

0040-4039(95)00183-2

An Efficient Approach to the Family of 4-Substituted Pipecolic Acids. Syntheses of 4-Oxo-, *cis*-4-Hydroxy-, and *trans*-4-Hydroxy-L-pipecolic Acids from L-Aspartic Acid^{1,2}

Alexander Golubev³, Norbert Sewald, and Klaus Burger*

Institut für Organische Chemie der Universität Leipzig, Talstraße 35, D-04103 Leipzig, Germany

Key words: 4-Oxo-L-pipecolic acid, 4-hydroxy-L-pipecolic acids, L-aspartic acid, hexafluoroacetone, intramolecular Michael addition, Stille reaction

Abstract: Syntheses of 4-oxo-, *cis*-4-hydroxy-, and *trans*-4-hydroxy-L-pipecolic acids from L-aspartic acid using hexafluoroacetone as protecting reagent are described. Combination of a Stille cross-coupling reaction with subsequent Lewis acid catalyzed intramolecular Michael addition provides 4-oxo-L-pipecolic acid 5 or *trans*-6-methyl-4-oxo-L-pipecolic acid. Borohydride reduction of the protected 4-oxo-L-pipecolic acid derivative gives the corresponding *cis*-4-hydroxy-L-pipecolic acid 8. The *trans* isomer 10 is obtained in good yield via Mitsunobu inversion.

4-Substituted pipecolic acids are of biological interest. In particular, 4-oxo-L-pipecolic acid is a constituent of the virginiamycins, a family of cyclopeptides with antibiotic activity⁴. *Trans*-4-hydroxy-L-pipecolic acid is a naturally occurring amino acid isolated from *Acacia* species⁵. The 4-phosphono derivative of *cis*-4-hydroxypipecolic acid represents a N-methyl-D-aspartate antagonist⁶. Several syntheses of racemic 4-oxopipecolic acid have been developed⁷. Enantiomerically pure 4-oxo-L-pipecolic acid was obtained on oxidation of suitably protected *cis*-4-hydroxy-L-pipecolic acid^{4b,8,9}. The latter was produced by hydrogenation of pyridine derivatives followed by enzymatic or quinine resolution of the racemic *cis*-4-hydroxypipecolic acid⁸.

Our approach starts from L-aspartic acid as homochiral precursor and hexafluoroacetone (HFA) as protecting reagent. Hexafluoroacetone and L-aspartic acid react to give compound 1^{10} . On reaction with thionyl chloride the acid chloride 2 is formed¹¹. 2 is coupled with vinyltrimethyltin or vinyltributyltin in the presence of a palladium catalyst according to the Stille protocol¹² to give the enone 3.

The crucial step of our strategy consists of an intramolecular Michael addition (6-endo-trig¹³) of the enone 3, proceeding smoothly under reflux in benzene in the presence of $BF_3 \cdot Et_2O$ to give HFA-protected 4-oxo-L-pipecolic acid 4¹⁴ in 50-55% yield. Simultaneous deprotection of the vicinal amino and carboxylic functions proceeds under very mild conditions (*i*-PrOH/H₂O, 50:50, v/v) at room temperature to give 4-oxo-L-pipecolic acid 5. The unprotected amino acid 5 was transformed into its

hydrochloride and purified by crystallization. According to the ¹H and ¹³C NMR spectra in D_2O the free amino acid as well as its hydrochloride predominantly exist as the geminal diols 6^{15} .

i) SOCl₂, reflux, 84%; ii) CH₂=CH-SnMe₃ or CH₂=CH-Sn(*n*-Bu)₃, PhCH₂Pd(PPh₃)₂Cl, dimethoxyethane, 67 or 58%; iii) BF₃·OEt₂, benzene, reflux, 55-60%; iv) H₂O/*i*-PrOH, 100%.

The reduction of compound 4 with NaBH₄ in the presence of pentafluorophenol¹⁶ exclusively gives the HFA-protected *cis*-4-hydroxy-L-pipecolic acid derivative 7. L-*Cis*-4-hydroxy-L-pipecolic acid 8 is obtained after deprotection with *i*-PrOH/H₂O¹⁷. Mitsunobu reaction¹⁸ with compound 7, which is most favourably carried out with formic acid, affords the *trans*-4-hydroxy-L-pipecolic acid derivative 9. Deprotection of the amino and carboxylic functions again is achieved on treatment with *i*-PrOH/H₂O. Treatment with 6N HCl is necessary to deblock the hydroxy group. *Trans*-4-hydroxy-Lpipecolic acid was characterized as hydrochloride 10¹⁹.

v) C₆F₅OH, NaBH₄, 80%; vi) H₂O/*i*-PrOH, 100%; vii) DEAD, PPh₃, HCO₂H, 78%; viii) 1. H₂O/*i*-PrOH, 2. 6N HCl, 85%.

