130.6, 131.4, 131.6, 140.2, 159.2, 167.3. IR (KBr): $\tilde{v}_{max} = 3394$, 3081, 2957, 2840, 1678, 1600, 1586, 1423, 1395, 1317, 1289, 1272, 1241, 1197, 1172, 1124, 1062, 1009, 931, 756 cm⁻¹. Calcd for C₁₄H₁₂O₃: C 73.67; H 5.30. Found: C 73.69; H 5.37.

4.24. General procedure for the Mizoroki-Heck reaction

A 20 mL Schlenk tube with a magnetic stir bar was charged with 3-iodobenzoic acid **24** (0.5 mmol), acrylic acid **25** (0.75 mmol), K_2CO_3 (1.5 mmol), 5 ml of water and 50 µL of the solution $(1 \cdot 10^{-2} \text{ M})$ of palladium complexes LPdCl₂ in DMF under air atmosphere. The reaction mixture was placed in a preheated at 100 °C oil bath and stirred for the appropriate time (Tables 5). After this time, the mixture was cooled, diluted with 5 mL of H₂O, 5 mL of EtOAc and acidified by 1 M HCl. The organic phase was separated, and the aqueous layer was extracted with EtOAc (2 x 5 mL). The combined organic layers were washed with brine (5 mL) and dried over Na₂SO₄. The yield was determined by ¹H NMR analysis with 1,1,2,2-tetrachloroethane (0.5 mmol) as internal standard (Tables 4). The pure product was obtained by a simple filtration of solution through silica gel pad and evaporation of solvent.

4.25. 3-[(E)-2-carboxyvinyl]benzoic acid (26)

White crystalline powder (97 % yield), m.p. 284–285 °C (m.p. 284–286 °C³⁷). ¹H NMR (400 MHz, DMSO-d₆): $\delta = 6.58$ (d, J = 16.0 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.64 (d, J = 16.0 Hz, 1H), 7.90-8.00 (m, 2H), 8.14 (s, 1H), 12.81 (br. s, 2H). ¹³C NMR (100 MHz, DMSO-d6): δ (ppm) = 120.5, 129.0, 129.3, 130.8, 131.6, 132.0, 134.7, 142.9, 166.9, 167.4. Calcd for C₁₀H₈O₄: C 62.50; H 4.20; O 33.30. Found: C 62.46; H 4.27.

4.26. General procedure for the Sonogashira reaction

A 20 mL Schlenk tube with a magnetic stir bar was charged with methyl p-iodobenzoate 27 (0.5 mmol), prop-2-yn-1-ol 28 (0.65 mmol), triethylamine (1.5 mmol), CuI (0.005 mmol), 4.9 ml of 2-methyltetrahydrofuran, 50 μ L of solution (4·10⁻² M) of PPh₃ and 50 μ L of solution (2·10⁻² M) of palladium complexes LPdCl₂ in 2-MeTHF under argon atmosphere. The reaction mixture was stirred at room temperature for the appropriate time (Tables 6). After this time, the mixture was added to a saturated solution of brine (5 mL). The resulting water-organic phases were separated and the organic phase was dried over Na₂SO₄. The yield was determined by ¹H NMR analysis with 1,1,2,2tetrachloroethane (0.5 mmol) as internal standard (Tables 6). The pure product was obtained by filtration of solution through silica gel pad and evaporation of the solvent under reduced pressure. Removal of solvent was carried out in a closed volume, which allowed carrying out 90-95% regeneration of the solvent.

White crystalline powder (96 % yield), m.p. 83-84°C (m.p. 82–84 °C³⁸). ¹H NMR (400 MHz, CDCl₃): δ = 2.00 (br.s, 1H), 3.90 (s, 3H), 4.50 (s, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 51.5, 52.2, 84.9, 90.2, 127.2, 129.5, 129.7, 131.5, 166.5. IR (KBr): \tilde{v}_{max} = 3323, 1726, 1430, 1282, 1119, 1031 cm⁻¹. Calcd for for C₁₁H₁₀O₃: C, 69.46; H, 5.30; O 25.24. Found: C, 69.39; H, 5.40.

