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A B S T R A C T   

A series of barbituric acid-based heterocyclic dyes were prepared and fully characterized by ESI-MS, NMR and 
UV–Vis absorption spectroscopy. UV–Vis spectral comparisons reveal that in contrast to mono-heterocyclic dyes 
the absorption maxima of barbituric acid-based bi-heterocyclic dyes display significantly bathochromic shifts in 
wavelength due to the increasing π-conjugated system within the whole molecules. The effects of varying solvent 
media on the absorption spectra of this group of dyes were investigated, in which bi-heterocyclic dyes are liable 
to be affected by nature of solvents and present distinct solvatochromism in four kinds of organic solvents. Our 
results demonstrate that though the equilibrium between the hydrazone and deprotonated azo anion can be 
driven by pH values for this group of barbituric acid-based heterocyclic dyes, the acid-base effect on their ab-
sorption spectra behave differently. In order to further elucidate their different structural and spectral behavior, 
time-dependent density functional theory (TD-DFT) calculations with the implicit solvent model (SMD) were 
performed.   

1. Introduction 

Azo dyes containing heterocyclic moieties have been the focus of 
research due to their modified dying power and optical properties 
compared with their benzenoid counterparts. The influence of hetero-
atoms on the low aromaticity and hyperpolarizibility together with the 
dependence of energy levels on substituents are the most important 
characteristics for heterocyclic dyes to achieve various photophysical 
properties [1]. In recent decades, the usage of various heterocyclic diazo 
and coupling components such as thiophene [2], thiazole [3], benzo-
quinoline [4] as well as pyridine [5] has become popular in synthesizing 
of hetarylazo dyes because they exhibit high tinctorial strength and 
brightness relative to analogues aromatic dyes. 

Since it was first reported by Adolf von Baeyer in 1864, barbituric 
acid (BA) and its derivatives are widely used in therapic areas ranging 
from simple sedation to cancer treatment [6–8]. Azobarbituric acid 
derivatives, which are synthesized using barbituric acids as coupling 
components, could show various tautomeric structures under acidic or 
alkaline conditions [9,10]. These compounds are distinguished by great 
hiding power, high tinctorial strength and light fastness which all indebt 

to their tautomeric structures. In this regard, they are used as pigments 
in distempers, printing inks or emulsion paints. Although, many patents 
and papers describe the synthesis and properties of BA based 
mono-heterocyclic dyes [9,11–14] developing new bi-heterocyclic dyes 
with distinctive photo-physical properties derived from BA are needed 
in the field of industrial and scientific applications. In contrast to the 
benzene-containing partial heterocyclic dyes, bi-heterocyclic dyes not 
only present significant bathochromic shifts on account of their 
increasing π-conjugated system, but also are susceptible to solvent na-
ture, substituents, pH and others, thus showing abundant photo-physical 
performance [15–18]. 

As the photo-physical performance of the heterocyclic dyes is 
strongly related to their tautomeric equilibria and structures, the study 
on tautomeric phenomenon of heterocyclic dyes is one of the most 
interesting fields in dye chemistry. In our previous work, a series of 
mono- and bi-heterocyclic dyes based on pyrazolone and pyridone de-
rivatives have been studied and their corresponding hydrazone-azo 
tautomerism driven by pH were investigated via UV–Vis and NMR 
spectroscopy [19–22]. However, the precise elucidation and assign-
ments of the spectroscopic signs of azo or hydrazone form in various 
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environments for heterocyclic dyes are still incomplete. For example, 
though barbituric acid-based heterocyclic dyes showcase distinct sol-
vatochromic shifts of the absorption maxima induced by different sol-
vents, their spectral behavior have not been analyzed from theoretical 
viewpoints in order to obtain a deeper insight into spectral and struc-
tural properties. 

