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Abstract: Syntheses of 4-oxo-, cis-4-hydroxy-, and trans-4-hydroxy-L-pipecolic acids from L-aspartic acid 
using hexafluoroacetone as protecting reagent are described. Combination of a Stille cross-coupling reaction 
with subsequent Lewis acid catalyzed intramolecular Michael addition provides 4-oxo-L-pipecolic acid 5 or 
trans-6-methyl-4-oxo-L-pipecolic acid. Borohydride reduction of the protected 4-oxo-L-pipecolic acid 
derivative gives the corresponding cis-4-hydroxy-L-pipecolic acid 8. The trans isomer 10 is obtained in good 
yield via Mitsunobu inversion. 

4-Substituted pipecolic acids are of biological interest. In particular, 4-oxo-L-pipecolic acid is a 

constituent of the virginiamycins, a family of cyclopeptides with antibiotic activity 4, Tram'-4- 
hydroxy-L-pipecolic acid is a naturally occurring amino acid isolated from Acacia species 5. The 4- 

phosphono derivative of cis-4-hydroxypipecolic acid represents a N-methyl-D-aspartate antagonist 6. 

Several syntheses of racemic 4-oxopipecolic acid have been developed 7. Enantiomerically pure 4- 

oxo-L-pipecolic acid was obtained on oxidation of suitably protected cis-4-hydroxy-L-pipecolic 
acid4b,8, 9. The latter was produced by hydrogenation of pyridine derivatives followed by enzymatic 

or quinine resolution of the racemic cis-4-hydroxypipecolic acid 8. 

Our approach starts from L-aspartic acid as homochiral precursor and hexafluoroacetone (HFA) as 

protecting reagent. Hexafluoroacetone and L-aspartic acid react to give compound 110. On reaction 

with thionyl chloride the acid chloride 2 is formed 11. 2 is coupled with vinyltrimethyltin or 

vinyltributyltin in the presence of a palladium catalyst according to the Stille protocol 12 to give the 
enone 3. 

The crucial step of our strategy consists of an intramolecular Michael addition (6-endo-trig 13) of the 

enone 3, proceeding smoothly under reflux in benzene in the presence of BF3.Et20 to give HFA- 

protected 4-oxo-L-pipecolic acid 414 in 50-55% yield. Simultaneous deprotection of the vicinal amino 

and carboxylic functions proceeds under very mild conditions (i-PrOH/H20, 50:50, v/v) at room 

temperature to give 4-oxo-L-pipecolic acid 5. The unprotected amino acid 5 was transformed into its 
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hydrochloride and purified by crystallization. According to the IH and 13C NMR spectra in D20 the 
free amino acid as well as its hydrochloride predominantly exist as the geminal diols 615. 
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i) SOCI2, reflux, 84%; ii) CH2=CH-SnMe 3 or CH2=CH-Sn(n-Bu)3, PhCH2Pd(PPh3)2CI, dimethoxyethane, 
67 or 58%; iii) BF3.OEt2, benzene, reflux, 55-60%; iv) H20/i-PrOH, 100%. 

The reduction of compound 4 with NaBH4 in the presence of pentafluoropheno116 exclusively gives 
the HFA-protected cis-4-hydroxy-L-pipecolic acid derivative 7. L-Cis-4-hydroxy-L-pipecolic acid 8 
is obtained after deprotection with i-PrOFUH2OI7. Mitsunobu reaction 18 with compound 7, which is 
most favourably carried out with formic acid, affords the trans-4-hydroxy-L-pipecolic acid derivative 

9. Deprotection of the amino and carboxylic functions again is achieved on treatment with 
i-PrOH/H20. Treatment with 6N HCI is necessary to deblock the hydroxy group. Trans-4-hydroxy-L- 
pipecolic acid was characterized as hydrochloride 1019. 
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v) C6F5OH, NaBH4, 80%; vi) H20/i-PrOH, 100%; vii) DEAD, PPh3, HCO2H, 78%; viii) 1. H20/i-PrOH, 
2.6N HCI, 85%. 



2039 

Further, we investigated the scope and limitations of the intramolecular Michael addition using 

various substituted enones as starting material. The trans substituted ct,13-unsaturated ketone 11 gives 

the corresponding 6-methyl-4-oxo-L-pipecolic acid derivative 1220. The cyclization reaction proceeds 

rather slowly but highly stereoselective to give 12 in 30% yield. A cross peak in the NOESY spectrum 

of the bicyclic compound 12 between the signals of the methyl group and of the angular proton proves 

that the methyl group occupies the trans-posifion in 12. Therefore, the absolute configuration of 12 is 

(5S,9R). All protons were assigned unambiguously by a DQF-COSY spectrum. 

However, no cyclization products were observed when the corresponding phenyl, methoxycarbonyl or 

dimethyl substituted enones were treated under similar reaction conditions. 

O 
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ix) R-CH=CH-Sn(n-Bu)3, Pd2(DBA)3.CHCI3, toluene; x) BF3.OEt2, benzene, reflux, 30%. 

The construction of tram-configured 6-alkyl substituted L-pipecolic acid derivatives is of current 

interest since they represent a key precursor to the family of several antibiotic compounds like 
solenopsin A 21. 

Experiments to transform the HFA-protected 4-oxo-D-pipecolic acid (optical antipode of 4) into cis- 

4-(phosphonomethyl)-D-pipecolic acid and cJs-4-(lH-tetrazol-5-yl-methyl)-D-pipecolic acid - both 
selective NMDA antagonists 22 - are under way. 
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