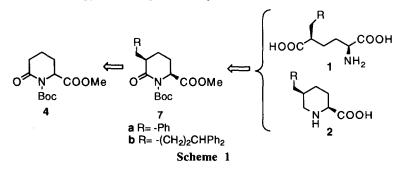


0040-4039(95)00456-4

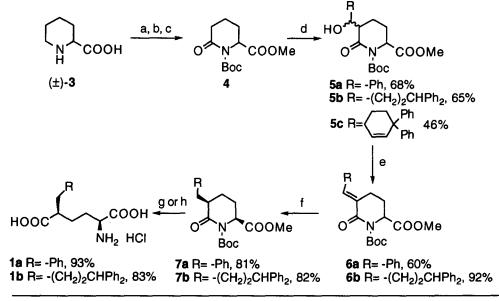
Stereoselective Functionalisation of N-Boc Pyroaminoadipic Acid: Synthesis of 5-Substituted Aminoadipic and Pipecolic Acids

Jesús Ezquerra and Concepción Pedregal*


Centro de Investigación Lilly, S. A. Paraje de la Cruz s/n. 28130 Valdeolmos, Madrid, Spain.

Ana Escribano, M. Carmen Carreño and José L. García Ruano*

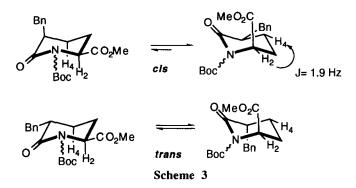
Departamento de Química Orgánica, Universidad Autónoma de Madrid. Cantoblanco, 28049 Madrid, Spain.


Abstract: 5-Alkylsubstituted aminoadipic and pipecolic acids were diastereoselectively synthetized from methyl N-Boc pyroaminoadipate.

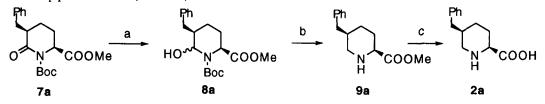
Competitive antagonists of the *N*-methyl-*D*-aspartate (NMDA) subtype of excitatory amino acid receptors¹ are potentially useful for treating a wide variety of neurodegenerative diseases.² Following the discovery of *D*,*L*- α -aminoadipic acid as a selective antagonist,³ structurally related derivatives were prepared to study the structure activity relationship. Thus, the distance between the α -amino acid moiety and the distal carboxylic functionality has been modified by making higher homologues,⁴ conformationally constrained compounds⁵ or unsaturated derivatives.^{5c,6} On the other hand, the replacement of the ω -carboxyl group by other acidic moieties such as the phosponic acids^{5b-c,6} or tetrazoles^{5a} has been shown to enhance the antagonist activity. In order to study substituent effects on the neuroexcitatory activity of α -aminoadipic acid derivatives **2** (Scheme 1). The synthetic approach used to obtain these compounds rests on the stereoselective functionalisation of pyroaminoadipate **4** through its lactam enolate. While the stereoselective alkylation⁷ and aldol condensation⁸ reactions of pyroglutamic acid derivatives has been quite successful, there are not many precedents⁹ for the same kind of direct stereoselective reactions on the pyroaminoadipate counterpart **4**.

Methyl N-Boc pyroaminoadipate 4 was prepared from D,L-pipecolic acid 3 by esterification with MeOH/HCl(g) and protected as the N-Boc derivative following Grieco's procedure.¹⁰ Methyl N-Boc pipecolate was oxidised with ruthenium dioxide/sodium periodate giving rise to 4 in a 44% overall yield from 3 (Scheme 2). The enolate derived from 4 was generated with LiHMDS in anhydrous THF at -78°C and then treated with benzaldehyde or 4,4-diphenylbutyraldehyde in the presence of Et₂O·BF₃,¹¹ affording the corresponding aldols

5a-b in 68% and 65% yield respectively. This is the first time that this reaction has been applied to the pyroaminoadipate system. The aldol condensation also took place with ketones, as in the case of 4,4-diphenyl-2-cyclohexen-1-one, although in a lower yield (46%). However, attempts to alkylate the lactam enolate derived from 4 with benzyl bromide afforded a mixture of alkylated products in a very low yield (*ca.* 20%).


a: MeOH, HCl_g, 60%; **b**: (Boc)₂O, DMAP, Et₃N, 77%; **c**: RuO₂(10%), NaIO₄, EtOAc, 94%; **d**: LiHMDS, THF, RCHO, Et₂O.BF₃, 2h, -78°C; **e**: MeSO₂Cl, Et₃N (10 eq.), CH₂Cl₂, 48h, r.t.; **f**: PtO₂ (0.1 eq.), H₂, EtOAc, 2-6 h, r.t.; **g**: (for **7a**) 6N HCl, reflux, 24h; **h**: (for **7b**) i). LiOH 2.5N, 4h, r.t. ii). EtOAc, HCl_a, 1h, r.t.