Further, we investigated the scope and limitations of the intramolecular Michael addition using various substituted enones as starting material. The *trans* substituted α,β -unsaturated ketone 11 gives the corresponding 6-methyl-4-oxo-L-pipecolic acid derivative 12²⁰. The cyclization reaction proceeds rather slowly but highly stereoselective to give 12 in 30% yield. A cross peak in the NOESY spectrum of the bicyclic compound 12 between the signals of the methyl group and of the angular proton proves that the methyl group occupies the *trans*-position in 12. Therefore, the absolute configuration of 12 is (5S,9R). All protons were assigned unambiguously by a DQF-COSY spectrum.

However, no cyclization products were observed when the corresponding phenyl, methoxycarbonyl or dimethyl substituted enones were treated under similar reaction conditions.

ix) R-CH=CH-Sn(n-Bu)₃, Pd₂(DBA)₃·CHCl₃, toluene; x) BF₃·OEt₂, benzene, reflux, 30%.

The construction of *trans*-configured 6-alkyl substituted L-pipecolic acid derivatives is of current interest since they represent a key precursor to the family of several antibiotic compounds like solenopsin A^{21} .

Experiments to transform the HFA-protected 4-oxo-D-pipecolic acid (optical antipode of 4) into cis-4-(phosphonomethyl)-D-pipecolic acid and cis-4-(1H-tetrazol-5-yl-methyl)-D-pipecolic acid - both selective NMDA antagonists²² - are under way.

Acknowledgement. We are grateful to DAAD for a grant (to A. G.) and Hoechst AG, Frankfurt/Main for generous supply of chemicals.

References and Notes.

- 1. This work was presented in part at the 3rd Congress on Amino Acids, Peptides, and Analogues, Vienna/Austria, Aug. 1993, and at the 23rd European Peptide Symposium, Braga/Portugal, Sept. 1994.
- 2. Hexafluoroacetone as Activating and Protecting Reagent in Amino Acid and Peptide Chemistry, part 19; part 18. Pires, R.; Windeisen, L.; Burger, K. Peptides 1994, in press.
- 3. Permanent address: Russian Academy of Sciences, INEOS, Vavilov Str. 28, 117813, Moscow, Russia.
- a) Vanderhaeghe, H.; Parmentier, G. J. Am. Chem. Soc. 1960, 82, 4415; b) Kessler, H.; Kühn, M.; Löschner, T. Liebigs Ann. Chem. 1986, 1; c) Reed, J.W.; Purvis, M.B.; Kingston, D.G.I.; Biot, A.; Gossele, F. J. Org. Chem. 1989, 54, 1161.
- 5. Clark-Lewis, J.W.; Mortimer, P.I. J. Chem. Soc. 1961, 189.
- 6. Hays, S.J.; Malone, T.C.; Johnson, G. J. Org. Chem. 1991, 56, 4084.
- a) Hartmann, P.; Obrecht, J.-P. Synth. Commun. 1988, 18, 553; b) Molinero, A.A.; Kingston, D.G.I.; Reed, J.W. J. Natur. Products 1989, 52, 99; c) Ornstein, P.L.; Schoepp, D.D.; Arnold, M.B.; Leander,

J.D.; Lodge, D.; Paschal, J.W.; Elzey, T. J. Med. Chem. 1991, 34, 90; d) Herdeis, C.; Engel, W. Arch. Pharm. (Weinheim) 1992, 325, 419.

