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FeCl3-promoted ring size-dictating diversity-oriented synthesis 
(DOS) of N-heterocycles using in situ-generated cyclic imines and 
enamines
Ganesh Kumar Dhandabani,a Mohana Reddy Mutra a and Jeh-Jeng Wang* a, b

The FeCl3-promoted ring size-controlled oxidative activation of o-
alkynylanilines open a complementary appealing protocol for poly-
N-heterocycle synthesis. When electron-poor π-alkyne iron species 
meet cyclic enamines endowed from cyclohexanone and β-
tetralone, they undergo a regioselective 6-exo-dig cyclization to 
afford the corresponding dibenzo[b,j][1,10]phenanthrolines and 
12-benzoylated dihydrobenzo[a]acridine skeletons. Later, these 
acridine motifs become completely unsaturated by exercising 
dehydrogenative aromatization via the aza-allyl oxidation 
intermediate. We realized all quaternary carbon centre 
pseudoindoxyls through the Mannich-type alkylation of 2,3-
dihydro-1H-inden-1-one with cyclic ketimines generated from the 
in situ intramolecular nucleophilic cyclization of o-alkynylanilines.

1,10-Phenanthrolines are crescent-shaped polyheterocyclic 
compounds embedded with two nitrogens in a distinctive 
position that play a pivotal role in its ligand family.1 Its specific 
characteristics, such as planarity, extended aromaticity, and 
strong metal binding affinity give this molecule a wide range of 
applications in catalysis, materials applications and 
pharmacology.2 In particular, dibenzo[1,10]phenanthrolines 
functionalized at the para position to the nitrogen atoms act as 
a murine leukaemia cell therapeutic agent,3a an emerging 
photosensitizer in the reduction of water to generate 
hydrogen,3b an improved chemosensor in environmental and 
biological systems3c and a key building block in electron 
transport and OLED materials synthesis.3d,e Although 
dibenzo[1,10]phenanthroline has predominant usage in 
science, the synthetic method to achieve this core molecule is 
often limited due to the reduced availability of the substrate 
and complicated reaction procedure.4 Thus, developing a 

general and conventional method to construct these core 
molecules has a tangible impact in both academia and industry. 
The selective oxidative dehydrogenation of

Scheme 1. Chemodivergent synthesis of aza-heterocycles

cyclohexanones is an evolving research area to manifold 
heterocyclic synthesis.5 Applying this method, Jiao’s group 
reported an elegant method to achieve synthetically robust 
substituted catechols using DMSO as a solvent and an oxidant.6a 
Inspired by this work, Pan et al disclosed an iodine-catalysed 
synthesis of N,N’-diaryl-o-phenylenediamines using cross-
dehydrogenative aromatization between cyclohexanone and 
anilines.6b In the same year, Deng et al developed a 
complementary approach to synthesize o-diarylamines 
exploiting elemental sulfur-promoted aerobic oxidative 
dehydrogenation/cross-coupling reactions.6c All of the above-
mentioned methods demonstrate cascade inter-/intra-
molecular coupling and complete aromatization of 
cyclohexanone (6π electrons). However, the development of 
regioselective controlled oxidation (only 4π electrons) and 
annulation reaction sequences to synthesize polyheterocylcles 
is an unattained challenge. In continuation of our research work 
on sustainable synthetic method development,7 herein, we 
developed the first selective 4-carbon oxidation of the 
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cyclohexanone reaction cascade to synthesize the synthetically 
valuable dibenzo[b,j][1,10]phenanthroline scaffold (Scheme 
1A). In advance, these two unoxidized methylene carbons 
present in the phenanthroline ring act as chemical handles for 
further product diversification.

Pseudo-indoxyl derivatives are privileged nuclei 
encountered in a myriad of natural products and 
pharmaceutically active small molecule drugs, such as 
duocarmycins, (-)-isatisine A, hinckdentine A and Lipid Green.8 
These core molecules are expedient precursors in the area of 
semiconductor design9 and fluorescence probe assembly.10 The 
common method for the synthesis of C2 quaternary 3-
oxyindolines is the direct functionalization of 3H-indol-3-ones, 
indolin-3-ones and indoles involving alkylation, allylation, and 
arylation reactions by using both metal and metal-free 
conditions.11 However, the indole’s preferred pathway to 
undergo homo dimerization reactions enormously hampers 
these direct transformation strategies.11c An alternative 
predominant approach involves the in situ generation of 3H-
indol-3-ones or indolin-3-ones using the intramolecular 
cyclization of an alkyne, followed by the tandem addition of a 
nucleophile or radical source at the C2 position of the indole 
motif.12 This direct synthetic system is a more efficient and 
sustainable method to synthesize indoxyl motif compared with 
formyl methods. Thus, we developed a method that generated 
in situ the α-aryl cyclic ketimines explored in a Mannich-type 
alkylation reaction with five-membered cyclic ketones to afford 
the 2-(inden-2-yl)-3-oxo-indoline derivatives (Scheme 1C). To 
the best of our knowledge, this is the first report of an 
intermolecular enol nucleophilic attack upon the in situ-
generated 3H-indol-3-ones from o-alkynylanilines.