Scheme 2


The diastereomeric mixture 5 was treated with mesyl chloride (1.2 eq) with an excess of triethylamine in dichloromethane. After two days at room temperature, the alkylidene compounds 6 were obtained in good yields (60-92%). In the case of the benzyl derivative (6a),¹² the double bond had *E* stereochemistry, while the alkyl compound 6b was obtained as a *Z/E* mixture in 1:3 ratio. In both cases the methyl 5-alkylidenepyroaminoadipates 6 were further hydrogenated with platinum oxide as catalyst, delivering the 5-substituted pyroaminoadipates. Although the double bond reduction is highly stereoselective with the pyroglutamate derivatives,¹³ the catalytic hydrogenation of 6 was less stereoselective. The *cis*-isomer 7¹⁴ was the major product in the reaction mixture, but it was possible to observe *ca*. 5% of the *trans*-isomer by ¹H-NMR spectroscopy in the crude reaction mixture. However, both diastereomers were easily separated by flash chromatography delivering pure compounds 7a,b in good yields (81-82%).

These *cis*-methyl-5-alkylpyroaminoadipates 7 were easily hydrolyzed to the corresponding δ -substituted aminoadipic acids 1. Compound 1a¹⁵ (93% yield) was obtained by refluxing 7a with 6N HCl for 24 h. Compound 1b (83% yield) was obtained by treating 7b with LiOH (2.5N) solution for 4 h at r.t. followed by acid hydrolysis with HCl(g) saturated ethyl acetate solution.

Stereochemical assignments of **7a,b** were made on the basis of the ¹H-NMR coupling constants between H₂ and H_{4eq}. Proton H₂ (ddd, 4.66 ppm) in the *cis*-isomer **7a**, shows a long range coupling constant $J_{2-4eq} = 1.9$ Hz with H_{4eq} (m, 1.70-1.61 ppm) due to the W coplanar arrangement between both protons. This coupling pattern was not observed in the corresponding *trans*-isomer (Scheme 3).

A highly chemoselective reduction method¹⁶ was used to convert the methyl pyroaminoadipate derivative **7a** to the pipecolic acid **2a** (Scheme 4).

a: LiBEt₃H, THF, -78°C, 30 min.; **b**: Et₃SiH, Et₂O•BF₃, -78°C ---> r.t., 2h.; **c**: i. 6N HCl, 60°C, 24h. ii. Propylene oxide, MeOH.

Scheme 4

Compound 7a was reduced to the hemiaminal 8a with LiBEt₃H in THF at -78°C for 30 min and without isolation further reduced with Et₃SiH and Et₂O·BF₃ at -78°C, allowing the reaction mixture to reach r.t. after 2 h. The pipecolate 9a was obtained in 78% yield, with the Et₂O.BF₃ simultaneously removing the BOC protecting group. Finally, acidic hydrolysis of 9a with 6N HCl at 60°C for 24 h and further treatment of the hydrochloride salt with propylene oxide gave, after recrystallization from H₂O/acetone, the (±)-5-*cis*-benzylpipecolic acid 2a¹⁷ in 35% yield.

ACKNOWLEDGEMENTS: This research was supported by a CDTI programme (Plan concertado 94/0036) and the Spanish FARMA III programme (Ministerio de Industria y Ministerio de Sanidad). A.E. is grateful to Lilly S.A. for a fellowship. We are also grateful to Dr. S. R. Baker (Lilly Research Centre, U. K.) for useful suggestions.