X-ray Crystal Data

CCDC 1823325 contains the supplementary crystallographic data of compound **11** for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Acknowledgements

We thank the Russian Foundation for Basic Research (16-58-00059-Bel_a) and the Belarusian Republican Foundation for Fundamental Research (X16P-006) for financial support of this work.

References

- (a) Sysak A, Obmińska-Mrukowicz B. *Eur J Med Chem.* 2017; 137: 292–309; (b) Dheer D, Singh V, Shankar R. *Bioorg Chem.* 2017; 71: 30–54.
- (a) Bumagin NA, Potkin VI. *Russ Chem Bull.* 2016; 65: 321–332;
 (b) Huang D, Zhao P, Astruc D. *Coord Chem Rev.* 2014; 272: 145–165.
- 3. Potkin V, Bumagin N, Petkevich S, Lyakhov A, Rudakov D, Livantsov M, Golantsov N. *Synthesis*. 2012; 44: 151–157.
- Bumagin NA, Petkevich SK, Kletskov AV, Livantsov MV, Golantsov NE, Potkin VI. Chem Heterocycl Compd. 2014; 49: 1515–1529.
- 5. (a) Kashin AN, Bumagina IG, Bumagin NA, Beletskaya IP. Russ. J. Org. Chem. (Zhurn. Org. Khim.). 1981; 17:21-28; (b) Kashin AN, Bumagina IG, Bumagin NA, Bakunin VN, Beletskava IP. Russ. J. Org. Chem. (Zhurn. Org. Khim.). 1981; 17: 905-911; (c) Bumagin NA, Kalinovskii IO, Ponomarev AB, Beletskaya IP. Dokl. Akad. Nauk. SSSR. 1982; 265: 1138-1143; (d) Bumagin NA, Bumagina IG, Beletskaya IP. Dokl. Akad. Nauk. SSSR. 1984; 274: 818-822; (e) Bumagin NA, Gulevich YV, Beletskaya IP. J. Organomet. Chem. 1985; 282: 421-425; (f) Bumagin NA, Gulevich YV, Beletskaya IP. J. Organomet. Chem. 1985; 285: 415-418; (g) Bykov VV, Bumagin NA. Russ. Chem. Bull. 1997; 46: 1344-1346; (h) Bykov VV, Korolev DN, Bumagin NA. Russ. Chem. Bull. 1997; 46: 1631-1632;(i) Bumagin NA, Tsarev DA. Tetrahedron Lett. 1998; 39: 8155-8158; (j) Starodubtseva EV, Vinogradov MG, Turova OV, Bumagin NA, Rakov EG, Sokolov VI. Catal. Commun. 2009; 10: 1441-1442; (k) Bumagin NA, Veselov IS, Belov DS. Chem. Heterocycl. Compd. 2014; 50: 19-25; (1) Bumagin NA. Catal. Commun. 2016; 79: 17-20.
- (a) Potkin V, Petkevich S, Lyakhov A, Ivashkevich L. Synthesis. 2012; 45: 260–264; (b) Bumagin NA, Zelenkovskii VM, Kletskov AV, Petkevich SK, Dikusar EA, Potkin VI. Russ J Gen Chem. 2016; 86: 68–81; (c) Potkin VI, Bumagin NA, Kletskov AV, Petkevich SK, Kurman PV. Russ J Org Chem. 2016; 52: 1661– 1669; (d) Bumagin NA; Petkevich, SK; Kletskov AV, Potkin, VI. Chem. Heterocycl. Compd. 2017; 53: 1340–1349.
- Luo S, Mi X, George Wang P, Cheng J-P. *Tetrahedron Lett.* 2004; 45: 5171–5174.
- Urankar D, Pinter B, Pevec A, De Proft F, Turel I, Košmrlj J. Inorg Chem. 2010; 49: 4820–4829.
- Ashwini N, Garg M, Mohan CD, Fuchs JE, Rangappa S, Anusha S, Swaroop TR, Rakesh KS, Kanojia D, Madan V, Bender A, Koeffler HP, Basappa, Rangappa KS. *Bioorg Med Chem.* 2015; 23: 6157–6165.
- (a) Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew Chemie Int Ed. 2002; 41: 2596–2599; (b) Meldal M, Tornøe CW. Chem Rev. 2008; 108: 2952–3015.