After careful optimization studies (see supporting information 
Table S1), we realize that our standard reaction conditions for the 
intermolecular oxidative cyclization have proved successfully by 
synthesizing a variety of different dibenzo[b,j][1,10]phenanthroline 
frameworks containing a broad range of functional groups (Table 1). 
Initially, the electron deficient and electron rich o-alkynylanilines (1a-
1c) were tested under our title reaction conditions, which yielded the 
desired products with moderate to good yields (55-90%) (Table 1, 
3aa-3ca). The substrates bearing an R1-group, such as m-F (1d), m-
CF3 (1e), m-Me (1f), p-Cl (1g), p-CF3 (1h), p-COMe (1i) and p-Me (1j), 
were invariably transformed to the corresponding 
dibenzo[b,j][1,10]phenanthroline scaffold in 48-84% yields 
(Table 1, 3da-3ja). Remarkably, the electron-poor alkyne motif 
1k resulted in a higher yield (90%) than the electron-rich o-
alkynylanilines.

When we introduced benzo-fused cyclohexanone in our 
regular reaction conditions, we did not observe any dibenzo 
phenanthroline scaffold. To our pleasure, we isolated a 
carbonyl group decorated with a benzoacridine system (Scheme 
1B). These carbonylated/acylated acridine scaffolds are 
ubiquitous to the N-heterocyclic rings present in valuable 
natural products and bioactive molecules.13 This kind of acridine 
scaffold synthesis generally requires a multi-step operation.14 
Therefore, we developed a single step protocol, employing 
Lewis acid-promoted aerobic dehydrogenative aromatization of 
o-alkynylanilines with β-tetralones to synthesize the benzoyl 

group tethered to the benzo[a]acridines. Next, we explored the 
efficiency of our aerobic dehydrogenative aromatization 
reaction with a variety of electronically different anilines (Table 
2). Both electron-rich and electron-deficient o-alkynylanilines 
underwent a smooth

Table 1. Reaction scope for the formation of dibenzo[b,j][1,10]phenanthrolines a,b

a Reaction conditions: Compound 1a-1k (1.05 mmol), 2a (0.5 mmol), FeCl3 (0.75 
mmol) and DMSO (1 mL) at 110 °C for the indicated time unless otherwise noted. 
b Isolated yields.

 dehydrogenative annulation reaction to afford the 
corresponding benzoylated acridines (Table 2, 5aa, 5la 5da, 
5ma, 5ja) in 60–91% yield. When we examined the reaction 
with α-tetralone, we concluded that our reaction conditions 
were not compatible with this discrete reaction. However, we 
isolated the benzylic carbon oxidized products 5ab and 5mb 
with moderate yield (65-70%). These results confirmed the 
participation of the aza-allyl oxidation intermediate (Scheme 3) 
in the dehydrogenative aromatization of the cyclohexanone 
ring residue. Because the cyclized intermediate (5ab’) of α-
tetralone has restricted isomerization and cannot produce an 
exo-methylene double bond that would eventually undergo 
aza-allyl oxidation, the ring was not aromatized.

 Table 2. Reaction scope for the formation of benzoylated acridines a,b

a Reaction conditions: Compound 1 (0.5 mmol), 4a-b (0.75 mmol), FeCl3 (0.75 
mmol) and DMSO (1.0 mL) at 110 °C for the indicated time unless otherwise noted. 
b Isolated yields.