With this in mind, we report a family of BA based mono/bi- 
heterocyclic dyes and present their photophysical properties. The 
main concerns behind our investigation are as follows: one is compre-
hensive spectral comparisons on mono- and bi-heterocyclic dyes with 
the change of π-conjugated molecule system. The other is to characterize 
effects of acidic/alkaline media and solvents on the proton transfer of 
the hydrazo group between the solute and the solvent. Herein, two ar-
omatic heterocyclic amine and two aniline derivatives were used as the 
diazo components to respectively couple with 1,3-dimethyl-pyrimidine- 
2,4,6-trione to produce mono-heterocyclic dyes 1–2 and bi-heterocyclic 
dyes 3–5 (Scheme 1). Notably, the absorption maxima of BA based 
hetarylazo dyes are affected by their conjugate system. Moreover, the 
pH titration and solvatochromism experiments indicate that the mono- 
and bi-heterocyclic dyes exist in different structural species and there-
fore showcase distinguishable spectral behavior. Further theoretical 
calculation results manifest that the most probably preferred form of the 
heterocyclic dyes in solution is in agreement with the experimental data. 
To the best of our knowledge, no such detailed investigations of mono- 
and bi-heterocyclic dyes based on BA derivatives were performed 
before, especially by using combined experimental and theoretical 
approach, which definitely confirm the structural state of each of the 
studied compounds in different media. 

2. Results and discussion 

2.1. Syntheses and spectral characterizations 

As seen from Scheme 1, BA based mono- and bi-heterocyclic dyes 1–4 
were synthesized via the diazotization and succeeding coupling reactions 
between 4-methoxy-2-nitroaniline/2,3-dimethylaniline/5-nitrobenzo [c] 
isothiazol-3-amine/2-amino-4-chloro-5-formylthiophene-3-carbonitrile 
and 1,3-dimethyl-pyrimidine-2,4,6-trione, respectively. The key step of 
the synthesis is that the coupling component 1,3-dimethyl-pyrimidine- 
2,4,6-trione should be dissolved in aqueous solution of sodium hydrox-
ide to forma barbiturate enolate anion to obtain higher yields for the target 
compounds. In this study, distinguishable arylamines were used as the 
diazo components to explore the impact of molecular conjugated system 
on their original UV–Vis spectra, while the barbituric acid was used as the 
coupling component to explore the influences of different acid-base media 
on the change of their multiple tautomers. In general, better solubility may 
be more conducive to crystallizing the target compound. Thus, the 
methylal derivative 5 was synthesized (Scheme 1) to improve the solubi-
lity of its reaction precursor 4 in nonpolar solvent and the corresponding 
single crystals could be isolated for further structural characterization. 

Because of poor solubility of dyes 1–4, their 1H NMR spectra were 
recorded in DMSO‑d6 solution. However, the 13C NMR spectra of com-
pounds 1 and 2 could not be acquired even after several attempts due to 
low solubility of the dyes. In 1H NMR spectra of BA based mono- 
heterocyclic dyes 1–2, a signal of 14.61–15.27 ppm appearing at a 
lower field should be attributed to the proton of the N–H group, which 
stems from the hydrazone tautomer and can be interpreted by the strong 
intramolecular H-bonding between C––O and N–H groups. Regarding 
this, the predicted structures of dyes 1–2 in DMSO should exist in the 
hydrazone form. Comparably, the absence of hydrazone proton peaks in 
bi-heterocyclic dyes 3 and 4 implies that they exist as the deprotonated 
azo form. The aldehyde proton apparent in dye 4 at 9.75 ppm was 
replaced by the acetal CH(OMe)2 proton at 5.59 ppm in 5. Furthermore, 
a new peak at 15.10 ppm assigned as the hydrazone proton could be 
observed in dye 5 in nonpolar solvent CDCl3. It is deduced that the 
structures of BA based bi-heterocyclic dyes can be affected by properties 
of organic solvents, where the hydrazone form is dominating in 
nonpolar solvent while the azo-form is preferential in the basicity 
character of DMSO solvent. 

In order to uncover the effects of molecular conjugated system and 
solvents on their structural alterations, the solvatochromism of dyes 1–4 
is studied in four organic solvents with different properties. As seen in 
Fig. 1 and Table 1, the prime wavelengths of four BA based heterocyclic 
dyes are different for the absorption maxima in MeOH. For mono- 
heterocyclic dye 1, the λmax value of 434 nm assigning to π–π* transi-
tion within the whole molecule displays a significant bathochromic shift 
of 36 nm relative to dye 2 (λmax = 398 nm), which can be assigned that 
the –NO2 group in dye 1 rendering the molecule more polar and 
therefore experiences more solvent-solute interactions [10]. In contrast 
to mono-heterocyclic dyes, the prime maxima of bi-heterocyclic dyes 3 
and 4 in the range of 497–539 nm indicate that the more delocalized 
π–conjugated system facilitates the π–π* transition in the whole mole-
cule, and consequently leading a greater bathochromic shift. 