Semenova EV, Kurman PV, Zolotar' RM, Pashkevich SG, Gurinovich TA, Kul'chitskii VA. *Russ J Org Chem.* 2015; 51: 1119–1130.

11

- Kun S, Nagy GZ, Tóth M, Czecze L, Van Nhien AN, Docsa T, Gergely P, Charavgi M-D, Skourti P V., Chrysina ED, Patonay T, Somsák L. *Carbohydr Res.* 2011; 346: 1427–1438.
- Corredor M, Bujons J, Messeguer À, Alfonso I. Org Biomol Chem. 2013; 11: 7318–7325.
- Claramunt RM, Sanz D, López C, Jiménez JA, Jimeno ML, Elguero J, Fruchier A. *Magn Reson Chem.* 1997; 35: 35–75.
- Szłyk E, Łakomska I, Kobe J, Surdykowski A, Głowiak T, Sitkowski J. *Polyhedron*. 2002; 21: 2001–2007.
- Niedzielska D, Pawlak T, Czubachowski T, Pazderski L. J Spectrosc. 2013; 2013: 1–8.
- 17. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J Phys Chem. 1994; 98: 11623–11627.
- Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR. J Comput Chem. 1983; 4: 294–301.
- Johnson BG, Gill PMW, Pople JA. J Chem Phys. 1993; 98: 5612– 5626.
- 20. Roy LE, Hay PJ, Martin RL. J Chem Theory Comput. 2008; 4: 1029–1031.
- (a) Feller D. J Comput Chem. 1996; 17: 1571–1586; (b) Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL. J Chem Inf Model. 2007; 47: 1045– 1052.
- 22. Scott AP, Radom L. J Phys Chem. 1996; 100: 16502-16513.
- 23. Granovsky AA, Firefly version 8, http://classic.chem.msu.su/gran/firefly/index.html
- Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA. J Comput Chem. 1993; 14: 1347–1363.
- 25. ChemCraft https://www.chemcraftprog.com.
- (a) Mizoroki T, Mori K, Ozaki A. Bull Chem Soc Jpn. 1971; 44: 581–581; (b) Heck RF, Nolley JP. J Org Chem. 1972; 37: 2320– 2322.
- Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467–4470.
- (a) Li M, Chen C. *Polym Chem.* 2015; 6: 7127–7132; (b) Zhang Y, Lam JWY, Tang BZ. *Polym Chem.* 2016; 7: 330–338.
- Guan Y, López-Alberca MP, Lu Z, Zhang Y, Desai AA, Patwardhan AP, Dai Y, Vetticatt MJ, Wulff WD. *Chem - A Eur J*. 2014; 20: 13894–13900.
- 30. Anastas P, Eghbali N. Chem Soc Rev. 2010; 39: 301-312.
- Steyermark A. Quantitative Organic Microanalysis, Academic Press, New York, London, 1961; pp 316–353.
- Burla MC, Caliandro R, Carrozzini B, Cascarano GL, Cuocci C, Giacovazzo C, Mallamo M, Mazzone A, Polidori G. J Appl Crystallogr. 2015; 48: 306–309.
- Sheldrick GM. Acta Crystallogr Sect C Struct Chem. 2015; 71: 3– 8.
- 34. Farrugia LJ. J Appl Crystallogr. 1997; 30: 565.
- 35. Spek AL. Acta Crystallogr Sect D Biol Crystallogr. 2009; 65: 148–155.
- Evdokimov DV, Bumagin NA. Russ Chem Bull. 2007; 56: 369– 370.
- Evdokimov DV, Bumagin NA. Russ Chem Bull. 2007; 56: 1093– 1094.
- Asano N, Sasaki K, Chataigner I, Shigeno M, Kondo Y. European J Org Chem. 2017: 6926–6930.