- 8. Jolles, G.; Poiget, G.; Robert, J.; Terlain, B.; Thomas, J.-P. Bull. Soc. Chim. Fr. 1965, 2252.
- 9. When this article was in preparation, a similar approach to 4-oxo-L-pipecolic acid starting from L-serine was published, see: Jackson, R.F.W.; Graham, L.J.; Rettie, A.B. *Tetrahedron Lett.* **1994**, 35, 4419.
- 10. Burger, K.; Rudolph, M. Chem.-Ztg. 1990, 114, 249.
- 11. Burger, K.; Gold, M.; Neuhauser, H.; Rudolph, M. Chem.-Ztg. 1991, 115, 77.
- 12. Milstein, D.; Stille, J.K. J. Org. Chem. 1979, 44, 1613.
- 13. Baldwin, J.E. J. Chem. Soc., Chem. Commun. 1976, 734.
- 14. 4: m.p. 63° C; $[\alpha]_{D}^{22}$ -31.2 (c 1.0; CHCl₃); ¹H NMR (360 MHz, CDCl₃): 3.89 (dd, J = 11.8, 2.6 Hz, 1H, H5); 3.74 (dd, J = 11.6, 7.4 Hz, 1H, H9); 3.16 (m, 1H, H9); 2.86 (ddd, J = 14.7, 3.4, 1.6 Hz, 1H, H8); 2.68-2.48 (m, 3H, H8, H6); ¹³C NMR (50.3 MHz, CDCl₃): 201.9 (C7); 166.7 (C4); 121.4 (q, J = 293.9 Hz, CF₃); 120.2 (q, J = 286.9 Hz, CF₃); 88.6 (sept, J = 33.5 Hz, C2); 55.5 (C5); 42.7; 42.3; 40.1 (C6, C8, C9); ¹⁹F NMR (235.3 MHz, CDCl₃): 3.07 (q, J = 8.4 Hz, 3F, CF₃); -0.30 (q, J = 8.4 Hz, 3F, CF₃); IR (KBr, cm⁻¹) 1847 (C=O); 1721 (C=O). Anal. Calcd for C₉H₇F₆NO₃: C, 37.13; H, 2.42; N, 4.81. Found: C, 37.30; H, 2.39; N, 4.87.
- 6·HCl: m.p. 194°C (dec); lit^{4a} 194°; [α]_D²² +4.1 (c 0.55; H₂O); lit⁵ [α]_D²¹ +3.8 (2%, H₂O); The ¹H NMR spectrum (360 MHz, D₂O) consists of two sets of signals. The first set essentially coincides with the ¹H NMR spectra given for 6 HBr (ref. 7d) and corresponds to the geminal diol form 6 HCl (97.4% as evaluated from ¹H NMR spectrum); the second set of signals corresponds to the keto form 5 HCl (2.6%); ¹³C NMR (50.3 MHz, D₂O): 172.6 (COOH); 92.4 (C4); 56.5 (C2); 42.5 (C6); 38.7 (C3); 35.2 (C5) (geminal diol form); 206.7 (C4); 171.7; 57.4; 42.8; 41.2; 37.9 (keto form). Anal. Calcd for C₆H₉NO₃·HCl·H₂O: C, 36.47; H, 6.12; N, 7.09. Found: C, 36.75; H, 5.92; N, 7.42. Some examples of an equilibrium between the keto form and the geminal diol form in 4-oxo-2-aminoacids are described, see: Whitten, J.P.; Barney, C.L.; Huber, E.; Bey, P.; McCarthy, J.R. *Tetrahedron Lett.* 1989, 30, 3649.
- 16. Fuller, J.C.; Karpinski M.L.; Williamson S.M.; Singaram, B. J. Fluorine Chem. 1994, 66, 123.
- 17. $[\alpha]_D^{20}$ -16.8 (c 2.0; H₂O); lit⁵ $[\alpha]_D^{23}$ -17.0 (1.1 %, H₂O); NMR spectral data are essentially the same as given for 8 HCl; ref. 7d and Nin, A.P.; Varela, O.; de Lederkremer, R.M. *Tetrahedron*, **1993**, *49*, 9459.
- 18. Mitsunobu, O. Synthesis 1981, 1.
- 19. The physical and spectral data of 10 are identical to those quoted for the natural product, see: ref. 5 and Agami, C.; Couty, F.; Poursoulis, M.; Vaissermann, J. *Tetrahedron*, 1992, 48, 431.
- 20. **12**: m.p. 48°C; $[\alpha]_D^{22}$ -35.2 (c 1.25; CHCl₃); ¹H NMR (360 MHz, acetone-d₆): 4.69 (dd, J = 8.2, 7.6 Hz, 1H, H5); 4.27 (dq, J = 6.8, 6.5 Hz, 1H, H9); 2.79 (dd, J = 14.1, 6.5 Hz, 1H, H8); 2.68-2.64 (m, 2H, H6); 2.27 (br. d, J = 14.1 Hz, 1H, H8); 1.24 (d, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (50.3 MHz, CDCl₃): 202.5 (C7); 167.5 (C4); 120.5 (q, J = 289.4 Hz, CF₃); 120.2 (q, J = 289.4 Hz, CF₃); 50.2; 47.5; 46.7; 42.3 (C5, C6, C8, C9); 17.3 (CH₃); ¹⁹F NMR (235.3 MHz, CDCl₃): 1.32 (q, J = 8.4 Hz, 3F, CF₃); -0.22 (q, J = 8.4 Hz, 3F, CF₃). Anal. Calcd for C₁₀H₉F₆NO₃: C, 39.36; H, 2.97; N, 4.59. Found: C, 39.20; H, 2.97; N, 4.55.
- 21. Jefford, C.W.; Wang, J.B. Tetrahedron Lett. 1993, 34, 2911.
- 22. Ornstein, P.L.; Schoepp, D.D.; Arnold, M.B.; Jones, N.D.; Deeter, J.B.; Lodge, D.; Leander, J.D. J. Med. Chem. 1992, 35, 3111.