References and Notes:

- 1. Hansen, J. J.; Krogsgaard-Larsen, P. Med. Res. Rev. 1990, 10, 55.
- (a) Cerebral ischemia: Meldrum, B. Cerebrovasc. Brain. Metab. Rev. 1990, 2, 27. (b) Alzheimer's disease: Greenamyre, J. T.; Young, A. B. Neurobiol. Aging 1989, 10, 593. (c) Parkinson's disease: Greenamyre, J. T.; O'Brien, C. F. Arch. Neurol. 1991, 977.
- 3. Evans, R. H.; Francis, A. A.; Watkins, J. C. Brain Res. 1978, 148, 536.
- 4. Evans, R. H.; Francis, A. A.; Hunt, K.; Oakes, D. J.; Watkins, J. C. Br. J. Pharmacol. 1979, 67, 591.
- (a) 4-(Tetrazolylalkyl)piperidine-2-carboxylic acids: Ornstein, P. L.; Schoepp, D. D.; Arnold, M. B.; Leander, J. D.; Lodge, D.; Paschal, J. W.; Elzey, T. J. Med. Chem. 1991, 34, 90. (b) 3- and 4-(Phosphonoalkyl)pyridine and piperidine-2-carboxylic acids: Ornstein, P. L.; Schaus, J. M.; Chambers, J. W.; Huser, D. L.; Leander, J. D.; Wong, D. T.; Paschal, J. W.; Jones, N. D.; Deeter, J. B. J. Med. Chem. 1989, 32, 827. (c) (2SR)-4-(3-Phosphonoprop-1-yl)piperazine-2-carboxylic acid (CPP) and

(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid (CPP-ene): Aebischer, B.; Frey, P.; Haerter, H. P.; Herrling, P. L.; Mueller, W.; Olverman, H. J.; Watkins, J. C. *Helv. Chem. Acta* 1989, 72, 1043.