Secondly, mono-heterocyclic dyes 1–2 are hardly responsive to sol-
vatochromism, while distinguishable red shifts of the absorption max-
ima values can be observed in bi-heterocyclic dyes 3–4, where large red 
shifts of 119 and 95 nm from CHCl3 to DMSO are found, respectively. 
Another important feature is that more than one absorption peak with 
different absorption strength could be noticed in dye 1. This charac-
teristic might be due to the formation of two tautomers in dye 1, where 

Scheme 1. Synthetic route of compounds 1–5.  
Fig. 1. Normalized UV–Vis absorption spectra for dyes 1 (a), 2 (b), 3 (c) and 4 
(d) in four organic solvents at room temperature. 
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the absorption band at longer wavelengths is due to the hydrazone form 
while the peak observed at shorter wavelength is attributed to π–π* 
transition of azo group (Scheme 2) [23]. The increasing ratio of azo 
tautomer for mono-heterocyclic dye 1 is probably due to the unstable 
excited state of π–π* transition of azo tautomer with increasing solvation 
by a polar solvent [1]. For mono-heterocyclic dye 2, the lack of spectral 
changes can only mean that the hydrazone tautomer always exists even 
if the used solvents differ substantially. In the cases of bi-heterocyclic 
dyes 3–4, the λmax values appearing at 463 and 421 nm in CHCl3 
should be attributed to the π–π* electronic transition within the whole 
molecule in the hydrazone form, which has been clearly confirmed by 
the above-mentioned 1H NMR spectra of dye 5. Evidently, the hydrazone 
form in CHCl3 has been converted to the azo anion form under the high 
basicity character of DMSO and DMF, owning to the proton migration of 
the hydrazone group between the solute and the solvent. 

pH Titrations are powerful tools to specify the exact structural spe-
cies under different pH values for heterocyclic dyes. As seen in Fig. 2a 
and b, the BA based mono-heterocyclic dyes 1–2 exhibited acid-base 
behavior. It is observed that when certain amounts of diluted hydro-
chloric acid were added to the dye solutions in methanol, the absorption 
peaks at λmax = 431 nm in dye 1 and 398 nm in dye 2 show no noticeable 
shifts, indicating that these compounds in methanol always exist in their 
hydrazone form. The shortest absorption peaks observed in the range of 
250–277 nm can be assigned as n–π* transitions between the phenyl 
rings and the middle hydrazone units. When the pH increases from 6.67 
to 12.37 by addition with certain amounts of diluted NaOH solution, the 
main absorption maxima disappear while two new blue-shifted maxima 
centered at 358 and 359 nm emerge. This phenomenon clearly suggests 
that the hydrazone form has changed to its deprotonated azo anion in 
the basic solution. To ulteriorly prove our conjecture, 1H NMR spectra of 
dye 2 in CD3OD-d4 with and without base were provided. As can be 
shown in Fig. SI14, two single peaks at δ = 3.38 and 3.40 ppm can be 
attributed to methyl protons of barbituric ring. When certain amounts of 
NaOH were added to the dye solution in CD3OD-d4, the previous two 
single peaks are completely converted to one single peak at δ = 3.38 ppm 
in the 1H NMR spectra (Fig. SI15), clearly indicating the conformation of 
deprotonated azo anion. In contrast, 1H NMR spectra of dye 1 are not 
available since the solubility of dye 1 in CD3OD-d4 is very poor. Addi-
tionally, clear isoabsorptive points at 252/300/388 and 246/264/372 
nm in the spectra of dyes 1 and 2 indicate an equilibrium between 
hydrazone and deprotonated azo form (Fig. SI16). 

It is observed that BA based bi-heterocyclic dyes 3–4 are not 
responsive to base while they are very sensitive to acid, as shown in 
Fig. 2c and d. With addition of diluted hydrochloric acid to the solution, 
the absorption bands at 539 nm in 3 and 497 nm in 4 weaken and two 
new peaks at 457 and 413 nm emerge, respectively. Moreover, the ab-
sorption bands at 539 and 497 nm disappear completely under strong 
acidic conditions. The most reasonable explanation is based on forma-
tion of the preponderant azo anion for bi-heterocyclic dyes 3–4 in MeOH 
and therefore they are unlikely to be ionized under the basic condition. 