After realizing the optimal reaction conditions to synthesize 
the 2(-inden-2-yl)-3-oxo-indoline derivatives (see supporting 
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information Table S2), the generality of our protocol was tested 
with an array of o-alkynylanilines (Table 3). Initially, different R- 
group embedded o-alkynylanilines were subjected to our 
optimized reaction conditions, and all of these o-alkynylanilines 
were successfully transformed to C2-tetrasubstituted indolin-3-
ones with moderate to good yields (Table 3, 7aa-7oa, 45-88%). 
Next, the R1-group containing m-Me-Ph (1f), p-Me-Ph (1j), and 
p-OMe-Ph (1p) gave the products 7fa, 7ja and 7pa (yields 80-
90%). The thiophene substituent was compatible under our title 
reaction conditions and provided the corresponding product in 
65% yield (7qa). The fluoro-substituted dihydro-1H-indenone 
was an effective coupling partner, affording the product 7ab in 
a moderate yield of 50%.

 Table 3. Reaction scope for the formation of 2(-inden-2-yl)-3-oxo-indoline derivatives a,b

a Reaction conditions: Compound 1 (0.5 mmol), 6a-b (0.75 mmol), FeCl3 (0.75 
mmol) and DMSO (1.0 mL) at 110 °C for the indicated time unless otherwise noted. 
b Isolated yields.

To highlight the efficiency of our synthetic protocol, we 
developed a sequential one-pot oxidation reaction using our 
lab’s metal-free oxidative dehydrogenation conditions7a with 
aq. TBHP/O2 (Scheme 2a) to synthesize the benzoyl analogue of 
the well-known diimine ligand 3aa’.15 The delicate 
decarbonylation of aldehydes and ketones has widened the 
spectrum of synthetic manipulations in medicinal chemistry.16 
Therefore, we disclose the first base-promoted debenzoylation 
of the benzo[a]acridine skeleton 5aa (Scheme 2b). The 
structure of the debenzoylated product, benzo[a]acridine 
(5aa’), was confirmed by X-ray crystallography.21 

Scheme 2. Late-stage modifications of N-heterocycles

Based on the literature reports and control experiments 
(see supporting information), a plausible mechanism was 
proposed in Scheme 3. In cycle A, the β-chlorinated 

cyclohexanone initially underwent an in situ Kornblum 
oxidation to generate 1,2-cyclohexadione 2a’’.6a,b This was 
reacted with 2-(phenylethynyl)aniline to facilitate the imine 
intermediate A. Consequently, intermediate A isomerized to 
the reactive enamine and underwent regioselective 6-exo-dig 
annulation with the active π Fe(III) species to produce the vinyl 
iron complex C. Acid-promoted protolysis of C afforded the 
desired product 3aa.18,6a,b The similar π alkyne-iron species B 
was yielded by the reaction between β-tetralone and 2a via a 6-
exo-dig annulation (Cycle B), furnishing the cyclized 
intermediate F.7b Under high temperature/acidic conditions, 
compound F isomerized to form exo-methylene compound G. 
Presumably, G underwent aza-allyl-oxidation initiated by DMSO 
to afford compound H, and compound I was generated from the 
enolization of H, followed by dehydration and isomerization to 
provide the final product 5aa.19,7a,b In cycle C, compound 1a was 
transformed to 1,2-di-carbonyl (compound J) using 
Fe(III)/DMSO as an oxidizing system.17 Next, the Fe(III)-induced 
anionic cyclization facilitates the in situ generation of 3H-indol-
3-one K.12 Finally, a Mannich-type alkylation reaction of 
compound K with the enol generated from 1H-inden-1-one 
delivered our desired product 7aa.20,14

Scheme 3. Plausible reaction mechanism

 In summary, we have developed a diversity-oriented 
synthesis of different N-heterocyclic molecules, such as 
dibenzo[b,j][1,10]phenanthrolines, 12-benzoylacridines and 2-
(inden-2-yl)-3-oxo-indolines via functionalization of the in situ-
generated cyclic enamine and imine intermediates. The 
mechanistic studies revealed that the in situ-oxidized product 
1,2-cyclohexadione undergoes double imination and hydro-
enamination reaction cascade with o-alkynylaniline to furnish 
the dibenzo[b,j][1,10]phenanthrolines. In the case of 12-
benzoylated acridines, the reactions proceed via an 
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imination/annulation/aza-allyl oxidation cascade sequence. For 
inden-1-one tethered 3-oxyindole construction, the 
intramolecular cyclization of o-alkynylaniline furnished the 
cyclic C-acylimines. Then, these cyclic ketimines were subjected 
to an alkylation reaction with the enol derived from the 
dihydro-1H-inden-1-one derivative. The major features of our 
methods are the external oxidant-free, additive-free and 
distinguished ligand-free conditions, as well as the potential of 
the greener oxidizing system FeCl3/DMSO.
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