- (a) (2SR, 3E)-2-Amino-4-methyl-5-phosphono-3-pentenoic acid: Fagg, G. E.; Olpe, H-R.; Pozza, M. F.; Baud, J.; Steinmann, M.; Schmutz, M.; Portet, C.; Baumann, P.; Thedinga, K.; Bittiger, H.; Allgeier, H.; Heckendorn, R.; Angst, C.; Brundish, D.; Dingwall, J. G. Br. J. Pharmacol. 1990, 99, 791. (b) (2SR)-2-Amino-4-oxo-5-phosphonopentanoic acid: Whitten, J. P.; Baron, B. M.; Muench, D.; Miller, F.; White, H. S.; McDonald, I. A. J. Med. Chem. 1990, 33, 2961.
- (a) Stereoselective alkylations: Ezquerra, J.; Pedregal, C.; Rubio, A.; Escribano, A.; Sánchez-Ferrando, F. *Tetrahedron*, 1993, 49, 8665. (b) Stereoselective double alkylations: Ezquerra, J.; Pedregal, C.; Rubio, A.; Vaquero, J. J.; Matía, M. P.; Martín, J.; Diaz, A.; García Navío, J. L.; Deeter, J. B. J. Org. Chem. 1994, 59, 4327 and relevant references cited therein.
- 8. Ezquerra, J.; Pedregal, C.; Yruretagoyena, B.; Rubio, A.; Escribano, A.; Carreño, M. C.; García Ruano, J. L., *J. Org. Chem.* in press, and references cited therein.
- 9. (a) The lactam enolate derived from 4 has been generated with LDA and reacted with N-acetylimidazole giving rise to a diastereomeric mixture of the acetylated derivative in 20% yield: Tamura, N.; Matsushita, Y.; Iwama, T.; Harada, S.; Kishimoto, S.; Itoh, K. Chem. Pharm. Bull. 1991, 39, 1199. (b) Functionalisation of a pyroaminoadipic acid derivative, in which the acid moiety has been reduced to an alcohol and protected as the bicyclic benzylidene O,N-acetal, has been recently described: Hermitage, S. A.; Moloney, M. G. Tetrahedron Asymmetry 1994, 5, 1463.
- 10. Flynn, D. L.; Zelle, R. E.; Grieco, P. A. J. Org. Chem. 1983, 48, 2424.
- 11. In the absence of the catalyst the reaction did not take place. For a study of the role of the catalyst in the aldol condensation of pyroglutamate lactam enolates with aldehydes and ketones, see *ref.* 8.
- All new compounds described in this paper were characterized on the basis of their ¹H-NMR (200 MHz), ¹³C-NMR (50.3 MHz) spectroscopic data. 6a: M.p.: 80-2°C. ¹H-NMR (CDCl₃) & 7.93 (t, J= 1.6 Hz, 1H, <u>HC=C</u>), 7.41-7.27 (m, 5H, Ph), 4.85 (t, J= 4.6 Hz, 1H, C<u>H</u>-CO₂Me), 3.79 (s, 3H, CO₂C<u>H₃</u>), 2.89 (dt, J=4.3 and 16.1 Hz, 1H, C<u>H₂</u>), 2.69-2.51 (m, 1H, C<u>H₂</u>), 2.31-2.19 (m, 1H, C<u>H₂</u>), 2.14-2.01 (m, 1H, C<u>H₂</u>), 1.54 (s, 9H, (C<u>H₃</u>)₃). ¹³C-NMR (CDCl₃) &: 171.0, 164.0, 151.7, 138.3, 134.6, 129.4 (2C), 128.9, 128.2, 127.8 (2C), 82.8, 57.3, 51.9, 27.3 (3C), 24.2, 22.6. Anal: calcd, C, 66.07; H, 6.71; N, 4.06; found, C, 65.84; H, 6.49; N, 4.06%.
- 13. Moody, M. C.; Young, D. W. Tetrahedron Lett. 1994, 35, 7277.
- 14. **7a:** M.p.: 90-2°C. ¹H-NMR (CDCl₃) δ : 7.32-7.14 (m, 5H, Ph), 4.66 (ddd, J= 1.9, 2.7 and 5.9 Hz, 1H, C<u>H</u>-CO₂Me), 3.71 (s, 3H, CO₂C<u>H₃</u>), 3.51 (m, 1H, C<u>H</u>₂Ph), 2.72-2.20 (m, 2H, C<u>H</u>₂Ph and C<u>H</u>), 2.15 (dq, 1H, J= 3.7 Hz and 14.1 Hz, C<u>H</u>₂), 1.96 (m, 1H, C<u>H</u>₂), 1.70-1.61 (m, 1H, H_{4eq}), 1.51 (s, 9H, (C<u>H</u>₃)₃), 1.48-1.35 (m, 1H, H_{4ax}). ¹³C-NMR (CDCl₃) δ : 172.3, 171.9, 152.7, 139.2, 129.2 (2C), 128.3 (2C), 126.1, 83.3, 58.8, 52.3, 45.8, 37.0, 27.8 (3C), 25.2, 23.5. IR (CHCl₃): 2980, 1720, 1745, 1670, 1295, 1145. Anal: calcd, C, 65.68; H, 7.25; N, 4.03; found, C, 65.29; H, 7.20; N, 3.97%.
- 15. 1a: M.p.: 175-7°C. ¹H-NMR (CD₃OD) δ: 7.31-7.12 (m, 5H, Ph), 3.94 (t, 1H, J= 6.1 Hz, C<u>H</u>-NH₂), 3.02-2.64 (m, 3H), 2.02-1.54 (m, 4H). ¹³C-NMR (CD₃OD) δ: 178.3, 171.5, 140.2, 130.0 (2C), 129.4 (2C), 127.5, 53.7, 48.3, 39.3, 29.4, 28.0. IR (KBr): 2928, 1740, 1705, 1496, 1188 cm⁻¹.
- 16. Pedregal, C.; Ezquerra, J.; Escribano, A.; Carreño, M. C.; García Ruano, J. L. Tetrahedron Lett. 1994, 35, 2053.
- 17. **2a:** M.p.: >240°C (dec.). ¹H-NMR (CD₃OD/KOD) δ : 7.27-7.11 (m, 5H, Ph), 3.19 (t, 1H, J= 4.6 Hz, C<u>H</u>-CO₂H), 2.70-2.65 (m, 2H, C<u>H</u>₂-N), 2.55 (d, 2H, J= 7.4 Hz, C<u>H</u>₂-Ph), 2.05-1.90 (m, 1H), 1.76-1.56 (m, 3H), 1.40-1.25 (m, 1H). ¹³C-NMR (CD₃OD/KOD) δ : 181.3, 141.9, 130.1 (2C), 129.3 (2C), 126.9, 59.9, 48.9, 40.4, 37.9, 29.3, 27.3. IR (KBr): 3439, 1604, 1317cm⁻¹.

(Received in UK 2 February 1995; revised 9 March 1995; accepted 10 March 1995)