This form is readily to be protonated under acidic condition, and 
therefore, the deprotonated azo anion might be converted into the 
hydrazone structure. In fact, the two new peaks at 457 and 413 nm at the 
high-energy band are analogous to those in CHCl3. The electronic 
spectra of both dyes show clear isoabsorptive points at 258, 298, 331, 
390, 487 nm in 3 and 252, 284, 332, 440 nm in 4, signifying that the 
hydrazone-deprotonated azo form equilibrium in BA based bi- 
heterocyclic dyes 3–4 (Fig. SI16). 

2.2. DFT and TD-DFT calculations 

To better understand the structure and spectroscopy of heterocyclic 
dyes 1–4, theoretical calculations were performed by using the Gaussian 
16 suite of programs [24]. Firstly, two possible forms including hydra-
zone and deprotonated azo ion for dyes 1–4 were fully optimized by 
utilizing the hybrid exchange-correlation B3LYP functional [25,26] 
including the Grimme’s DFT-D3 dispersion correction [27], and using 
the split-valence basis set 6-311+G (d,p) [27–29]. The optimized ge-
ometry structures of dyes 1–4 are shown in Fig. SI17. Second, the λcalc. 
values for dyes 1–4 were calculated in four different solvents (CHCl3, 
MeOH, DMF and DMSO) by performing time-dependent DFT (TD-DFT) 
calculations with the SMD implicit solvent model [29] to rationalize the 
observed spectroscopic data. 

It is obvious that the absorption spectra of dyes 1–4 at low energy, 
which are calculated from TD-DFT with the SMD implicit solvent model, 
coincide well with afore-mentioned experimental results (Table SI4). 
For mono-heterocyclic dye 1, the significant electronic transition in its 
hydrazone form results from a mixture of HOMO→LUMO and HOMO-
→LUMO+1 (S2) transition and the absorption spectrum at around 373 
nm (373/385/373/374 nm) is associated with this transition. Compa-
rably, the absorption band corresponding to the deprotonated azo anion 
form at about 345 nm (345/355/340/341 nm) is assigned to S4 tran-
sition, respectively. Accordingly, the location of the absorption peaks 
and variation trend in two forms suggest that the mono-heterocyclic dye 
1 exists in dominating hydrazone form in four solvents, which is also the 
case in mono-heterocyclic dye 2. As for bi-heterocyclic dye 3, the 
maximal absorption band at around 480 nm in its hydrazone form arises 
from the HOMO→LUMO transition, while the lowest excited state of the 
deprotonated azo anion consisting of HOMO-1→LUMO and HOMO-
→LUMO transitions corresponds to the calculated absorption band at 

Table 1 
The λmax values (nm) of compounds 1–4 in four organic solvents.  

Compound λmax (CHCl3) λmax (CH3OH) λmax (DMF) λmax (DMSO) 

1 437 434 375/432 379/439 
2 403 398 395 397 
3 463 539 583 582 
4 421 497 514 516  

Scheme 2. Possible two tautomers of dye 1.  

Fig. 2. UV–Vis absorption spectra for compounds 1 (a), 2 (b), 3 (c) and 4 (d) at 
different pH values in MeOH at room temperature. 

X. Zhao et al.                                                                                                                                                                                                                                    



Dyes and Pigments 187 (2021) 109087

4

around 545 nm (548/547/542/542 nm). It is evident that bi- 
heterocyclic dye 3 presents a dominating hydrazone form in CHCl3, 
while the deprotonated azo anion form is preponderant because of the 
specific solute-solvent interactions in the other three solvents, as well as 
bi-heterocyclic dye 4. 

2.3. Structural descriptions of compound 5 

The single-crystal structure of bi-heterocyclic dye 5 has been ac-
quired to reveal the corresponding configuration in the solid state. The 
molecular structure for dye 5 with atom-numbering scheme is shown in 
Fig. 3. Details of the data collection and structural refinements are listed 
in Table 2, and selected bond distances and angles are provided in 
Table SI1. X-ray single-crystal diffraction analyses disclose that dye 5 
crystallizes in the triclinic p1 space group. The dihedral angle of 6.1 (3)◦

between A and B rings proves that all the non-hydrogen atoms are 
almost planar. The bond lengths of O4–C12 and O5–C12 are 1.399 (4) 
and 1.404 (5) Å, attesting to the formation of the methylal group. 

Localization of the hydrogen atom H4 connected with atom N4 de-
pends on the difference Fourier method, and large peak and hole in the 
final difference Fourier map cannot be observed near atoms O1 and O3, 
which manifest that dye 5 is in the hydrazone structure in the solide 
state. The formation of hydrazone form can be further supported by 
bond lengths of related atoms (Table SI1), i.e. double-bond character for 
C1–N3 and C2–O1 (1.309 (4) and 1.230 (4) Å) and single-bond character 
for their neighboring N3–N4 and C1–C2 (1.324 (4) and 1.462 (5) Å). In 
compound 5, a dimeric packing mode is observed with a head-to-tail 
manner, as shown in Fig. 4, where π–π accumulation actions are found 
between the thiophene and phenyl rings from adjacent molecules with 
the centroid-to-centroid separations of 3.793 and 3.712 (4) Å. 

3. Conclusion 

In this study, a family of novel mono- and bi-heterocyclic dyes 1–5 
with the common coulpling compoment 1,3-dimethyl-pyrimidine-2,4,6- 
trione have been synthesized and characterized by standard analytical 
methods. The UV–Vis spectral comparisons demonstrate that the λmax 
values for BA based bi-heterocyclic dyes 3–4 showcase bathochromic 
shifts in polar solvents compared with benzene subtituted mono- 
heterocyclic dyes 3–4 originating from the constitution of stronger 
π–cogjugated system. Moreover, the molecular structures of dyes 
affected by solvent properties are essential factors for their sol-
vatochromic behavior. Namely, strong solvatochromism can be 
observed for bi-heterocyclic dyes 3–4 because of the transformation 

from hydrazone to deprotonated azo form induced by the specific solute- 
solvent interaction, which is not the case in mono-heterocyclic dyes 1–2 
because of their consistent hydrazone structures. In addition, theoretical 
computation results also support the spectroscopic and structural char-
acterizations of heterocyclic dyes 1–4. 

Interestingly, it is found that this family of heterocyclic dyes exhibit 
distinct structural information in pH-titration experiments. In the case of 
mono-heterocyclic dyes 1–2, they exist in dominating hydrazone form 
and can be transformed into the deprotonated azo anion with increasing 
pH values in MeOH. Comparably, the azo anions of bi-heterocyclic dyes 
3–4, which can be converted to the protonated hydrazone ones in the 
acidic condition, are predominating in their original solutions. As an 
extensive study, we believe that the theoretical calculations and 
experimental results of BA based mono/bi-heterocyclic dyes in this work 
give a better insight into the influence of solvent-solute interaction on 
contribution of the molecular structures, which is also applicable to 
other heterocyclic dye systems [16,22]. 
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Fig. 3. ORTEP drawing of compound 5 with the atom-numbering scheme. 
Displacement ellipsoids are drawn at the 30% probability level and the H atoms 
are shown as small spheres of arbitrary radii. The dotted lines represent 
intramolecular hydrogen bonds (Å) and the dihedral angles between adjacent 
aromatic rings are given (◦). 

Table 2 
Crystal data and structural refinements for compound 5.  

Compound 5 

Empirical formula C14H14ClN5O5S 
Formula weight 399.82 
Temperature/K 291 (2) 
Wavelength/Å 0.71073 
Crystal Size (mm) 0.10 × 0.10 × 0.12 
Crystal system Triclinic 
Space group P1  
a/Å 7.420 (5) 
b/Å 10.169 (6) 
c/Å 12.018 (7) 
α/◦ 84.278 (7) 
β/◦ 82.050 (8) 
γ/◦ 73.457 (8) 
V/Å3 859.1 (9) 
Z/Dcalcd (g/cm3) 2/1.546 
F (000) 412 
μ/mm− 1 0.382 
hmin/hmax − 5/9 
kmin/kmax − 12/13 
lmin/lmax − 15/15 
Data/parameters 3771/243 
Final R indices [I > 2ó(I)] R1 = 0.0622 wR2 = 0.1693 
R indices (all data) R1 = 0.0913 wR2 = 0.2114 
S 1.061 
Max./min. ôρ/e⋅Å− 3 0.80/–0.53 

R1 = Σ||Fo|− |Fc||/Σ|Fo|, wR2 = [Σ[w(Fo2− Fc2)2]/Σw(Fo2)2]1/2. 

Fig. 4. Drawing of π–π stacking interactions (Å) in compound 5.  
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